高中物理带电粒子在磁场中的运动知识点汇总
- 格式:doc
- 大小:269.00 KB
- 文档页数:10
带电粒子在匀强磁场中的运动(知识小结)一.带电粒子在磁场中的运动(1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即 ① 为静止状态。
② 则粒子做匀速直线运动。
(2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。
(3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。
二、带电粒子在匀强磁场中的圆周运动1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动.(4)运动时间: (Θ 用弧度作单位 )1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动.2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关.三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题)(一)边界举例:1、直线边界(进出磁场有对称性)规律:如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等。
速度与边界的夹角等于圆弧所对圆心角的一半,并且如果把两个速度移到共点时,关于直线轴对称。
2、平行边界(往往有临界和极值问题)(在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界)3、矩形边界磁场区域为正方形,从a 点沿ab 方向垂直射入匀强磁场:若从c 点射出,则圆心在d 处若从d 点射出,则圆心在ad 连线中点处4.圆形边界(从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。
)特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出一般情形:磁场圆心O 和运动轨迹圆心O ′都在入射点和出射点连线AB 的中垂线上。
或者说两圆心连线OO ′与两个交点的连线AB 垂直。
(二)求解步骤:(1)定圆心、(2)连半径、(3)画轨迹、(4)作三角形.(5)据半径公式求半径,2.其特征方程为:F 洛=F 向. 3.三个基本公式: (1)向心力公式:qvB =m v 2R ; (2)半径公式:R =mv qB ; (3)周期和频率公式:T =2πm qB =1f ; 222m t qB m qB T θππθπθ==⨯=⨯v L =t再解三角形求其它量;或据三角形求半径,再据半径公式求其它量(6)求时间1、确定圆心的常用方法:(1)已知入射方向和出射方向(两点两方向)时,可以作通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图3-6-6甲所示,P 为入射点,M 为出射点,O 为轨道圆心.(2)已知入射方向和出射点的位置时(两点一方向),可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心,如图3-6-6乙所示,P 为入射点,M 为出射点,O 为轨道圆心.(3)两条弦的中垂线(三点):如图3-6-7所示,带电粒子在匀强磁场中分别经过O 、A 、B 三点时,其圆心O ′在OA 、OB 的中垂线的交点上.(4)已知入射点、入射方向和圆周的一条切线:如图3-6-8所示,过入射点A 做v 垂线AO ,延长v 线与切线CD 交于C 点,做∠ACD 的角平分线交AO 于O 点,O 点即为圆心,求解临界问题常用到此法.(5)已知入射点,入射速度方向和半径大小2.求半径的常用方法 :由于已知条件的不同,求半径有两种方法:一是:利用向心力公式求半径;二是:利用平面几何知识求半径。
高中物理之带电粒子在磁场中的运动知识点带电粒子在磁场中的运动特点带电粒子在磁场中的运动往往比较复杂,我们只考虑其中几种特殊情况:不考虑粒子本身的重力(一般如:电子、质子、粒子、离子等不考虑它们的重力);磁场为匀强磁场。
①初速度v0与磁场平行:此时洛伦兹力F=0,粒子将沿初速度方向做匀速直线运动。
②初速度与磁场垂直:由于洛伦兹力总与粒子运动方向垂直,粒子在洛伦兹力作用下做匀速圆周运动,其向心力由洛伦兹力提供,所以其轨道半径为,运动周期为。
由此可见:荷质比相同的粒子以相同的速度进入同一磁场,其轨道半径相同;带电量相同的粒子以相同的动量进入同一磁场,其轨道半径相同。
它们运动的周期T与粒子的速度大小无关,与粒子的轨道半径R无关,只要是荷质比相同的粒子,进入同一磁场,其周期相同。
规律方法“一点、两画、三定、四写”求解粒子在磁场中的圆周运动问题(1)一点:在特殊位置或要求粒子到达的位置(如初位置、要求经过的某一位置等);(2)两画:画出速度v和洛伦兹力F两个矢量的方向;(3)三定:定圆心、定半径、定圆心角;(4)四写:写出基本方程带电粒子在匀强磁场中的运算1圆心的确定①因为洛伦兹力指向圆心,根据F洛⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场的两点,如下图甲的P、M两点)的F洛的方向,其延长线的交点即为圆心.(也可以说是任意两点的切线方向的垂直线交点)②做粒子入射点速度方向的垂直线,做出入射点、出射点连线的中垂线,两线的交点即是圆心O.2半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角)。
并注意以下两个重要的几何特点:①粒子速度的偏向角(φ)等于回旋角(α),并等于AB弦与切线的夹角(弦切角θ)的2倍,φ=α=2θ=ω。
②相对的弦切角(θ)相等,与相邻的弦切角(θ')互补,即θ+θ'=180°。
3粒子在磁场中运动时间的确定利用圆心角与弦切角的关系,或者是四边形内角和等于360°计算出圆心角ɑ的大小.由公式,可求出运动时间.如果ɑ为弧度制,则在磁场中运动时间的确定.利用圆心角与弦切角的关系,或者是四边形内角和等于360°计算出圆心角ɑ的大小.由公式,可求出运动时间.如果ɑ为弧度制,则注意圆周运动中有关对称规律如从同一边界射入的粒子,从同一边界射出时,速度与边界的夹角相等;在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。
高三物理一轮复习资料【带电粒子在匀强磁场中的运动】 [考点分析]1.命题特点:带电粒子在匀强磁场中的运动是等级考命题的热点问题,对此部分内容的考查以带电粒子在各类有界匀强磁场中的运动为主,题型有选择也有计算,难度中等偏上.2.思想方法:对称法、图解法、模型法等.[知能必备]1.单边界磁场问题的对称性带电粒子在单边界匀强磁场中的运动一般都具有对称性,可总结为:单边进出(即从同一直线边界进出),等角进出,如图所示.2.缩放圆法的应用技巧当带电粒子以任一速度沿特定方向射入匀强磁场时,它们的速度v0越大,在磁场中做圆周运动的轨道半径也越大,它们运动轨迹的圆心在垂直速度方向的直线PP′上,此时可以用“缩放圆法”分析——以入射点为定点,圆心位于直线PP′上,将半径缩放作粒子的运动轨迹,从而探索出临界条件.3.带电粒子在磁场中运动产生多解的原因[真题再练]1. (多选)如图所示,在Oxy 平面的第一象限内存在方向垂直纸面向里,磁感应强度大小为B 的匀强磁场.一带电粒子从y 轴上的M 点射入磁场,速度方向与y 轴正方向的夹角θ=45°.粒子经过磁场偏转后在N 点(图中未画出)垂直穿过x 轴.已知OM =a ,粒子电荷量为q ,质量为m ,重力不计.则( )A .粒子带负电荷B .粒子速度大小为qBamC .粒子在磁场中运动的轨道半径为aD .N 与O 点相距(2+1)a解析:AD 由左手定则,分析粒子在M 点受的洛伦兹力,可知粒子带负电,选项A 正确;粒子的运动轨迹如图所示,O ′为粒子做匀速圆周运动的圆心,其轨道半径R =2a ,选项C 错误;由q v B =m v 2R ,可求出v =2qBa m ,选项B 错误;由图可知,ON =a +2a =(2+1)a ,选项D 正确.2.如图,在0≤x ≤h ,-∞<y <+∞区域中存在方向垂直于纸面的匀强磁场,磁感应强度B 的大小可调,方向不变.一质量为m 、电荷量为q (q >0)的粒子以速度v 0从磁场区域左侧沿x 轴进入磁场,不计重力.(1)若粒子经磁场偏转后穿过y 轴正半轴离开磁场,分析说明磁场的方向,并求在这种情况下磁感应强度的最小值B m ;(2)如果磁感应强度大小为B m2,粒子将通过虚线所示边界上的一点离开磁场.求粒子在该点的运动方向与x 轴正方向的夹角及该点到x 轴的距离.解析:(1)由题意,粒子刚进入磁场时应受到方向向上的洛伦兹力,因此磁场方向垂直于纸面向里.设粒子进入磁场中做圆周运动的半径为R ,根据洛伦兹力公式和圆周运动规律,有q v 0B =m v 20R①由此可得R =m v 0qB②粒子穿过y 轴正半轴离开磁场,其在磁场中做圆周运动的圆心在y 轴正半轴上,半径应满足R ≤h ③由题意,当磁感应强度大小为B m 时,粒子的运动半径最大,由此得B m =m v 0qh④ (2)若磁感应强度大小为B m2,粒子做圆周运动的圆心仍在y 轴正半轴上,由②④式可得,此时圆弧半径为R ′ =2h ⑤粒子会穿过图中P 点离开磁场,运动轨迹如图所示.设粒子在P 点的运动方向与x 轴正方向的夹角为α,由几何关系sin α=h 2h =12⑥即α=π6⑦由几何关系可得,P 点与x 轴的距离为 y =2h (1-cos α)⑧联立⑦⑧式得y = (2-3)h ⑨ 答案:(1)磁场方向垂直于纸面向里 m v 0qh(2)π6(2-3)h带电粒子在匀强磁场中运动问题的解题流程[精选模拟]视角1:带电粒子在匀强磁场中运动的临界、极值问题1.(多选)如图所示,S 处有一电子源,可向纸面内任意方向发射电子,平板MN 垂直于纸面,在纸面内的长度L =9.1 cm ,中点O 与S 间的距离d =4.55 cm ,MN 与SO 直线的夹角为θ,板所在平面有电子源的一侧区域有方向垂直于纸面向外的匀强磁场,磁感应强度B =2.0×10-4 T ,电子质量m =9.1×10-31kg ,电荷量e =1.6×10-19C ,不计电子重力,电子源发射速度v =1.6×106 m/s 的一个电子,该电子打在板上可能位置的区域的长度为l ,则( )A .