孔隙率、孔径分布的测定
- 格式:ppt
- 大小:1.12 MB
- 文档页数:15
多孔材料检测方法——最大孔径、孔隙率、透气率1最大xx的测定采用冒泡法测定最大孔径。
将制好的试验样品放入酒精中浸泡5~10分钟,取出样品放入样品室,将上下夹具旋紧后装在FBP-3Ⅲ型多孔材料性能检测仪上,在样品上倒入少许酒精,启动仪器,调节旋钮使显示的压力差值不断增加,直到在样品上出现第一个气泡为止,记录此时的压力值。
为了观察方便,往往在被测试样上表面封一薄层浸渍液体,当气体压力由小逐渐增大到某一定值时,气体将把浸渍液体从毛细管中推开而冒出气泡,记录出现第一个气泡时的压力数据,按下式进行计算,所得数据即为材料的最大孔径值:式中:γ—试验液体的表面张力,N/m;Pg—试验气体压力,Pa;ρ—试验液体密度,kg/m^3;h—试验液体表面到试样表面的高度,m2孔隙率的测定浸泡介质法:首先利用游标卡尺测量样品的半径r和高度h(由此可算出试样的总体积),称出干燥试样在空气中的重量m1,然后浸入蒸馏水中使其饱和,即采用加热鼓如法使介质充分填满多孔材料的孔隙。
试样浸泡一定时间内充分饱和后,将试样取出,轻轻擦去试样表面的介质,再用电子秤称出试样此时在空气中的总质量m2,由下公式计算多孔材料的孔隙率。
3透气率的测定将干燥的试样样品放入样品室,旋紧上下夹具以保证样品室的密封,将样品室装在FBP-3Ⅲ型多孔材料性能检测仪上,启动仪器,调节压力旋钮使压力差达到一定值,通过数显表观察压力差及流量的变化,记录压差稳定时对应的流量值。
随着压差不断下降,记录不同压差下对应的流量值5~10组。
重复实验至少三次,记录与第一组相同压差下对应的流量值,取平均值,代入下式,拟合出一条P与Q和比值的曲线,斜率即为透气率。
其计算公式如下:、式中:K气—透气率,m^3/ m^2•KPa•h;Q—气体流量,m^3/h;ΔP—气体透过多孔材料产生的压力降,KPa;A—试样测试区域的面积,m^2理论上K气是一个定值,即试样P—Q曲线为一条直线,实际上发现是一条折线,不同压差点测出的K气值不同,流量的范围选取越大,这种差别也越大,所以测试时压差点的选取应有规律,以便于比较。
气体吸附(氮气吸附法)比表面积测定比表面积分析测试方法有多种,其中气体吸附法因其测试原理的科学性,测试过程的可靠性,测试结果的一致性,在国内外各行各业中被广泛采用,并逐渐取代了其它比表面积测试方法,成为公认的最权威测试方法。
许多国际标准组织都已将气体吸附法列为比表面积测试标准,如美国ASTM的D3037,国际ISO标准组织的ISO-9277。
我国比表面积测试有许多行业标准,其中最具代表性的是国标GB/T19587-2004《气体吸附BET法测定固体物质比表面积》。
气体吸附法测定比表面积原理,是依据气体在固体表面的吸附特性,在一定的压力下,被测样品颗粒(吸附剂)表面在超低温下对气体分子(吸附质)具有可逆物理吸附作用,并对应一定压力存在确定的平衡吸附量。
通过测定出该平衡吸附量,利用理论模型来等效求出被测样品的比表面积。
由于实际颗粒外表面的不规则性,严格来讲,该方法测定的是吸附质分子所能到达的颗粒外表面和内部通孔总表面积之和,如图所示意位置。
氮气因其易获得性和良好的可逆吸附特性,成为最常用的吸附质。
通过这种方法测定的比表面积我们称之为“等效”比表面积,所谓“等效”的概念是指:样品的比表面积是通过其表面密排包覆(吸附)的氮气分子数量和分子最大横截面积来表征。
实际测定出氮气分子在样品表面平衡饱和吸附量(V),通过不同理论模型计算出单层饱和吸附量(Vm),进而得出分子个数,采用表面密排六方模型计算出氮气分子等效最大横截面积(Am),即可求出被测样品的比表面积。
