流体流动输送综合实验 数据处理
- 格式:doc
- 大小:132.00 KB
- 文档页数:2
实验题目:流体流动阻力测定实验一、数据记录1、实验原始数据记录如下表:离心泵型号:MS60/0.55,额定流量:60L/min, 额定扬程:19.5mN,额定功率:0.55kw流体温度2、5 2.4 1.9258 0.00513 41149.8586 2.6487 0.024846 6 2.2 1.7653 0.0061 37720.7038 2.2759 0.029569 7 2 1.6048 0.00593 34291.5489 1.8149 0.028751 8 1.8 1.4443 0.00424 30862.3940 1.5304 0.020508 9 1.6 1.2838 0.00536 27433.2391 1.2164 0.025955 10 1.4 1.12340.005655 24004.08420.94180.0273820.00559绘制粗糙管路的双对数λ-Re 曲线如下图示:根据光滑管实验结果,对照柏拉修斯方程λ=0.3164/(Re0.25),计算其误差,计试验次数 阻力系数λ 雷诺数Re 柏拉修斯方程计算结果 误差1 0.016893 57609.8021 0.02042266 0.1728312 0.017215 54009.1895 0.02075485 0.1705553 0.017332 50408.5768 0.02111594 0.179198 4 0.017282 46807.9642 0.0215108 0.196595 0.018107 43207.3516 0.02194558 0.174914 6 0.017612 39606.7389 0.02242819 0.2147387 0.018552 36006.1263 0.02296902 0.1923038 0.019035 32405.5137 0.02358206 0.192819 9 0.019391 28804.901 0.02428678 0.201582 10 0.019954 25204.2884 0.02511122 0.205375 3 的流速2900d Vu π=(m/s ),雷诺数μρdu =Re ,流体阻力ρ1000⨯∆=P Hf,阻力系数22Lu d H f =λ,ξ=gu2f'Δ2ρP ,并以标准单位换算得光滑管数据处理结果如下表二、结果分析(1)光滑管结果分析:曲线表明,在湍流区内,光滑管阻力系数随雷诺数增大而减小,进入阻力平方区(也称完全湍流区)后,雷诺数对阻力系数的影响却越来越弱,阻力系数基本趋于不变。
流体综合实验实验目的1)能进行光滑管、粗糙管、闸阀局部阻力测定实验,测出湍流区阻力系数与雷诺数关系曲线图;2)能进行离心泵特性曲线测定实验,测出扬程与流量、功率与流量以及离心泵效率与流量的关系曲线图;3)学习工业上流量、功率、转速、压力和温度等参数的测量方法,使学生了解涡轮流量计、电动调节阀以及相关仪表的原理和操作;离心泵特性测定实验一、基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H、轴功率N及效率η与泵的流量Q之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。
由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。
1.扬程H的测定与计算取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程:(1-1)由于两截面间的管子较短,通常可忽略阻力项fhΣ,速度平方差也很小,故也可忽略,则有(1-2)式中:H=Z2-Z1,表示泵出口和进口间的位差,m;ρ——流体密度,kg/m3 ;g——重力加速度m/s2;p 1、p2——分别为泵进、出口的真空度和表压,Pa;H1、H2——分别为泵进、出口的真空度和表压对应的压头,m;u 1、u2——分别为泵进、出口的流速,m/s;z 1、z2——分别为真空表、压力表的安装高度,m。
由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。