θ=90°时,l =9.1 cmB .θ=60°时,l =9.1 cmC .θ=45°时,l =4.55 cmD .θ=30°时,l =4.55 cm解析:AD 电子在磁场中运动,洛伦兹力提供向心力:e v B =m v 2R ,R =m v Be=4.55×10-2 m =4.55 cm =L2,θ=90°时,击中板的范围如图甲,l =2R =9.1 cm ,选项A 正确;θ=60°时,击中板的范围如图乙所示,l <2R =9.1 cm ,选项B 错误;θ=30°,如图丙所示,l =R =4.55 cm ,当θ=45°时,击中板的范围如图丁所示,l >R (R =4.55 cm),故选项D 正确,选项C 错误.2.如图所示,竖直线MN ∥PQ ,MN 与PQ 间距离为a ,其间存在垂直纸面向里的匀强磁场,磁感应强度为B ,O 是MN 上一点,O 处有一粒子源,某时刻放出大量速率均为v (方向均垂直磁场方向)、比荷一定的带负电粒子(粒子重力及粒子间的相互作用力不计),已知沿图中与MN 成θ=60°角射入的粒子恰好垂直PQ 射出磁场,则粒子在磁场中运动的最长时间为( )A.πa3v B .23πa 3vC.4πa 3vD .2πa v解析:C 当θ=60°时,粒子的运动轨迹如图甲所示,则a =R sin 30°,即R =2a .设带电粒子在磁场中运动轨迹所对的圆心角为α,则其在磁场中运行的时间为t =α2πT ,即α越大,粒子在磁场中运行时间越长,α最大时粒子的运行轨迹恰好与磁场的右边界相切,如图乙所示,因R =2a ,此时圆心角αm 为120°,即最长运行时间为T 3,而T =2πR v =4πav ,所以粒子在磁场中运动的最长时间为4πa3v,C 正确.3.如图是某屏蔽高能粒子辐射的装置,铅盒左侧面中心O 有一放射源可通过铅盒右侧面的狭缝MQ 向外辐射α粒子,铅盒右侧有一左右边界平行的匀强磁场区域.过O 的截面MNPQ 位于垂直磁场的平面内,OH 垂直于MQ .已知∠MOH =∠QOH =53°.α粒子质量m =6.64×10-27kg ,电量q =3.20×10-19C ,速率v =1.28×107m/s ;磁场的磁感应强度B=0.664 T ,方向垂直于纸面向里;粒子重力不计,忽略粒子间的相互作用及相对论效应,sin 53°=0.80,cos 53°=0.60.(1)求垂直于磁场边界向左射出磁场的粒子在磁场中运动的时间t ;(2)若所有粒子均不能从磁场右边界穿出,达到屏蔽作用,求磁场区域的最小宽度d . 解析:(1)粒子在磁场内做匀速圆周运动,则T =2πmqB垂直于磁场边界向左射出磁场的粒子在磁场中运动的时间为:t =T2代入数据解得:t =π32×10-6 s ≈9.81×10-8 s.(2)粒子在磁场中做匀速圆周运动,q v B =m v 2R沿OQ 方向进入磁场的粒子运动轨迹与磁场右边界相切,则所有粒子均不能从磁场的右边界射出,如图所示,由几何关系可得:d =R +R sin 53° 代入数据可得:d =0.72 m. 答案:(1)9.81×10-8 s (2)0.72 m视角2:带电粒子在匀强磁场中运动的多解问题4.(多选)长为l 的水平极板间有垂直纸面向里的匀强磁场,如图所示,磁感应强度为B ,板间距离也为l ,板不带电,现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A .使粒子的速度v <Bql4mB .使粒子的速度v >5Bql4mC .使粒子的速度v >BqlmD .使粒子的速度v 满足Bql 4m <v <5Bql4m解析:AB 带电粒子刚好打在极板右边缘,有r 21=⎝⎛⎭⎫r 1-l 22+l 2,又因r 1=m v 1Bq ,解得v 1=5Bql 4m ;粒子刚好打在极板左边缘,有r 2=l 4=m v 2Bq ,解得v 2=Bql4m,故A 、B 正确.。
高中物理带电粒子在磁场中的运动知识点汇总-
1. 磁场的基本概念
磁场是一种物理现象,指在空间范围内存在的磁场力作用所表现出来的影响。
常用的表示磁场的单位是特斯拉 (T)。
2. 洛伦兹力定律
当一个带电粒子在磁场中运动时,会受到一个称为洛伦兹力的力作用。
洛伦兹力的大小与电荷的电量、磁场的强度和带电粒子的速度有关。
3. 带电粒子在匀强磁场中的运动规律
带电粒子在匀强磁场中前进的轨迹为圆形或者螺旋线,圆的半径与带电粒子的质量、速度、电荷量和磁场强度有关。
4. 带电粒子在非匀强磁场中的运动规律
带电粒子在非匀强磁场中的运动规律比匀强磁场更复杂,通常需要用电场力和重力力来计算。
5. 延迟磁场
延迟磁场是指当一个带电粒子在磁场中运动时,会产生一个磁场,这个磁场会影响该带电粒子后续的运动。
在一些情况下,延迟磁场可能比初始磁场更重要。
6. 磁场对物体的影响
磁场不仅对带电粒子的运动有影响,还对物体的运动有影响。
当一个物体在磁场中运动时,会受到磁场力的作用,这个力与电荷无关,而是与磁矩有关。
7. 模拟实验
在实验室中可以使用引入带电粒子和磁场的装置来进行模拟实验。
这些实验可以帮助学生深入理解磁场和带电粒子在其中的运动规律。
带电粒⼦在磁场中运动情况汇总带电粒⼦在磁场中运动情况汇总⼀、带电粒⼦在磁场中运动的分析⽅法 (1)圆⼼的确定因为洛伦兹⼒f 指向圆⼼,根据f ⊥v ,画出粒⼦运动轨迹中任意两点(⼀般是射⼊和射出磁场两点),先作出切线找出v 的⽅向再确定F 的⽅向,沿两个洛伦兹⼒F 的⽅向画其延长线,两延长线的交点即为圆⼼,或利⽤圆⼼位置必定在圆中⼀根弦的中垂线上,作出圆⼼位置,(2)半径的确定和计算利⽤平⾯⼏何关系,求出该圆的可能半径(或圆⼼⾓),并注意以下⼏何特点:粒⼦速度的偏向⾓?,等于转过的圆⼼⾓α,并等于AB 弦与切线的夹⾓(弦切⾓)θ的2倍,如右图所⽰,即 ?=α=2θ(3)粒⼦在磁场中运动时间的确定若要计算转过任⼀段圆弧所⽤的时间,则必须确定粒⼦转过的圆弧所对的圆⼼⾓,利⽤圆⼼⾓α与弦切⾓θ的关系,或者利⽤四边形内⾓和等于360°计算出圆⼼⾓α的⼤⼩,并由表达式t =2απT ,确定通过该段圆弧所⽤的时间,其中T 即为该粒⼦做圆周运动的周期,转过的圆⼼⾓越⼤,所⽤时间t 越长,注意t 与运动轨迹的长短⽆关。
⼆、带电粒⼦在有界磁场中运动情况分析 1、⽆边界磁场例1、如图所⽰,质量为m ,电荷量为q ,重⼒不计的带正电粒⼦,以速度v 从A 点垂直射⼊匀强磁场,磁场的磁感应强度⼤⼩为B ,⽅向垂直于纸⾯向⾥。
若粒⼦以A 点为中⼼,可在垂直磁场的平⾯内向任意⽅向发射,但速度⼤⼩⼀定为v ,那么,粒⼦可能经过的区域怎样 2、⼀边有界磁场v AB2r 例1图例2、如图所⽰,质量为m ,电荷量为q ,重⼒不计的带正电粒⼦,以速度v 从A 点垂直射⼊匀强磁场,磁场的磁感应强度⼤⼩为B ,⽅向垂直于纸⾯向⾥。
(1)设置⼀块⾜够长的挡板MN ,若粒⼦可从A 点向挡板右侧任意⽅向发射,但速度⼤⼩⼀定为v ,那么粒⼦射到挡板上的范围多⼤(2)若粒⼦以与边界夹⾓为(与x 轴的正⽅向)θ射⼊磁场,求离开磁场时与边界的夹⾓和粒⼦做圆周运动的圆⼼⾓。
高考物理带电粒子在磁场中的运动知识点汇总一、带电粒子在磁场中的运动压轴题1.如图所示,MN为绝缘板,CD为板上两个小孔,AO为CD的中垂线,在MN的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m电荷量为q的粒子(不计重力)以某一速度从A点平行于MN的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O点),已知图中虚线圆弧的半径为R,其所在处场强大小为E,若离子恰好沿图中虚线做圆周运动后从小孔C垂直于MN进入下方磁场.()1求粒子运动的速度大小;()2粒子在磁场中运动,与MN板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D进入MN上方的一个三角形匀强磁场,从A点射出磁场,则三角形磁场区域最小面积为多少?MN上下两区域磁场的磁感应强度大小之比为多少?()3粒子从A点出发后,第一次回到A点所经过的总时间为多少?【答案】(1EqRm(2)212R;11n+;(3)2πmREq【解析】【分析】【详解】(1)由题可知,粒子进入静电分析器做圆周运动,则有:2mvEqR=解得:EqR vm =(2)粒子从D到A匀速圆周运动,轨迹如图所示:由图示三角形区域面积最小值为:22R S = 在磁场中洛伦兹力提供向心力,则有:2mv Bqv R= 得:mv R Bq=设MN 下方的磁感应强度为B 1,上方的磁感应强度为B 2,如图所示:若只碰撞一次,则有:112R mv R B q== 22mvR R B q==故2112B B = 若碰撞n 次,则有:111R mv R n B q==+ 22mvR R B q==故2111B B n =+ (3)粒子在电场中运动时间:1242R mRt v Eqππ== 在MN 下方的磁场中运动时间:211122n m mRt R R v EqR Eqπππ+=⨯⨯== 在MN 上方的磁场中运动时间:232142R mRt v Eq ππ=⨯=总时间:1232mRt t t t Eqπ=++=2.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m ,比荷qm=1.0×108C/kg 的带正电的粒子以水平初速度v 0从P 点射入电场.边界MM′不影响粒子的运动,不计粒子重力.(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21nm s n -⨯+ (其中n =0、1、2、3、4)第二种情况:v 0=53.20.8()10/21nm s n -⨯+ (其中n =0、1、2、3).