计算公式如下:sg:被测样品比表面积(m2/g)Vm:标准状态下氮气分子单层饱和吸附量(ml)Am:氮分子等效最大横截面积(密排六方理论值Am=0.162nm2)W:被测样品质量(g)N:阿佛加德罗常数(6.02x1023)代入上述数据,得到氮吸附法计算比表面积的基本公式:由上式可看出,准确测定样品表面单层饱和吸附量Vm是比表面积测定的关键。
测试方法分类比表面积测试方法有两种分类标准。
孔隙率测定
(开气孔率在80~90 vol %之间的多孔陶瓷铝合金过滤板)
本试验采用准确度较高的煮沸法测定制品的孔隙率。
(1)选取外观平整,表面不带有裂纹等破坏痕迹的试样,试验前刷去试样表面的灰尘和细碎颗粒,置于电热干燥箱中于110±5℃下烘干至恒重,即间隔一小时的两次连续称量之差小于0.1 wt %。
试样放置在干燥器中冷却至室温,称量精确至0.01g。
(2)将试样放在煮沸用器皿上,加入蒸馏水使试样完全被淹没,加热至沸腾后继续煮沸2 小时,之后冷却到室温。
(3)将上述饱和试样放入铜丝网篮,悬挂在带溢流管的注满蒸馏水的容器中,称量饱和试样在水中的重量,精确至0.01 g。
(4)从水中取出饱和试样,用饱含水的多层纱布,将试样表面的过剩水分轻轻擦掉(注意不应吸出试样孔隙内的水),迅速称量饱和试样在空气中的重量,精确到0.01 g。
ρ=(G2-G1)/(G2-G3)………………………………(2-1)
式中:ρ——试样的显气孔率(vol %);
G1——试样的干燥重量(g);
G2——饱和试样在空气中的重量(g);
G3——饱和试样在水中的重量(g)。
孔隙度测量方法嘿,咱今儿个就来唠唠孔隙度测量方法这档子事儿。
你说这孔隙度啊,就好比是一个物体里那些小小的空洞、缝隙啥的占的比例。
那咋测量它呢?有一种常见的方法叫水测法。
就跟咱平时量东西似的,把要测的东西泡在水里,看看能挤出多少水来,这挤出来的水的体积不就大概能知道那些孔隙占了多少地方嘛!这就好像咱吃西瓜,咱得知道这瓜甜不甜,水分多不多,就得切开来尝尝、看看。
还有一种呢,叫气体法。
这就好比吹气球,把一种气体充到要测的东西里面去,然后再根据一些数据啥的来算出孔隙度。
这就像是给一个袋子吹气,看看能吹多大,就能大概知道这袋子能装多少气,空间有多大。
还有一种比较特别的方法,就是利用一些射线啥的。
哎呀呀,这就有点高级了,就跟孙悟空的火眼金睛似的,能透过表面看到里面的情况。
通过这些射线的反应,就能知道孔隙度啦。
咱就说,这测量孔隙度可不是随便搞搞就行的。
就像咱做饭得掌握好火候和调料一样,得精确才行。
要是测错了,那可就麻烦啦!好比盖房子,你要是不知道材料的孔隙度,那盖出来的房子能结实吗?能住得安心吗?每种方法都有它的优缺点呢。
水测法简单易懂,可有时候不太精确;气体法呢,相对精确一些,但操作起来可能稍微麻烦点;射线法虽然高级,但设备啥的要求也高呀。
这就跟咱选工具一样,得根据具体情况来挑合适的。
那咱平时生活中哪些地方会用到孔隙度测量呢?嘿,那可多啦!比如说建筑材料,你得知道它的孔隙度,才能知道它的质量好不好;还有地质勘探,了解地下岩石啥的孔隙度,这对找石油、天然气可重要啦!你想想,要是不知道这些,那不就跟没头苍蝇似的乱撞嘛!所以说啊,这孔隙度测量方法可真是个大学问。
咱得好好研究,好好掌握,才能在各种领域发挥大作用呢!咱可不能小瞧了它,它可是能帮咱解决好多实际问题的呢!你说是不是这么个理儿?。
第1篇一、实验目的本次实验旨在分析混凝土的孔隙特征,包括孔隙率、孔径分布、孔结构等信息,以评估混凝土的抗渗性、耐久性和强度性能。
通过对孔隙特性的研究,为混凝土材料的优化设计提供科学依据。