2.轴功率N的测量与计算N=N电×k (W)(1-3)其中,N电为电功率表显示值,k代表电机传动效率,可取k=0.953.效率η的计算泵的效率η是泵的有效功率Ne与轴功率N的比值。
有效功率Ne是单位时间内流体经过泵时所获得的实际功率,轴功率N是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。
泵的有效功率Ne可用下式计算:N e=HQρg (1-4)故泵效率为(1-5)四、实验步骤及注意事项(一)实验步骤:1.实验准备:(1)实验用水准备:清洗水箱,并加装实验用水。
实验一 流体力学综合实验预习实验:一、实验目的1.熟悉流体在管路中流动阻力的测定方法及实验数据的归纳2.测定直管摩擦系数λ与e R 关系曲线及局部阻力系数ζ 3、 了解离心泵的构造,熟悉其操作与调节方法 4、 测出单级离心泵在固定转速下的特定曲线 二、实验原理流体在管路中的流动阻力分为直管阻力与局部阻力两种。
直管阻力就是流体流经一定管径的直管时,由于流体内摩擦而产生的阻力,可由下式计算:gu d l g p H f 22⋅⋅=∆-=λρ (3-1)局部阻力主要就是由于流体流经管路中的管件、阀门及管截面的突然扩大或缩小等局部地方所引起的阻力,计算公式如下:gu g p H f22''⋅=∆-=ζρ (3-2)管路的能量损失'f f f H H H +=∑ (3-3)式中 f H ——直管阻力,m 水柱;λ——直管摩擦阻力系数;l ——管长,m; d ——直管内径,m;u ——管内平均流速,1s m -⋅;g ——重力加速度,9、812s m -⋅p ∆——直管阻力引起的压强降,Pa;ρ——流体的密度,3m kg -⋅;ζ——局部阻力系数; 由式3-1可得22ludP ρλ⋅∆-=(3-4) 这样,利用实验方法测取不同流量下长度为l 直管两端的压差P ∆即可计算出λ与Re ,然后在双对数坐标纸上标绘出Re λ-的曲线图。
离心泵的性能受到泵的内部结构、叶轮形式、叶轮转速的影响。
实验将测出的H —Q 、N —Q 、η—Q 之间的关系标绘在坐标纸上成为三条曲线,即为离心泵的特性曲线,根据曲线可找出泵的最佳操作范围,作为选泵的依据。
离心泵的扬程可由进、出口间的能量衡算求得:gu u h H H H 221220-++-=入口压力表出口压力表 (3-5)式中出口压力表H ——离心泵出口压力表读数,m 水柱;入口压力表H ——离心泵入口压力表的读数,m 水柱;0h ——离心泵进、出口管路两测压点间的垂直距离,可忽略不计;1u ——吸入管内流体的流速,1s m -⋅; 2u ——压出管内流体的流速,1s m -⋅泵的有效功率,由于泵在运转过程中存在种种能量损失,使泵的实际压头与流量较理论值为低,而输入泵的功率又较理论值为高,所以泵的效率%100⨯=NN eη (3-6) 而泵的有效功率g QH N e e ρ=/(3600×1000) (3-7)式中:e N ——泵的有效功率,K w;N ——电机的输入功率,由功率表测出,K w ;Q ——泵的流量,-13h m ⋅;e H ——泵的扬程,m 水柱。
实验三实验报告一、实验设备的主要内容:⒈测定实验管路内流体流动的直管阻力和直管摩擦系数λ。
⒉测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re和相对粗糙度之间的关系曲线。
⒊在本实验压差测量范围内,测量阀门的局部阻力系数ζ。
4.练习离心泵的操作。
测定某型号离心泵在一定转速下,H(扬程)、N(轴功率)、η(效率)与Q(流量)之间的特性曲线。
5.测定流量调节阀某一开度下管路特性曲线。
6.了解文丘里及涡轮流量计的构造及工作原理。
7. 测定节流式流量计(文丘里)的流量标定曲线。
8. 测定节流式流量计的雷诺数Re和流量系数C的关系。