【解析】 【详解】(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则竖直方向21··2Eq d t m= 得2mdt qE=代入数据解得t =1.0×10-6s水平位移x =v 0t 代入数据解得x =0.80m因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出, 则运动时间t 0=Lv =0.5×10-6s , 竖直位移201··2Eq y t m==0.0125m 所以粒子从P′点下方0.0125m 处射出.(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 0 2mdqE粒子进入磁场时,垂直边界的速度 v 1=qE m ·t =2qEd m设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =1v sin α在磁场中由qvB =m 2v R得R =mv qB 粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsinα=L 把x =v 2md qE R =mv qB 、v =1v sin α、12qEdv m =代入解得 v 0=L·2EqmdE B v 0=3.6×105m/s.(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα) 把R =mv qB 、v =1v sin α、12qEd v m=12(1cos )12tan sin 2mEd mEd y B q B q ααα-∆==可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直MM′进入磁场运动半个圆周回到电场)1max 212mv m qEd mEdy qB qB m B q∆===Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.若粒子速度较小,周期性运动的轨迹如下图所示:粒子要从M′点射出边界有两种情况, 第一种情况: L =n(2v 0t +2Rsinα)+v 0t 把2md t qE =R =mv qB 、v 1=vsinα、12qEdv m=代入解得 0221221L qE n E v n md n B=⋅++v 0= 4.00.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3、4)第二种情况:L =n(2v 0t +2Rsinα)+v 0t +2Rsinα把2md t qE =、R =mv qB 、v 1=vsinα、12qEd v m=02(1)21221L qE n E v n md n B+=⋅++v 0= 3.20.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3).3.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间.【答案】(1)2mv E qL =(2)04nmv B qL =n=1、2、3......(3)02L t v π=【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有: 0L v t =,2122L at =,qE ma = 联立解得: 2mv E qL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyv v θ==l 速度大小002sin v v v θ== 设x 为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L ,0 )点,应满足L=2nx ,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x 时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R ,圆弧对应的圆心角为2π.则有2R ,此时满足L=2nx 联立可得:22R n=由牛顿第二定律,洛伦兹力提供向心力,则有:2v qvB m R=得:04nmv B qL=,n=1、2、3.... 轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为2π.则有222x R ,此时满足()221L n x =+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==4.如图甲所示,在直角坐标系0≤x ≤L 区域内有沿y 轴正方向的匀强电场,右侧有一个以点(3L ,0)为圆心、半径为L 的圆形区域,圆形区域与x 轴的交点分别为M 、N .现有一质量为m 、带电量为e 的电子,从y 轴上的A 点以速度v 0沿x 轴正方向射入电场,飞出电场后从M 点进入圆形区域,此时速度方向与x 轴正方向的夹角为30°.不考虑电子所受的重力.(1)求电子进入圆形区域时的速度大小和匀强电场场强E 的大小;(2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴.求所加磁场磁感应强度B 的大小和电子刚穿出圆形区域时的位置坐标; (3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面向外为磁场正方向),最后电子从N 点处飞出,速度方向与进入磁场时的速度方向相同.请写出磁感应强度B 0的大小、磁场变化周期T 各应满足的关系表达式.【答案】(1) (2) (3) (n=1,2,3…)(n=1,2,3…) 【解析】(1)电子在电场中作类平抛运动,射出电场时,速度分解图如图1中所示.由速度关系可得:解得:由速度关系得:v y =v 0tanθ=v 0在竖直方向:而水平方向:解得:(2)根据题意作图如图1所示,电子做匀速圆周运动的半径R=L根据牛顿第二定律:解得:根据几何关系得电子穿出圆形区域时位置坐标为(,-)(3)电子在在磁场中最简单的情景如图2所示.在磁场变化的前三分之一个周期内,电子的偏转角为60°,设电子运动的轨道半径为r,运动的T0,粒子在x轴方向上的位移恰好等于r1;在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期T′=2T0,故粒子的偏转角度仍为60°,电子运动的轨道半径变为2r,粒子在x轴方向上的位移恰好等于2r.综合上述分析,则电子能到达N点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)而:解得:(n=1,2,3…)应满足的时间条件为: (T0+T′)=T而:解得(n=1,2,3…)点睛:本题的靓点在于第三问,综合题目要求及带电粒子运动的半径和周期关系,则符合要求的粒子轨迹必定是粒子先在正B0中偏转60°,而后又在− B0中再次偏转60°,经过n次这样的循环后恰恰从N点穿出.先从半径关系求出磁感应强度的大小,再从周期关系求出交变磁场周期的大小.5.在如图所示的xoy坐标系中,一对间距为d的平行薄金属板竖直固定于绝缘底座上,底座置于光滑水平桌面的中间,极板右边与y轴重合,桌面与x轴重合,o点与桌面右边相距为74d,一根长度也为d的光滑绝缘细杆水平穿过右极板上的小孔后固定在左极板上,杆离桌面高为1.5d,装置的总质量为3m.两板外存在垂直纸面向外、磁感应强度为B的匀强磁场和匀强电场(图中未画出),假设极板内、外的电磁场互不影响且不考虑边缘效应.有一个质量为m、电量为+q的小环(可视为质点)套在杆的左端,给极板充电,使板内有沿x正方向的稳恒电场时,释放小环,让其由静止向右滑动,离开小孔后便做匀速圆周运动,重力加速度取g.求:(1)环离开小孔时的坐标值;(2)板外的场强E2的大小和方向;(3)讨论板内场强E1的取值范围,确定环打在桌面上的范围.【答案】(1)环离开小孔时的坐标值是-14 d;(2)板外的场强E2的大小为mgq,方向沿y轴正方向;(3)场强E1的取值范围为22368qB d qB dm m~,环打在桌面上的范围为1744d d~.【解析】【详解】(1)设在环离开小孔之前,环和底座各自移动的位移为x1、x2.由于板内小环与极板间的作用力是它们的内力,系统动量守恒,取向右为正方向,根据动量守恒定律,有:mx1-3mx2=0 ①而x1+x2=d ②①②解得:x1=34d③x2=1 4 d环离开小孔时的坐标值为:x m=34d-d=-14d(2)环离开小孔后便做匀速圆周运动,须qE2=mg解得:2mgEq=,方向沿y轴正方向(3)环打在桌面上的范围可画得如图所示,临界点为P、Q,则若环绕小圆运动,则R=0.75d ④根据洛仑兹力提供向心力,有:2v qvB mR=⑤环在极板内做匀加速运动,设离开小孔时的速度为v,根据动能定理,有:qE1x1=12mv2⑥联立③④⑤⑥解得:2 138qB d Em=若环绕大圆运动,则R2=(R-1.5d)2+(2d)2 解得:R=0.48d ⑦联立③⑤⑥⑦解得:2 16qB d Em≈故场强E1的取值范围为22368qB d qB dm m~,环打在桌面上的范围为1744d d-~.6.如图,第一象限内存在沿y轴负方向的匀强电场,电场强度大小为E,第二、三、四象限存在方向垂直xOy平面向外的匀强磁场,其中第二象限的磁感应强度大小为B,第三、四象限磁感应强度大小相等,一带正电的粒子,从P(-d,0)点沿与x轴正方向成α=60°角平行xOy平面入射,经第二象限后恰好由y轴上的Q点(图中未画出)垂直y轴进入第一象限,之后经第四、三象限重新回到P点,回到P点时速度方向与入射方时相同,不计粒子重力,求:(1)粒子从P 点入射时的速度v 0; (2)第三、四象限磁感应强度的大小B /; 【答案】(1)3EB(2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 23603d d dr sin sin α===︒ 根据200mv qv B r =得0233qBdv m=粒子在第一象限中做类平抛运动,则有21602qE r cos t m -︒=(); 00y v qEt tan v mv α==联立解得03Ev B=(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.