二、实验材料与设备1. 实验材料:- 水泥:普通硅酸盐水泥- 砂:中粗砂- 碎石:5-20mm碎石- 水:去离子水- 化学外加剂:减水剂2. 实验设备:- 混凝土搅拌机- 标准试模(100mm×100mm×100mm)- 振动台- 水泥净浆搅拌机- 压力试验机- 孔隙率测定仪- 扫描电子显微镜(SEM)- 激光散射仪三、实验方法1. 混凝土制备:按照实验设计要求,将水泥、砂、碎石、水及外加剂按照一定比例混合,在搅拌机上搅拌均匀后,倒入标准试模中,并在振动台上振动至表面平整。
2. 养护:将试模置于标准养护室中,养护至实验设计要求的龄期。
3. 抗压强度测试:将养护好的试块进行抗压强度测试,记录抗压强度值。
4. 孔隙率测定:利用孔隙率测定仪,测定混凝土试块的孔隙率。
5. 孔径分布分析:通过SEM和激光散射仪对混凝土试块进行观察和分析,获得孔径分布信息。
6. 孔结构分析:利用孔隙率测定仪和激光散射仪,对混凝土试块的孔结构进行分析。
四、实验结果与分析1. 孔隙率:实验测得混凝土的孔隙率为15.2%,表明该混凝土具有一定的孔隙率。
2. 孔径分布:通过SEM观察,发现混凝土孔径分布不均匀,存在大量微孔和少量大孔。
微孔主要集中在0.1-1.0μm范围内,大孔主要集中在1.0-10μm范围内。
3. 孔结构分析:混凝土孔结构主要为连通孔和封闭孔。
连通孔主要分布在0.1-1.0μm范围内,封闭孔主要分布在1.0-10μm范围内。
4. 抗压强度:实验测得混凝土的抗压强度为30MPa,表明该混凝土具有较高的抗压强度。
五、结论1. 本次实验所制备的混凝土孔隙率为15.2%,孔径分布不均匀,孔结构以连通孔和封闭孔为主。
2. 混凝土的抗压强度为30MPa,表明该混凝土具有较高的抗压强度。
气体吸附(氮气吸附法)比表面积测定比表面积分析测试方法有多种,其中气体吸附法因其测试原理的科学性,测试过程的可靠性,测试结果的一致性,在国内外各行各业中被广泛采用,并逐渐取代了其它比表面积测试方法,成为公认的最权威测试方法。
许多国际标准组织都已将气体吸附法列为比表面积测试标准,如美国ASTM的D3037,国际ISO标准组织的ISO-9277。
我国比表面积测试有许多行业标准,其中最具代表性的是国标GB/T19587-2004《气体吸附BET法测定固体物质比表面积》。
气体吸附法测定比表面积原理,是依据气体在固体表面的吸附特性,在一定的压力下,被测样品颗粒(吸附剂)表面在超低温下对气体分子(吸附质)具有可逆物理吸附作用,并对应一定压力存在确定的平衡吸附量。
通过测定出该平衡吸附量,利用理论模型来等效求出被测样品的比表面积。
由于实际颗粒外表面的不规则性,严格来讲,该方法测定的是吸附质分子所能到达的颗粒外表面和内部通孔总表面积之和,如图所示意位置。
氮气因其易获得性和良好的可逆吸附特性,成为最常用的吸附质。
通过这种方法测定的比表面积我们称之为“等效”比表面积,所谓“等效”的概念是指:样品的比表面积是通过其表面密排包覆(吸附)的氮气分子数量和分子最大横截面积来表征。
实际测定出氮气分子在样品表面平衡饱和吸附量(V),通过不同理论模型计算出单层饱和吸附量(Vm),进而得出分子个数,采用表面密排六方模型计算出氮气分子等效最大横截面积(Am),即可求出被测样品的比表面积。
计算公式如下:sg:被测样品比表面积(m2/g)Vm:标准状态下氮气分子单层饱和吸附量(ml)Am:氮分子等效最大横截面积(密排六方理论值Am=0.162nm2)W:被测样品质量(g)N:阿佛加德罗常数(6.02x1023)代入上述数据,得到氮吸附法计算比表面积的基本公式:由上式可看出,准确测定样品表面单层饱和吸附量Vm是比表面积测定的关键。
测试方法分类比表面积测试方法有两种分类标准。