二、设备的主要技术数据:(1)流体阻力:1. 被测直管段:光滑管管径d—0.0080(m) 管长L—1.70(m) 材料:不锈钢粗糙管管径d—0.010(m) 管长L—1.70(m) 材料:不锈钢2. 玻璃转子流量计:型号测量范围精度LZB—25 100~1000(L/h) 1.5LZB—10 10~100(L/h) 2.53. 压差传感器:型号:LXWY 测量范围:200 Kpa4. 数显表:型号:501 测量范围:0~200Kpa5. 离心泵:型号:WB70/055 流量:20—200(1/h)扬程:19—13.5(m)电机功率:550(W)电流:1.35(A) 电压:380(V)(2)流量计测量:涡轮流量计:(单位:M3/h)文丘里流量计文丘里喉径:0.020m 实验管路管径:0.045m,(3)离心泵(1)离心泵流量Q=4m3/h ,扬程H=8m ,轴功率N=168w(2)真空表测压位置管内径d1=0.025m(3)压强表测压位置管内径d2=0.045m(4)真空表与压强表测压口之间的垂直距离h0=0.355m(5)电机效率为60%1.流量测量:涡轮流量计2.功率测量:功率表:型号PS-139 精度1.0级3. 泵吸入口真空度的测量真空表:表盘真径-100mm 测量范围-0.1-0MPa 精度1.5级4.泵出口压力的测量压力表:表盘直径-100mm 测量范围0-0.25MPa 精度1.5级(4)变频器:型号:N2-401-H 规格:(0-50)Hz(5)数显温度计:501BX三、实验设备的基本情况:1. 实验设备流程图:见图一图一、流体综合实验装置流程示意图1-水箱;2-离心泵;3-真空表;4-压力表;5-真空传感器;6-压力传感器;7-真空表阀;8-压力表阀;9-智能阀;10-大涡轮流量计;11-小涡轮流量计;12,13-管路控制阀;14-流量调节阀;15-大流量计;16-小流量计;17-光滑管阀;18-光滑管测压进口阀;19-光滑管测压出口阀;20-粗糙管阀;21-粗糙管测压进口阀;22-粗糙管测压出口阀;23-测局部阻力阀;24-测局部阻力压力远端出口阀;25-测局部阻力压力近端出口阀;26-测局部阻力压力近端进口阀;27-测局部阻力压力远端进口阀;28,29-U型管下端放水阀;30-U型管测压进口阀;31- U型管测压出口阀;32,33-文丘里测压出,进口阀;34-文丘里;35-压力缓冲罐;36-压力传感器;37-倒U型管;38-U 型管上端放空阀;39-水箱放水阀;40,41,42,43-数显表;44-变频器;45-总电源;2流体阻力的测量:水泵2将储水槽1中的水抽出,送入实验系统,经玻璃转子流量计15,16测量流量,然后送入被测直管段测量流体流动的阻力,经回流管流回储水槽。
流体流动阻力测定实验一、实验目的1.掌握测定流体流经直管、管件和阀门时阻力损失的一般实验方法。
2.测定直管摩擦系数λ与雷诺准数Re的关系,验证在一般湍流区内λ与Re 的关系曲线。
3.测定流体流经管件、阀门时的局部阻力系数ξ。
4.学会倒U形压差计和涡轮流量计的使用方法。
5.识辨组成管路的各种管件、阀门,并了解其作用。
二、基本原理流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。
流体流经直管时所造成机械能损失称为直管阻力损失。
流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。
1.直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:即,式中:λ—直管阻力摩擦系数,无因次;d —直管内径,m;—流体流经l米直管的压力降,Pa;hf—单位质量流体流经l米直管的机械能损失,J/kg;ρ—流体密度,kg/m3;l —直管长度,m;u —流体在管内流动的平均流速,m/s。
滞流(层流)时,式中:Re —雷诺准数,无因次;μ—流体粘度,kg/(m·s)。
湍流时λ是雷诺准数Re和相对粗糙度(ε/d)的函数,须由实验确定。
由式(2)可知,欲测定λ,需确定l、d,测定、u、ρ、μ等参数。
l、d 为装置参数(装置参数表格中给出),ρ、μ通过测定流体温度,再查有关手册而得, u通过测定流体流量,再由管径计算得到。
例如本装置采用涡轮流量计测流量V(m3/h)。
可用U型管、倒置U型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。