则有:x=v 0t , 2y v y t =得03222y v y tan x v α===由几何知识可得 y=r-rcosα= 1323r d = 则得23x d =所以粒子在第三、四象限圆周运动的半径为1253239d d R d sin α⎛⎫+ ⎪⎝⎭==粒子进入第三、四象限运动的速度004323v qBdv v cos mα===根据2'v qvB m R=得:B′=2.4B考点:带电粒子在电场及磁场中的运动7.如图所示,真空中有一个半径r=0.5m 的圆柱形匀强磁场区域,磁场的磁感应强度大小B=2×10-3T ,方向垂直于纸面向外,x 轴与圆形磁场相切于坐标系原点O ,在x=0.5m 和x=1.5m 之间的区域内有一个方向沿y 轴正方向的匀强电场区域,电场强E=1.5×103N/C ,在x=1.5m 处竖有一个与x 轴垂直的足够长的荧光屏,一粒子源在O 点沿纸平面向各个方向发射速率相同、比荷9110qm=⨯C/kg 的带正电的粒子,若沿y 轴正方向射入磁场的粒子恰能从磁场最右侧的A 点沿x 轴正方向垂直进入电场,不计粒子的重力及粒子间的相互作用和其他阻力.求:(1)粒子源发射的粒子进入磁场时的速度大小;(2)沿y 轴正方向射入磁场的粒子从射出到打到荧光屏上的时间(计算结果保留两位有效数字);(3)从O 点处射出的粒子打在荧光屏上的纵坐标区域范围.【答案】(1)61.010/v m s =⨯;(2)61.810t s -=⨯;(3)0.75 1.75m y m ≤≤ 【解析】 【分析】(1)粒子在磁场中做匀速圆周运动,由几何关系确定半径,根据2v qvB m R=求解速度;(2)粒子在磁场中运动T/4,根据周期求解在磁场中的运动时间;在电场中做类平抛运动,根据平抛运动的规律求解在电场值的时间;(3)根据牛顿第二定律结合运动公式求解在电场中的侧移量,从而求解从O 点处射出的粒子打在荧光屏上的纵坐标区域范围. 【详解】(1)由题意可知,粒子在磁场中的轨道半径为R=r=0.5m ,由2v qvB mR= 进入电场时qBR v m = 带入数据解得v=1.0×106m/s(2)粒子在磁场中运动的时间61121044R t s v ππ-=⨯=⨯ 粒子从A 点进入电场做类平抛运动,水平方向的速度为v ,所以在电场中运动的时间62 1.010xt s v-==⨯ 总时间6612110 1.8104t t t s s π--⎛⎫=+=+⨯=⨯⎪⎝⎭(3)沿x 轴正方向射入电场的粒子,在电场中的加速度大小121.510/qEa m s m==⨯ 在电场中侧移:2121261111.5100.7522110y at m m ⎛⎫==⨯⨯⨯= ⎪⨯⎝⎭打在屏上的纵坐标为0.75;经磁场偏转后从坐标为(0,1)的点平行于x 轴方向射入电场的粒子打在屏上的纵坐标为1.75;其他粒子也是沿x 轴正方向平行的方向进入电场,进入电场后的轨迹都平行,故带电粒子打在荧光屏上 的纵坐标区域为0.75≤y ≤1.75.8.如图,一半径为R 的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、电荷量为q 的粒子沿图中直线在圆上的a 点射入柱形区域,在圆上的b 点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为.现将磁场换为平等于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a 点射入柱形区域,也在b 点离开该区域.若磁感应强度大小为B ,不计重力,求电场强度的大小.【答案】2145qRB E m=【解析】 【分析】 【详解】解答本题注意带电粒子先在匀强磁场运动,后在匀强电场运动.带电粒子在磁场中做圆周运动.粒子在磁场中做圆周运动.设圆周的半径为r ,由牛顿第二定律和洛仑兹力公式得2v qvB m r=①式中v 为粒子在a 点的速度.过b 点和O 点作直线的垂线,分别与直线交于c 和d 点.由几何关系知,线段ac bc 、和过a 、b 两点的轨迹圆弧的两条半径(未画出)围成一正方形.因此ac bc r ==② 设,cd x =有几何关系得45ac R x =+③ 2235bc R R x =+- 联立②③④式得75r R =再考虑粒子在电场中的运动.设电场强度的大小为E ,粒子在电场中做类平抛运动.设其加速度大小为a ,由牛顿第二定律和带电粒子在电场中的受力公式得qE="m a" ⑥ 粒子在电场方向和直线方向所走的距离均为r ,有运动学公式得212r at =⑦ r=vt ⑧ 式中t 是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得2145qRB E m=⑨【点睛】带电粒子在磁场中运动的题目解题步骤为:定圆心、画轨迹、求半径,同时还利用圆弧的几何关系来帮助解题.值得注意是圆形磁场的半径与运动轨道的圆弧半径要区别开来.9.磁谱仪是测量α能谱的重要仪器.磁谱仪的工作原理如图所示,放射源s 发出质量为m 、电量为q 的粒子沿垂直磁场方向进入磁感应强度为B 的匀强磁场,被限束光栏Q 限制在2ϕ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P 上.(重力影响不计)(1)若能量在E ~E +ΔE (ΔE >0,且ΔE <<E )范围内的α粒子均垂直于限束光栏的方向进入磁场.试求这些α粒子打在胶片上的范围Δx 1.(2)实际上,限束光栏有一定的宽度,α粒子将在2ϕ角内进入磁场.试求能量均为E的α粒子打到感光胶片上的范围Δx 2 【答案】见解析 【解析】 【详解】(1)设α粒子以速度v 进入磁场,打在胶片上的位置距s 的距离为x 圆周运动2q B mRυυ=α粒子的动能212E m υ=2x R =由以上三式可得22mEx qB= 所以()12222m E E mEx qBqB+∆∆=-化简可得122mEx E qBE∆≈∆; (2)动能为E 的α粒子沿φ±角入射,轨道半径相同,设为R ,粒子做圆周运动2q B mRυυ=α粒子的动能212E m υ=由几何关系得()22224222cos 1cos sin 2mE mE φx R R φφqB qB ∆=-=-=10.如图所示,虚线OL 与y 轴的夹角为θ=60°,在此角范围内有垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .一质量为m 、电荷量为q (q >0)的粒子从左侧平行于x 轴射入磁场,入射点为M .粒子在磁场中运动的轨道半径为R .粒子离开磁场后的运动轨迹与x 轴交于P 点(图中未画出),且OP =R .不计重力.求M 点到O 点的距离和粒子在磁场中运动的时间.【答案】当α=30°时,粒子在磁场中运动的时间为π126T mt qB== 当α=90°时,粒子在磁场中运动的时间为π42T m t qB== 【解析】根据题意,粒子进入磁场后做匀速圆周运动,设运动轨迹交虚线OL 于A 点,圆心在y 轴上的C 点,AC 与y 轴的夹角为α;粒子从A 点射出后,运动轨迹交x 轴的P 点,设AP 与x 轴的夹角为β,如图所示.有(判断出圆心在y 轴上得1分)2v qvB m R=(1分)周期为2πmT qB=(1分) 过A 点作x 、y 轴的垂线,垂足分别为B 、D .由几何知识得sin αAD R =,cot 60OD AD =︒,,OP AD BP =+α=β (2分) 联立得到sin αα13+=(2分) 解得α=30°,或α=90° (各2分) 设M 点到O 点的距离为h ,有sin αAD R =h R OC =-,3cos αOC CD OD R AD =-=联立得到h=R 3cos(α+30°) (1分) 解得h=3R (α=30°) (2分) h=3R (α=90°) (2分) 当α=30°时,粒子在磁场中运动的时间为π126T m t qB ==(2分) 当α=90°时,粒子在磁场中运动的时间为π42T m t qB==(2分) 【考点定位】考查带电粒子在匀强磁场中的运动及其相关知识.。
一、带电粒子在有界磁场中的运动1.运动电荷所受的洛伦兹力....方向始终与速度方向垂直,所以洛伦兹力只改变速度方向,不改变速度大小,洛伦兹力对带电粒子不做功............。
2.带电粒子沿着与磁场垂直的方向射入磁场,在匀强磁场中做匀速圆周运动。
3.洛伦兹力提供带电粒子做圆周运动所需的向心力。
由牛顿第二定律得2v qvB m R=,则粒子运动的轨道半径mv R qB =,运动周期2πm T qB =。
4.带电粒子在匀强磁场中做匀速圆周运动,确定圆心和运动半径,画出粒子运动的轨迹。
⑴ 圆心..的确定:画出粒子运动轨迹中任意两点(一般是射入和射出磁场的两点)的洛伦兹力的方向,两洛伦兹力延长线的交点即为圆心;或利用一根弦的中垂线,结合一点洛伦兹力的延长线作出圆心位置。
⑵ 半径..的确定和计算:圆心确定以后,利用平面几何关系,求出该圆的半径。
⑶ 在磁场中运动时间....的确定:用几何关系求出运动轨迹所对应的圆心角θ,由公式360t T θ=求出粒子在磁场中运动的时间。
【例1】 如图所示,在一矩形区域内,不加磁场时,不计重力的带电粒子以某初速度垂直左边界射入,穿过此区域的时间为t ,若加上磁感应强度为B 、垂直纸面向外的匀强磁场,带电粒子仍以原来的初速度入射,粒子飞出磁场时偏离原方向60︒,利用以上数据可求出下列物理量中的A .带电粒子的比荷B .带电粒子在磁场中运动的周期C .带电粒子的初速度D .带电粒子在磁场中运动的半径【答案】 A B【例2】 如图所示,圆柱形区域的横截面内有垂直于纸面向里的匀强磁场,磁感应强度为B 。
一带电粒子(不计重力)以某一初速度沿截面直径方向射入时,穿过此区域所用的时间为t 。
又知粒子飞出此区域时速度方向偏转了60︒角,根据以上条件可求下列物理量中的A .带电粒子的比荷B .带电粒子的初速度C .带电粒子在磁场中运动的周期D .带电粒子在磁场中运动的半径【答案】 A C【例3】 在一个边界为等边三角形的区域内,存在着方向垂直于纸面向里的匀强磁场,在磁场边界上的P 点处有一个粒子源,粒子源发出比荷相同的三个粒子a b c 、、(不计重力)沿同一方向进入磁场,三个粒子在磁场中的运动轨迹如图所示。
带电粒子在匀强磁场中的运动知识点总结
带电粒子在匀强磁场中的运动知识点总结
物理学与其他许多自然科学息息相关,如物理、化学、生物和地理等。
以下是网为大家整理的高二物理下册带电粒子在匀强磁场中的运动知识点,希望可以解决您所遇到的.相关问题,加油,网一直陪伴您。
本实验的目的是:
1.探究带电粒子在匀强磁场中做匀速圆周运动的半径和周期与哪些因素有关。
2.练习使用左手定则。
操作步骤:
1.分别改变粒子发射的方向、改变粒子的正负、改变磁场的方向来练习使用左手定则。
2.保持出射粒子的速度不变,改变磁感应强度,观察粒子径迹和周期的变化。
3.保持磁感应强度不变,改变粒子的速度,观察粒子径迹和周期的变化。
4.依次类推,保持其他量不变,改变其中一个量的变化,观察粒子径迹和周期的变化。
最后,希望小编整理的高二物理下册带电粒子在匀强磁场中的运动知识点对您有所帮助,祝同学们学习进步。
【高三】2021届高考物理基础知识归纳带电粒子在磁场中的运动【高三】2021届高考物理基础知识归纳带电粒子在磁场中的运动第3课时带电粒子在磁场中的运动基础知识概括1.洛伦兹力运动电荷在磁场中受的力叫做洛伦兹力.通电导线在磁场中受的安培力就是在导线中定向移动的电荷受的洛伦兹力的合力的整体表现.(1)大小:当v∥b时,f=0 ;当v⊥b时,f=qvb .(2)方向:用左手定则认定,其中四指指向正电荷运动方向(或正数电荷运动的反方向),拇指所指的方向就是正电荷受力的方向.洛伦兹力旋转轴磁感应强度与速度所同意的平面.2.带电粒子在磁场中的运动(不计粒子的重力)(1)若v∥b,带电粒子搞平行于磁感线的匀速直线运动.(2)若v⊥b,带电粒子在垂直于磁场方向的平面内以入射速度v做匀速圆周运动.洛伦兹力提供带电粒子做圆周运动所需的向心力,由牛顿第二定律qvb=得带电粒子运动的轨道半径r=,运动的周期t=.3.电场力与洛伦兹力的比较电场力洛伦兹力存有条件促进作用于电场中所有电荷仅对运动着的且速度不与磁场平行的电荷存有洛伦兹力的促进作用大小f=qe与电荷运动速度无关f=bqv与电荷的运动速度有关方向力的方向与电场方向相同或恰好相反,但总在同一直线上力的方向始终和磁场方向横向对速度的改变可以改变电荷运动速度大小和方向只改变电荷速度的方向,不改变速度的大小作功可以对电荷作功,能够发生改变电荷动能无法对电荷作功,无法发生改变电荷的动能偏转轨迹静电偏转,轨迹为抛物线磁偏转,轨迹为圆弧重点难点突破一、对带电体在洛伦兹力作用下运动问题的分析思路1.确认对象,并对其展开受力分析.2.根据物体受力情况和运动情况确定每一个运动过程所适用的规律(力学规律均适用).总之化解这类问题的方法与氢铵力学问题一样,无非多了一个洛伦兹力,必须特别注意:(1)洛伦兹力不做功,在应用动能定理、机械能守恒定律时要特别注意这一点;(2)洛伦兹力可能将就是恒力也可能将就是变力.二、带电粒子做匀速圆周运动的圆心、半径及运动时间的确定1.圆心的确认通常存有以下四种情况:(1)已知粒子运动轨迹上两点的速度方向,作这两速度的垂线,交点即为圆心.(2)未知粒子入射点、入射光方向及运动轨迹上的一条弦,并作速度方向的垂线及弦的垂直平分线,交点即为为圆心.(3)已知粒子运动轨迹上的两条弦,作出两弦垂直平分线,交点即为圆心.(4)未知粒子在磁场中的入射点、入射光方向和辐照度方向(不一定在磁场中),缩短(或逆向缩短)两速度方向所在直线使之成一夹角,做出这一夹角的角平分线,角平分线下到两直线距离等同于半径的点即为圆心.2.半径的确定和计算.圆心找到以后,自然就有了半径,半径的计算一般是利用几何知识,常用到解三角形的方法及圆心角等于弦切角的两倍等知识.3.在磁场中运动时间的确认,利用圆心角与弦切角的关系,或者就是四边形内角和等同于360°排序出来圆心角θ的大小,由公式t=t纡出来运动时间,有时也用弧长与线速度的比t=.三、两类典型问题1.极值问题:常利用半径r和速度v(或磁场b)之间的约束关系展开动态运动轨迹分析,确认轨迹圆和边界的关系,谋出来临界点,然后利用数学方法解极值.注意:(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切;(2)当速度v一定时,弧长(或弦长)越短,圆周角越大,则带电粒子在有界磁场中运动的时间越短.2.多解问题:多解形成的原因一般包含以下几个方面:(1)粒子电性不确认;(2)磁场方向不确认;(3)临界状态不唯一;(4)粒子运动的往复性等.典例精析1.在洛伦兹力促进作用下物体的运动【例1】一个质量m=0.1g的小滑块,带有q=5×10-4c的电荷,放置在倾角α=30°的光滑斜面上(斜面绝缘),斜面置于b=0.5t的匀强磁场中,磁场方向垂直纸面向里,如图所示.小滑块由静止开始沿斜面下滑,其斜面足够长,小滑块滑至某一位置时,要离开斜面.问:(1)大滑块拎何种电荷?(2)小滑块离开斜面时的瞬时速度多大?(3)该斜面的长度至少多长?【解析】(1)小滑块沿斜面下滑过程中,受到重力mg、斜面支持力fn和洛伦兹力f.若要小滑块离开斜面,洛伦兹力f方向应垂直斜面向上,根据左手定则可知,小滑块应带负电荷.(2)大滑块沿斜面大幅下滑时,横向斜面方向的加速度为零,存有qvb+fn-mgcosα=0当fn=0时,小滑块开始脱离斜面,此时qvb=mgcosα得v=m/s=2m/s(3)下滑过程中,只有重力做功,由动能定理得mgxsinα=mv2斜面的长度至少应当就是x=m=1.2m【思维提升】(1)在解决带电粒子在磁场中运动的力学问题时,对粒子进行受力分析、运动情况分析是关键;(2)根据力学特征,选用相应的力学规律求解,但由于洛伦兹力与速度有关,要注意动态分析.【开拓1】如图所示,质量为m的拎正电小球,电荷量为q,小球中间有一孔套在足够多短的绝缘细杆上,杆与水平方向成θ角,与球的动摩擦因数为μ,此装置放到沿水平方向、磁感应强度为b的坯强磁场中,若从高处将小球并无初速度释放出来,小球在大幅下滑过程中加速度的最大值为gsinθ,运动速度的最大值为.【解析】分析带电小球受力如图,在释放处a,由于v0=0,无洛伦兹力,随着小球加速,产生垂直杆向上且逐渐增大的洛伦兹力f,在b处,f=mgcosθ,ff=0此时加速度最小,am=gsinθ,随着小球稳步快速,f稳步减小,小球将受横向杆向上的弹力fn′,从而恢复正常了摩擦力,且逐渐减小,加速度逐渐增大,当ff′与mgsinθ均衡时,小球快速完结,将搞匀速直线运动,速度也达至最大值vm.在图中c位置:fn′+mgcosθ=bqvm①mgsinθ=ff′②ff′=μfn′③由①②③式Champsaurvm=2.带电粒子在有界磁场中的运动【基准2】两平面荧光屏互相横向置放,在两屏内分别挑旋转轴两屏交线的直线为x 轴和y轴,交点o为原点,如图所示.在y>0、00、x>a的区域有垂直纸面向外的匀强磁场,两区域内的磁感应强度大小均为b.在o 点处有一小孔,一束质量为m、带电荷量为q(q>0)的粒子沿x轴经小孔射入磁场,最后打在竖直和水平的荧光屏上,使荧光屏发亮.入射粒子的速度可取从零到某一最大值之间的各数值.已知速度最大的粒子在0a的区域中运动的时间之比是2∶5,在磁场中运动的总时间为7t/12,其中t为该粒子在磁感应强度为b的坯强磁场中搞圆周运动的周期.试求两个荧光屏上亮线的范围(数等重力的影响).【解析】如右图所示,粒子在磁感应强度为b的匀强磁场中运动的半径为r=速度大的粒子将在x轨道半径大于a的粒子开始进入右侧磁场,考虑r=a的极限情况,这种粒子在右侧的圆轨迹与x轴在d点相切(图中虚线),od=2a,这是水平屏上发亮范围的左边界.速度最小的粒子的轨迹例如图中实线右图,它由两段圆弧共同组成,圆心分别为c和c′,c在y轴上,由对称性所述c′在x=2a的直线上.设t1为粒子在0a的区域中运动的时间,由题意所述,t1+t2=由此Champsaurt1=,t2=再由对称性可得∠ocm=60°,∠mc′n=60°∠mc′p=360°×=150°所以∠nc′p=150°-60°=90°即为1/4圆周.因此圆心c′在x轴上.设立速度为最大值时粒子的轨道半径为r,由直角△coc′只须2rsin60°=2a,r=由图可知op=2a+r,因此水平荧光屏发亮范围的右边界坐标x=2(1+)a【思维提高】带电粒子在相同的有界磁场中的已连续运动问题,一就是必须分别根据步入和返回磁场的点速度方向确认带电粒子搞匀速圆周运动的圆心,进而图画出来带电粒子在有界磁场中的运动轨迹;二就是选准由一个磁场步入另一个磁场这一关键点,确认出来这一关键点上速度的方向;三就是必须特别注意磁场方向和大小变化引发带电粒子的运动轨迹的变化.【拓展2】下图是某装置的垂直截面图,虚线a1a2是垂直截面与磁场区边界面的交线,匀强磁场分布在a1a2的右侧区域,磁感应强度b=0.4t,方向垂直纸面向外,a1a2与垂直截面上的水平线夹角为45°.在a1a2左侧,固定的薄板和等大的挡板均水平放置,它们与垂直截面交线分别为s1、s2,相距l=0.2m,在薄板上p处开一小孔,p与a1a2线上点d的水平距离为l.在小孔处装一个电子快门.起初快门开启,一旦有带正电微粒刚通过小孔,快门立即关闭,此后每隔t=3.0×10-3s开启一次并瞬间关闭,从s1s2之间的某一位置水平发射的一速度为v0的带正电微粒,它经过磁场区域后入射到p处小孔.通过小孔的微粒与挡板发生碰撞而反弹,反弹速度大小是碰前的0.5倍.(1)经过一次回调轻易从小孔射向的微粒,其初速度v0应属多少?(2)求上述微粒从最初水平射入磁场到第二次离开磁场的时间.(忽略微粒所受重力影响,碰撞过程中无电荷转移.已知微粒的荷质比=1.0×103c/kg.只考虑纸面上带电微粒的运动)【解析】(1)如下图右图,设带正电微粒在s1、s2之间任一点q以水平速度v0步入磁场,微粒受的洛伦兹Vihiersf,在磁场中搞圆周运动的半径为r,存有:f=qv0b①f=②由①②式解得r=,欲使微粒能进入小孔,半径r的取值范围为l代入数据得80m/s欲并使步入小孔的微粒与挡板一次互不相让回到后能够通过小孔,还必须满足条件:=nt,其中n=1,2,3…④由①②③④式所述,只有n=2满足条件,即为存有v0=100m/s⑤(2)设立微粒在磁场中搞圆周运动的周期为t0,从水平步入磁场至第二次返回磁场的总时间为t,设t1、t4分别为磁铁微粒第一次、第二次在磁场中运动的时间,第一次返回磁场运动至挡板的时间为t2,相撞后再回到磁场的时间为t3,运动轨迹如图所示,则存有t0=⑥t1=t0⑦t2=⑧t3=⑨t4=t0⑩Champsaurt=t1+t2+t3+t4=2.8×10-2s?3.