根据实验装置结构参数l、d,指示液密度,流体温度 (查流体物性ρ、μ),及实验时测定的流量V、压差,通过式(5)、(6)或(7)、(4) 和式(2)求取Re和λ,再将Re和λ标绘在双对数坐标图上。
2.局部阻力系数ξ的测定局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。
第1篇一、实验目的1. 掌握流体流动阻力测定的基本原理和方法。
2. 学习使用流体力学实验设备,如流量计、压差计等。
3. 通过实验,了解流体流动阻力在工程中的应用,如管道设计、流体输送等。
4. 分析实验数据,验证流体流动阻力理论,并探讨其影响因素。
二、实验原理流体流动阻力主要分为直管摩擦阻力和局部阻力。
直管摩擦阻力是由于流体在管道中流动时,与管道壁面产生摩擦而导致的能量损失。
局部阻力是由于流体在管道中遇到管件、阀门等局部阻力系数较大的部件时,流动方向和速度发生改变而导致的能量损失。
直管摩擦阻力计算公式为:hf = f (l/d) (u^2/2g)式中:hf为直管摩擦阻力损失,f为摩擦系数,l为直管长度,d为管道内径,u 为流体平均流速,g为重力加速度。
局部阻力计算公式为:hj = K (u^2/2g)式中:hj为局部阻力损失,K为局部阻力系数,u为流体平均流速。
三、实验设备与仪器1. 实验台:包括直管、弯头、三通、阀门等管件。
2. 流量计:涡轮流量计。
3. 压差计:U型管压差计。
4. 温度计:水银温度计。
5. 计时器:秒表。
6. 量筒:500mL。
7. 仪器架:实验台。
四、实验步骤1. 准备实验台,安装直管、弯头、三通、阀门等管件。
2. 连接流量计和压差计,确保仪器正常运行。
3. 在实验台上设置实验管道,调整管道长度和管件布置。
4. 开启实验台水源,调整流量计,使流体稳定流动。
5. 使用压差计测量直管和管件处的压力差,记录数据。
6. 使用温度计测量流体温度,记录数据。
7. 计算直管摩擦阻力损失和局部阻力损失。
8. 重复步骤4-7,改变流量和管件布置,进行多组实验。
五、实验数据记录与处理1. 记录实验管道长度、管径、管件布置等信息。
2. 记录不同流量下的压力差、流体温度等数据。
3. 计算直管摩擦阻力损失和局部阻力损失。
4. 绘制直管摩擦阻力损失与流量关系曲线、局部阻力损失与流量关系曲线。
六、实验结果与分析1. 通过实验数据,验证了流体流动阻力理论,即直管摩擦阻力损失和局部阻力损失随流量增加而增大。
中国石油大学(华东) 工程流体力学 实验报告实验日期: 成绩:班级: 学号: 姓名: 教师: 同组者:实验六、流动状态实验一、实验目的1.测定液体运动时的沿程水头损失(f h )及断面的 平均流速(υ) ;2.绘制流态(f lg h —v lg )曲线图,找出下临界点并计算 临界雷诺数(Re c ) 的值。
二、实验装置本室验的装置如图所示。
本实验所用的设备有流态实验装置、量筒、秒表、温度计及粘温表。
在图1-6-1横线上正确填写实验装置各部分的名称图1-6-1 流态实验装置1. 稳压水性 ;2. 进水管 ;3. 溢流管 ;4. 试验管路 ;5. 压差计 ;6. 流量调节阀 ;7. 回流管线 ;8. 试验台 ;9. 蓄水线 ; 10. 抽水泵 ;11. 出水管三、实验原理 填空1.液体在同一管道中流动,当 速度 不同时有层流、紊流两种流动状态。
层流 特点是质点互不掺混,成线状流动。
在 紊流 中流体的各质点相互掺混,有脉动现象。
不同的流态,其 沿程水头损失 与断面平均速度的关系也不相同。
层流的沿程水头损失与断面平均流速的 一次方 成正比;紊流的沿程水头损失与断面平均速度的m 次方成正比 (m= 1.75~2.0 ) 。
层流与紊流之间存在一个过渡区,它的沿程水头损失与断面平均流速关系与层流、紊流的不同。
2.当稳压水箱一直保持溢流时,实验管路水平放置且管径不变,流体在管内的流动为 稳定流 ,此种情况下v 1=v 2。
那么从A 点到B 点的沿程水头损失为h f ,可由能流量方程导出:221122f 12121212()()22()()p v p v h z z g gp pz z h h hγγγγ=++-++=+-+=-=∆h 1、h 2分别是A 点、B 点的测压管水头,由 压差计 中的两个测压管读出。
3.雷诺数(Reynolds Number )判断流体流动状态。
雷诺数的计算公式为:Dv Re ν=D —圆管内径;v —断面平均速度;ν—运动粘度系数当c Re Re <(下临界雷诺数)为层流,c Re =2000~2320;当cRe Re '>(上临界雷诺数)为紊流,c Re '=4000~12000之间。
流体综合实验数据处理在流体综合实验中,我们测试了多个流体力学参数,如雷诺数、阻力系数、流量、压降等。
如何处理这些数据是一个非常重要的问题,因为数据处理的质量直接影响我们对结果的信任度。
在这篇文章中,我们将介绍我们在数据处理方面采取的策略。
首先,我们需要对从实验中获得的原始数据进行筛选和处理。
原始数据可能包含噪声、干扰和误差,我们需要把这些因素尽可能排除掉。
为了保证数据的可靠性,我们对每个参数进行多次测量,并取平均值作为该参数的最终结果。
同时,我们也需要对实验数据进行比较和分析,以了解它们之间的关系和趋势。
其次,我们需要使用适当的工具和模型进行数据分析。
例如,在计算雷诺数时,我们需要使用流体的密度、速度和粘度等参数。
在计算阻力系数时,我们需要使用流体的密度、速度、压降和物体的尺寸等参数。
因此,在处理数据时,我们需要确保我们使用了正确的参数和公式,以保证结果的准确性和可靠性。
第三,我们需要对结果进行有效的可视化和表达,以便更好地理解实验数据。
例如,我们可以将不同雷诺数下的阻力系数绘制成曲线图,以显示它们之间的关系和趋势。
我们也可以使用散点图来显示流量和压降之间的线性关系。
通过这些可视化工具,我们可以更直观地理解实验结果,发现问题并进行改进。
最后,我们需要对结果进行统计和分析,以确定它们在统计学上的显著性。
例如,在比较两个不同阻力系数时,我们可以进行t检验,以确定它们之间的差异是否显著。
这将有助于我们确定实验结果是否可靠,以及我们的实验是否能够证明我们的假设。
综上所述,数据处理在流体综合实验中起着非常重要的作用。
通过正确的数据处理策略,我们可以提高数据的质量和准确性,更好地理解实验结果,并得出可靠的结论。
实验1 流动过程综合实验一、实验目的⒈学习和了解流体流动过程中的主要管件、阀门、流量计和离心泵的结构和用途,初步建立化工工程化概念;⒉学会根据实验内容画简单流程示意图;⒊学习管道摩擦系数的测定方法,掌握直管摩擦系数 与雷诺数Re和相对粗糙度ε/d之间的变化规律;⒋熟悉离心泵的操作方法,掌握离心泵特性曲线和管路特性曲线的测定方法;5.学习节流式流量计的标定方法,掌握流量系数C随雷诺数Re的变化规律。
二、实验任务下列任务除必选项外,至少选一项任选类实验任务(1) 测定流体流经光滑直管时的摩擦系数λ与雷诺数Re的关系曲线。
(必选)要求:将λ与Re在层流、过渡流和湍流三个流型区的关系标在同一张双对数坐标纸上。
(2) 测定离心泵在一定转速(频率 50HZ)下的特性曲线。
(必选)(3) 非标节流式流量计标定。
(任选)要求:用双对数和单对数坐标分别标绘压差△P与流量Q、孔流系数C与雷诺数Re的关系曲线。
(4) 测定流体流经粗糙管时的摩擦系数λ与雷诺数Re的关系,以及最大流量下阀门全开、半开时局部阻力系数ζ。
(任选)(5) 采用变频器调节,测定在改变的转速下离心泵的特性曲线。
(任选)(6) 测定流量调节阀开度在一半以上的管路特性曲线。
(任选)三、实验预习要求1. 预习流体流动阻力、离心泵和流量测量等相关知识,结合实验任务和附录提示列出对应的理论依据;2. 初步拟定针对单一实验任务的实验流程示意图;3. 明确测试对象,绘制原始数据记录表;4. 了解实验装置的使用及注意事项(见附录3);5. 拟定实验操作步骤。
四、实验报告要求:表1-1实验报告内容和提示五、思考题⒈ 本实验用水为工作介质做出的Re -λ曲线,对其它流体能否使用?为什么?⒉ 本实验是测定等直径水平直管的流动阻力,若将水平管改为流体自下而上流动的垂直管,从测量两取压点间△P f 是否与水平管相同?为什么?⒊ 为什么采用差压变送器和倒置U 形管并联起来测量直管段的压差?何时用倒置U 形管?何时用差压变送器?操作时要注意什么?4. 试分析实验数据,看一看,随着泵出口流量调节阀开度的增大,泵入口真空表读数是减少还是增加,泵出口压强表读数是减少还是增加。