带电粒子在有界磁场运动的临界问题【基准3】如图所示,一个质量为m,电荷量大小为q的磁铁微粒(忽略重力),与水平方向成45°射入宽度为d、磁感应强度为b、方向横向纸面向内的坯强磁场中,若并使粒子不从磁场mn边界箭出来,粒子的初速度大小应属多少?【解析】带电粒子垂直b进入匀强磁场做匀速圆周运动,若不从边界mn射出,粒子运动偏转至mn边界时v与边界平行即可.由左手定则可知:若粒子带正电荷,圆周轨迹由a→b;若粒子带负电荷,圆周轨迹由a→c,如图所示,圆周轨迹的圆心位置可根据粒子线速度方向垂直半径的特点,作初速度v0的垂线与边界mn的垂线的交点即为圆轨迹的圆心o1与o2.粒子拎正电荷情况:粒子沿圆轨迹a→b运动方向发生改变了45°,由几何关系所述∠ao1b=45°,那么d=r1-r1?cos45°①r1=②将②式代入①式得v0=即粒子若带正电荷,初速度满足0粒子拎负电荷情况:粒子沿圆轨迹a→c运动,方向发生改变了135°,由几何关系言∠ao2c=135°,∠o2af=45°,那么d=r2+r2?sin45°③r2=④将④式代入③式得v0′=即粒子若带负电荷,初速度满足0【思维提高】(1)充份认知临界条件;(2)题中没有表明电荷的电性,应当分正、正数两种电性加以分析.【拓展3】未来人类要通过可控热核反应取得能源,要持续发生热核反应必须把温度高达几百万摄氏度以上的核约束在一定的空间内.约束的办法有多种,其中技术上相对成熟的是用磁场约束,称为“托卡马克”装置.如图所示为这种装置的模型图:垂直纸面的有环形边界的匀强磁场(b区域)围着磁感应强度为零的圆形a区域,a区域内的离子向各个方向运动,离子的速度只要不超过某值,就不能穿过环形磁场的外边界而逃逸,从而被约束.设环形磁场的内半径r1=0.5m,外半径r2=1.0m,磁场的磁感应强度b0=1.0t,被约束的离子比荷q/m=4.0×107c/kg.(1)若a区域中沿半径om方向射入磁场的离子无法沿着磁场,则离子的速度无法少于多小?(2)若要使从a区域沿任何方向射入磁场的速率为2.0×107m/s的离子都不能越出磁场的外边界,则b区域磁场的磁感应强度b至少要有多大?【解析】(1)速度越大轨迹圆半径越大,要使沿om方向运动的离子无法横越磁场,则其在环形磁场内的运动轨迹圆中半径最大者与磁场外边界圆切线,如图所示.设轨迹圆的半径为r1,则r+r=(r2-r1)2代入数据解得r1=0.375m设立沿该圆运动的离子速度为v1,由牛顿运动定律存有qv1b0=解得v1==1.5×107m/s(2)当离子以v2的速度沿与内边界圆切线的方向射入磁场,且轨迹与磁场外边界圆切线时,以该速度沿各个方向射入磁场区的离子都无法穿出来磁场边界,如图所示.设轨迹圆的半径为r2,则r2==0.25mChampsaurb==2.0t易错门诊4.带电粒子在磁场中的运动及功能关系【例4】如图所示,匀强磁场中放置一与磁感线平行的薄铅板,一个带电粒子垂直进入匀强磁场,以半径r1=20cm做匀速圆周运动,第一次垂直穿过铅板后以半径r2=19cm 做匀速圆周运动,则带电粒子能够穿过铅板的次数是多少?(每次穿过铅板时阻力大小相同)【羽蛛属】因为r1=,所以v1=同理:v2=设立粒子每沿着铅板一次,速度增加δv,则δv=v1-v2=(r1-r2)故粒子能沿着铅板的次数为n==20次【错因】粒子每穿过一次铅板应该是损失的动能相同,故粒子每穿过一次铅板减少的速度不同.速度大时,其速度变化量小,速度小时,速度变化量大.【Auterive】粒子每沿着铅板一次损失的动能为δe=沿着铅板的次数n==10.26次,取n=10次【思维提高】对于物理问题必须弄清问题的本质,此题中每次沿着铅板后,必须就是损失的动能相同,而不是速度的变化相同.。
高中物理:带电粒子在匀强磁场中的运动【知识点的认识】带电粒子在匀强磁场中的运动1.若v∥B,带电粒子不受洛伦兹力,在匀强磁场中做匀速直线运动.2.若v⊥B,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v做匀速圆周运动.3.半径和周期公式:(v⊥B)【命题方向】常考题型:带电粒子在匀强磁场中的匀速圆周运动如图,半径为R的圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B,方向垂直于纸面向外.一电荷量为q(q>0)、质量为m的粒子沿平行于直径ab的方向射入磁场区域,射入点与ab的距离为.已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)()A. B. C. D.【分析】由题意利用几何关系可得出粒子的转动半径,由洛仑兹力充当向心力可得出粒子速度的大小;解:由题,射入点与ab的距离为.则射入点与圆心的连线和竖直方向之间的夹角是30°,粒子的偏转角是60°,即它的轨迹圆弧对应的圆心角是60,所以入射点、出射点和圆心构成等边三角形,所以,它的轨迹的半径与圆形磁场的半径相等,即r=R.轨迹如图:洛伦兹力提供向心力:,变形得:.故正确的答案是B.故选:B.【点评】在磁场中做圆周运动,确定圆心和半径为解题的关键.【解题方法点拨】带电粒子在匀强磁场中的匀速圆周运动一、轨道圆的“三个确定”(1)如何确定“圆心”①由两点和两线确定圆心,画出带电粒子在匀强磁场中的运动轨迹.确定带电粒子运动轨迹上的两个特殊点(一般是射入和射出磁场时的两点),过这两点作带电粒子运动方向的垂线(这两垂线即为粒子在这两点所受洛伦兹力的方向),则两垂线的交点就是圆心,如图(a)所示.②若只已知过其中一个点的粒子运动方向,则除过已知运动方向的该点作垂线外,还要将这两点相连作弦,再作弦的中垂线,两垂线交点就是圆心,如图(b)所示.③若只已知一个点及运动方向,也知另外某时刻的速度方向,但不确定该速度方向所在的点,如图(c)所示,此时要将其中一速度的延长线与另一速度的反向延长线相交成一角(∠PAM),画出该角的角平分线,它与已知点的速度的垂线交于一点O,该点就是圆心.(2)如何确定“半径”方法一:由物理方程求:半径R=;方法二:由几何方程求:一般由数学知识(勾股定理、三角函数等)计算来确定.(3)如何确定“圆心角与时间”①速度的偏向角φ=圆弧所对应的圆心角(回旋角)θ=2倍的弦切角α,如图(d)所示.②时间的计算方法.方法一:由圆心角求,t=•T;方法二:由弧长求,t=.二、解题思路分析1.带电粒子在磁场中做匀速圆周运动的分析方法.2.带电粒子在有界匀强磁场中运动时的常见情形.直线边界(粒子进出磁场具有对称性)件)形边界(粒子沿径向射入,再沿向射出)3.带电粒子在有界磁场中的常用几何关系(1)四个点:分别是入射点、出射点、轨迹圆心和入射速度直线与出射速度直线的交点.(2)三个角:速度偏转角、圆心角、弦切角,其中偏转角等于圆心角,也等于弦切角的2倍.三、求解带电粒子在匀强磁场中运动的临界和极值问题的方法由于带电粒子往往是在有界磁场中运动,粒子在磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题往往要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件,然后应用数学知识和相应物理规律分析求解.(1)两种思路①以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界条件下的特殊规律和特殊解;②直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值.(2)两种方法物理方法:①利用临界条件求极值;②利用问题的边界条件求极值;③利用矢量图求极值.数学方法:①利用三角函数求极值;②利用二次方程的判别式求极值;③利用不等式的性质求极值;④利用图象法等.(3)从关键词中找突破口:许多临界问题,题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”等词语对临界状态给以暗示.审题时,一定要抓住这些特定的词语挖掘其隐藏的规律,找出临界条件.。
带电粒子在磁场中的运动知识点总结带电粒子在磁场中的运动可以通过洛伦兹力来描述,洛伦兹力的大小为F=q(v×B),方向垂直于带电粒子的速度和磁场。
1. 磁力对粒子的运动轨迹的影响:- 在匀强磁场中,带电粒子的运动轨迹为圆周,圆心在速度与磁场垂直的平面上,半径为mv/qB,速度方向以半径为轴作右手螺旋运动。
- 在非匀强磁场中,带电粒子的运动轨迹为螺旋线,其螺旋轴垂直于磁场方向,并以瞬时速度方向为轴向作旋转运动。
2. 粒子在磁场中的运动特点:- 磁场只对带电粒子的速度方向产生影响,不会改变其速度大小。
- 磁场对带电粒子的运动不会改变其动能,只是改变其运动方向。
- 当带电粒子的速度与磁场平行时,洛伦兹力为零,粒子不受力,保持直线运动。
- 当带电粒子的速度与磁场平面夹角为0或180度时,洛伦兹力最大,速度方向会发生最大的改变。
3. 粒子在磁场中的运动方向:- 正电荷带电粒子在磁场中受力方向与负电荷带电粒子相反,遵循右手定则。
- 右手定则:将右手伸直,让食指指向带电粒子的速度方向,中指指向磁场方向,则拇指的方向就是粒子受力的方向。
4. 粒子运动的径向速度和纵向速度:- 径向速度指与粒子运动轨迹半径方向相同的速度分量,大小不变,只改变方向。
- 纵向速度指与粒子运动轨迹切线方向相同的速度分量,大小不变,只改变方向。
5. 粒子在磁场中的周期和频率:- 带电粒子在匀强磁场中做圆周运动的周期为T=2π(m/qB),圆周运动的频率为f=1/T。
- 带电粒子在非匀强磁场中做螺旋运动的周期,取决于速度和磁场的空间分布情况。
这些是带电粒子在磁场中运动的关键知识点总结,可以帮助理解和解决相关问题。
带电粒子在电磁场中的运动[P 3.]一、考点剖析:带电粒子在电场中的运动比物体在重力场中的运动要丰富得多,它与运动学、动力学、功和能、动量等知识联系紧密,加之电场力的大小、方向灵活多变,功和能的转化关系错综复杂,其难度比力学中的运动要大得多。
带电粒子在磁场中的运动涉及的物理情景丰富,解决问题所用的知识综合性强,很适合对能力的考查,是高考热点之一。
带电粒子在磁场中的运动有三大特点:①与圆周运动的运动学规律紧密联系②运动周期与速率大小无关③轨道半径与圆心位置的确定与空间约束条件有关,呈现灵活多变的势态。
因以上三大特点,很易创造新情景命题,故为高考热点,近十年的高考题中,每年都有,且多数为大计算题。
带电粒子在电磁场中的运动: 若空间中同时同区域存在重力场、电场、磁场,则使粒子的受力情况复杂起来;若不同时不同区域存在,则使粒子的运动情况或过程复杂起来,相应的运动情景及能量转化更加复杂化,将力学、电磁学知识的转化应用推向高潮。
该考点为高考命题提供了丰富的情景与素材,为体现知识的综合与灵活应用提供了广阔的平台,是高考命题热点之一。
[P 5.]二、知识结构d U UL v L md qU at y 加4212122022=⨯⨯==L y dU UL mdv qUL v at v vtan y 222000=====加φ[P 6.]三、复习精要: 1、带电粒子在电场中的运动(1) 带电粒子的加速 由动能定理 1/2 mv 2=qU (2) 带电粒子的偏转带电粒子在初速度方向做匀速运动 L =v 0t t=L/ v 0 带电粒子在电场力方向做匀加速运动F=q E a =qE/m 带电粒子通过电场的侧移偏向角φ(3)处理带电粒子在电场中的运动问题的一般步骤:①分析带电粒子的受力情况,尤其要注意是否要考虑重力、电场力是否是恒力等 ②分析带电粒子的初始状态及条件,确定粒子作直线运动还是曲线运动 ③建立正确的物理模型,进而确定解题方法④利用物理规律或其它解题手段(如图像等)找出物理量间的关系,建立方程组 2、带电粒子在磁场中的运动带电粒子的速度与磁感应线平行时,能做匀速直线运动;t当带电粒子以垂直于匀强磁场的方向入射,受洛伦兹力作用,做匀速圆周运动。
带电粒子在磁场中的运动知识点总结带电粒子在磁场中的运动知识点总结磁场是由具有磁性的物质产生的一种特殊的物理现象。
带电粒子在磁场中的运动是一种经典力学问题,也是研究电磁力学的重要内容之一。
本文将从洛伦兹力和运动方程的角度,总结带电粒子在磁场中的运动知识点。
一、洛伦兹力的定义和表达式当带电粒子运动时,其受到磁场的作用力称为洛伦兹力。
洛伦兹力的大小和方向与带电粒子的电荷量、速度以及磁场的强度和方向有关。
洛伦兹力的表达式为:F = q(v × B),其中F表示洛伦兹力,q表示带电粒子的电荷量,v表示带电粒子的速度,B表示磁场的磁感应强度。
从表达式可以看出,当带电粒子的速度与磁场的方向相垂直时,洛伦兹力最大,其大小为F = qvB。
当带电粒子的速度与磁场的方向平行时,洛伦兹力为零。
二、带电粒子在均匀磁场中的运动1. 带电粒子在均匀磁场中做圆周运动。
当带电粒子的速度与磁场的方向垂直时,洛伦兹力的方向垂直于速度和磁场,使得带电粒子呈圆周运动。
带电粒子沿着圆周运动的半径越小,则速度越大。
2. 带电粒子在均匀磁场中做螺旋线运动。
当带电粒子的速度既有向心分量又有切向分量时,带电粒子在均匀磁场中做螺旋线运动。
螺旋线的轴线平行于磁场方向,而螺旋线的半径和螺旋线的间距则与带电粒子的质荷比有关。
三、带电粒子在非均匀磁场中的运动在非均匀磁场中,带电粒子的运动受到洛伦兹力和离心力的共同作用。
1. 带电粒子在平行磁场中的运动。
当带电粒子的速度与非均匀磁场的方向平行时,洛伦兹力和离心力共同作用,使得带电粒子的运动轨迹偏离直线,呈现偏转或弯曲的状态。
2. 带电粒子在非均匀磁场中的稳定运动。
在某些特殊的非均匀磁场中,带电粒子可以实现稳定的运动。
例如,带电粒子在磁偶极场中做稳定的进动运动。
四、在磁场中运动的带电粒子与其他力的作用在实际情况中,带电粒子在磁场中的运动常常受到其他力的作用,如重力和电场的作用。
1. 在重力作用下的带电粒子运动。
难点之九:带电粒子在磁场中的运动一、难点突破策略(一)明确带电粒子在磁场中的受力特点1.产生洛伦兹力的条件:①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用.②电荷的运动速度方向与磁场方向不平行.2.洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力f=0;当电荷运动方向与磁场方向垂直时,洛伦兹力最人,f=quB:当电荷运动方向与磁场方向有夹角0时,洛伦兹力f=qvB • sm 03.洛伦兹力的方向:洛伦兹力方向用左手定则判断4.洛伦兹力不做功.(二)明确带电粒子在匀强磁场中的运动规律带电粒子在只受洛伦兹力作用的条件下:1.若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,0=0°或180。
时,带电粒子粒子在磁场中以速度u做匀速直线运动.2.若带电粒子的速度方向与匀强磁场方向垂直,即6 = 90。
时,带电粒子在匀强磁场中以入射速度u做匀速圆周运动.V2qvB = m ——①向心力由洛伦兹力提供:RR =—②轨道半径公式:qB_2K R _ 27rm m③周期:V qB ,可见T只与q有关,与V、R无关。
(三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。
1•“带电粒子在匀强磁场中的圆周运动”的基本型问题(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。
确定半径和给定的几何量之间的关系是解题的基础,t = —TI^t = —T有时需要建立运动时间t和转过的圆心角a之间的关系(36°2兀)作为辅助。
圆心的确定,通常有以下两种方法。
①已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P为入射点,M为出射点)。
②已知入射方向和出射点的位置,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图9-2,P为入射点,M为出射点)。
带电粒子在磁场中的运动【学习目标】1.掌握带电粒子在匀强磁场中做匀速圆周运动的特点和解决此类运动的方法2.理解质谱仪和回旋加速器的工作原理和作用【要点梳理】要点一:带电粒子在匀强磁场中的运动要点诠释:1.运动轨迹带电粒子(不计重力)以一定的速度v进入磁感应强度为B的匀强磁场中:(1)当v∥B时,带电粒子将做匀速直线运动;(2)当v⊥B时,带电粒子将做匀速圆周运动;(3)当v与B的夹角为θ(θ≠0°,90°,180°)时,带电粒子将做等螺距的螺旋线运动.说明:电场和磁场都能对带电粒子施加影响,带电粒子在匀强电场中只在电场力作用下,可能做匀变速直线运动,也可能做匀变速曲线运动,但不可能做匀速直线运动;在匀强磁场中,只在磁场力作用下可以做曲线运动.但不可能做变速直线运动.2.带电粒子在匀强磁场中的圆周运动如图所示,带电粒子以速度v垂直磁场方向入射,在磁场中做匀速圆周运动,设带电粒子的质量为m,所带的电荷量为q.(1)轨道半径:由于洛伦兹力提供向心力,则有2vqvB mr=,得到轨道半径mvrqB=.(2)周期:由轨道半径与周期之间的关系2rTvπ=可得周期2mTqBπ=.说明:(1)由公式mvrqB=知,在匀强磁场中,做匀速圆周运动的带电粒子,其轨道半径跟运动速率成正比.(2)由公式2mTqBπ=知,在匀强磁场中,做匀速圆周运动的带电粒子,周期跟轨道半径和运动速率均无关,而与比荷qm成反比.注意:mvrqB=与2mTqBπ=是两个重要的表达式,每年的高考都会考查.但应用时应注意在计算说明题中,两公式不能直接当原理式使用.要点二:带电粒子在匀强磁场中做圆周运动的问题分析要点诠释:1.分析方法/Bq 或时间”的基本方法和规律,具体分析为: (1)圆心的确定带电粒子进入一个有界磁场后的轨道是一段圆弧,如何确定圆心是解决问题的前提,也是解题的关键.首先,应有一个最基本的思路:即圆心一定在与速度方向垂直的直线上.通常有两种确定方法:①已知入射方向和出射方向时,可以通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图甲所示,图中P 为入射点,M 为出射点,O 为轨道圆心).②已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图乙所示,P 为入射点,M 为出射点,O 为轨道圆心).(2)运动半径的确定:作入射点、出射点对应的半径,并作出相应的辅助三角形,利用三角形的解析方法或其他几何方法,求解出半径的大小,并与半径公式mvr Bq=联立求解. (3)运动时间的确定粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示:360t T α=︒(或2t T απ=).可见粒子转过的圆心角越大,所用时间越长. 2.有界磁场(1)磁场边界的类型如图所示(2)与磁场边界的关系①刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.②当速度v 一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长. ③当速率v 变化时,圆周角越大的,运动的时间越长. (3)有界磁场中运动的对称性①从某一直线边界射入的粒子,从同一边界射出时,速度与边界的夹角相等; ②在圆形磁场区域内,沿径向射入的粒子,必沿径向射出. 3.解题步骤带电粒子在匀强磁场中做匀速圆周运动的解题方法——三步法: (1)画轨迹:即确定圆心,几何方法求半径并画出轨迹.(2)找联系:轨道半径与磁感应强度、运动速度相联系,偏转角度与圆心角运动时间相联系,在磁场中运动的时间与周期相联系.(3)用规律:即牛顿第二定律和圆周运动的规律,特别是周期公式、半径公式.注意:道PM 对应的圆心角α,即αϕ=,如图所示.(2)圆弧轨道PM 所对圆心角α等于PM 弦与切线的夹角(弦切角)θ的2倍,即2αθ=,如图所示. 要点三:质谱仪要点诠释: (1)构造质谱仪由粒子注入器、加速电场、速度选择器、偏转电场和照相底片组成,如图所示.(2)工作原理 ①加速:212qU mv =, ②偏转:2v qvB m r=,由以上两式得:粒子在磁场中作匀速圆周运动的半径12mur B q=。
难点之九:带电粒子在磁场中的运动 一、难点突破策略(一)明确带电粒子在磁场中的受力特点 1. 产生洛伦兹力的条件:①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用. ②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力f=0;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ; 当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ 3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功.(二)明确带电粒子在匀强磁场中的运动规律 带电粒子在只受洛伦兹力作用的条件下:1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动.2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动.①向心力由洛伦兹力提供:R v mqvB 2= ②轨道半径公式:qB mvR =③周期:qB m 2v R 2T π=π=,可见T 只与q m有关,与v 、R 无关。
(三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。
1. “带电粒子在匀强磁场中的圆周运动”的基本型问题(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。
确定半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t 和转过的圆心角α之间的关系(T 2t T 360t πα=α=或)作为辅助。
圆心的确定,通常有以下两种方法。
① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。
② 已知入射方向和出射点的位置,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图9-2,P 为入射点,M 为出射点)。
图9-1 图9-2 图9-3(2)半径的确定和计算:利用平面几何关系,求出该圆的可能半径或圆心角。
并注意以下两个重要的特点: ① 粒子速度的偏向角ϕ等于回旋角α,并等于AB 弦与切线的夹角(弦切角θ)的2倍,如图9-3所示。
即:t 2ω=θαϕ==。
② 相对的弦切角θ相等,与相邻的弦切角θ/互补,即θ+θ/=180o 。
(3)运动时间的确定粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示T 2t T 360t πα=α=或。
注意:带电粒子在匀强磁场中的圆周运动具有对称性。
① 带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向、出射速度方向与边界的夹角相等;② 在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。
应用对称性可以快速地确定运动的轨迹。
例1:如图9-4所示,在y 小于0的区域内存在匀强磁场,磁场方向垂直于xy 平面并指向纸面外,磁感应强度为B ,一带正电的粒子以速度从O 点射入磁场,入射速度方向为xy 平面内,与x 轴正向的夹角为θ,若粒子射出磁场的位置与O 点的距离为L ,求该粒子电量与质量之比。
【审题】本题为一侧有边界的匀强磁场,粒子从一侧射入,一定从边界射出,只要根据对称规律①画出轨迹,并应用弦切角等于回旋角的一半,构建直角三角形即可求解。
【解析】根据带电粒子在有界磁场的对称性作出轨迹,如图9-5所示,找出圆心A ,向x 轴作垂线,垂足为H ,由与几何关系得: ①带电粒子在磁场中作圆周运动,由 解得 ② ①②联立解得【总结】在应用一些特殊规律解题时,一定要明确规律适用的条件,准确地画出轨迹是关键。
例2:电视机的显像管中,电子(质量为m ,带电量为e )束的偏转是用磁偏转技术实现的。
电子束经过电压为U 的加速电场后,进入一圆形匀强磁场区,如图9-6所示,磁场方向垂直于圆面,磁场区的中心为O ,半径为r 。
当不加磁场时,电子束将通过O 点打到屏幕的中心M 点。
为了让电子束射到屏幕边缘P ,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感强度B 应为多少?图9-4 图9-5【审题】本题给定的磁场区域为圆形,粒子入射方向已知,则由对称性,出射方向一定沿径向,而粒子出磁场后作匀速直线运动,相当于知道了出射方向,作入射方向和出射方向的垂线即可确定圆心,构建出与磁场区域半径r 和轨迹半径R 有关的直角三角形即可求解。
【解析】如图9-7所示,电子在匀强磁场中做圆周运动,圆周上的两点a 、b 分别为进入和射出的点。
做a 、b 点速度的垂线,交点O1即为轨迹圆的圆心。
设电子进入磁场时的速度为v ,对电子在电场中的运动过程有:2mv eU 2=对电子在磁场中的运动(设轨道半径为R )有:R v mevB 2= 由图可知,偏转角θ与r 、R 的关系为:R r2tan=θ联立以上三式解得:2tane mU 2r 1B θ=【总结】本题为基本的带电粒子在磁场中的运动,题目中已知入射方向,出射方向要由粒子射出磁场后做匀速直线运动打到P 点判断出,然后根据第一种确定圆心的方法即可求解。
2. “带电粒子在匀强磁场中的圆周运动”的范围型问题例3:如图9-8所示真空中宽为d 的区域内有强度为B 的匀强磁场方向如图,质量m 带电-q 的粒子以与CD 成θ角的速度V0垂直射入磁场中。
要使粒子必能从EF 射出,则初速度V0应满足什么条件?EF 上有粒子射出的区域?【审题】如图9-9所示,当入射速度很小时电子会在磁场中转动一段圆弧后又从同一侧射出,速率越大,轨道半径越大,当轨道与边界相切时,电子恰好不能从另一侧射出,当速率大于这个临界值时便从右边界射出,依此画出临界轨迹,借助几何知识即可求解速度的临界值;对于射出区域,只要找出上下边界即可。
【解析】粒子从A 点进入磁场后受洛伦兹力作匀速圆周运动,要使粒子必能从EF 射出,则相应的临界轨迹必为过点A 并与EF 相切的轨迹如图9-10所示,作出A 、P 点速度的垂线相交于O/即为该临界轨迹的圆心。
临界半径R0由dCos θR R 00=+ 有:θ+=Cos 1dR 0;故粒子必能穿出EF 的实际运动轨迹半径R ≥R0图9-6图9-7图9-8 图9-9 图9-10即:θ+≥=Cos 1d qB mv R 0 有: )Cos 1(m qBdv 0θ+≥ 。
由图知粒子不可能从P 点下方向射出EF ,即只能从P 点上方某一区域射出;又由于粒子从点A 进入磁场后受洛仑兹力必使其向右下方偏转,故粒子不可能从AG 直线上方射出;由此可见EF 中有粒子射出的区域为PG ,且由图知:θ+θ+θ=θ+θ=cot d Cos 1dSin cot d Sin R PG 0。
【总结】带电粒子在磁场中以不同的速度运动时,圆周运动的半径随着速度的变化而变化,因此可以将半径放缩,运用“放缩法”探索出临界点的轨迹,使问题得解;对于范围型问题,求解时关键寻找引起范围的“临界轨迹”及“临界半径R0”,然后利用粒子运动的实际轨道半径R 与R0的大小关系确定范围。
例4:如图9-11所示S 为电子射线源能在图示纸面上和360°范围内向各个方向发射速率相等的质量为m 、带电-e 的电子,MN 是一块足够大的竖直挡板且与S 的水平距离OS =L ,挡板左侧充满垂直纸面向里的匀强磁场; ①若电子的发射速率为V0,要使电子一定能经过点O ,则磁场的磁感应强度B 的条件? ②若磁场的磁感应强度为B ,要使S 发射出的电子能到达档板,则电子的发射速率多大?③若磁场的磁感应强度为B ,从S 发射出的电子的速度为m eBL2,则档板上出现电子的范围多大?【审题】电子从点S 发出后必受到洛仑兹力作用而在纸面上作匀速圆周运动,由于电子从点S 射出的方向不同将使其受洛仑兹力方向不同,导致电子的轨迹不同,分析知只有从点S 向与SO 成锐角且位于SO 上方发射出的电子才可能经过点O ;由于粒子从同一点向各个方向发射,粒子的轨迹构成绕S 点旋转的一动态圆,动态圆的每一个圆都是逆时针旋转,这样可以作出打到最高点与最低点的轨迹,如图9-12所示,最低点为动态圆与MN 相切时的交点,最高点为动态圆与MN 相割,且SP2为直径时P 为最高点。
【解析】①要使电子一定能经过点O ,即SO 为圆周的一条弦,则电子圆周运动的轨道半径必满足2LR ≥,由2L eB mv 0≥ 得:eL mv 2B 0≤②要使电子从S 发出后能到达档板,则电子至少能到达档板上的O 点,故仍有粒子圆周运动半径2LR ≥, 由2L eBmv 0≥有:m 2eBLv 0≥图9-11 图9-12③当从S 发出的电子的速度为m eBL 2时,电子在磁场中的运动轨迹半径L 2qB mv R /==作出图示的二临界轨迹,故电子击中档板的范围在P1P2间;对SP1弧由图知L 3L )L 2(OP 221=-= 对SP2弧由图知L 15L )L 4(OP 222=-= 【总结】本题利用了动态园法寻找引起范围的“临界轨迹”及“临界半径R0”,然后利用粒子运动的实际轨道半径R与R0的大小关系确定范围。
3. “带电粒子在匀强磁场中的圆周运动”的极值型问题寻找产生极值的条件:①直径是圆的最大弦;②同一圆中大弦对应大的圆心角;③由轨迹确定半径的极值。
例5:图9-13中半径r =10cm 的圆形区域内有匀强磁场,其边界跟y 轴在坐标原点O 处相切;磁场B =0.33T 垂直于纸面向内,在O 处有一放射源S 可沿纸面向各个方向射出速率均为v=3.2×106m/s 的α粒子;已知α粒子质量为m=6.6×10-27kg ,电量q=3.2×10-19c ,则α粒子通过磁场空间的最大偏转角θ及在磁场中运动的最长时间t 各多少?【审题】本题α粒子速率一定,所以在磁场中圆周运动半径一定,由于α粒子从点O 进入磁场的方向不同故其相应的轨迹与出场位置均不同,则粒子通过磁场的速度偏向角θ不同,要使α粒子在运动中通过磁场区域的偏转角θ最大,则必使粒子在磁场中运动经过的弦长最大,因而圆形磁场区域的直径即为粒子在磁场中运动所经过的最大弦,依此作出α粒子的运动轨迹进行求解。
【解析】α粒子在匀强磁场后作匀速圆周运动的运动半径:r 2m 2.0qB mvR ===α粒子从点O 入磁场而从点P 出磁场的轨迹如图圆O/所对应的圆弧所示,该弧所对的圆心角即为最大偏转角θ。