特殊平行四边形知识点归纳
- 格式:docx
- 大小:297.53 KB
- 文档页数:1
《平行四边形》知识点平行四边形特殊的平行四边形矩形(长方形)菱形正方形定义两组对边分别平行的四边形叫平行四边形.有一个角为直角的平行四边形叫矩形.有一组邻边相等的平行四边形叫菱形.既是矩形又是菱形的四边形叫正方形.简图边对边平行且相等A B=CD,AD=BC四边相等A B=CD=AD=BC A B=CD=AD=BC 角对角相等,邻角互补,A CB D∠=∠∠=∠四个角都是直角;∠A=∠B=∠C=∠D=90°∠A=∠B=∠C=∠D=90°对角线对角线互相平分AO=CO,BO=DO对角线相等互相平分AO=BO=CO=DO互相垂直,且平分对角AC⊥BD AO=BO=CO=DOAC⊥BD对称性中心对称(O为对称中心)中心对称轴对称(2条对称轴)中心对称轴对称(2条对称轴)中心对称轴对称(4条对称轴)特殊性延伸三角形中位线定理D E∥BC,DE=12BC直角三角形斜边上中线等于斜边的一半.OCBAOA=OB=OC=12AB菱形的面积等于对角线乘积的一半;12S AC BD=g菱形OOO O二、判定图形判定方法平行四边形判1:AB=CD,AD=BC⇒□判2:CA∠=∠,DB∠=∠⇒□判3:AO=CO,BO=DO⇒□判4:AB//CD,AD//BC⇒□判5:AB=CD且AB//CD⇒□特殊的平行四边形矩形(长方形)判1:BA∠=∠=︒=∠90C⇒矩形(任意三个角)判2:AO=BO=CO=DO⇒矩形判3:︒=∠90α+□⇒矩形菱形判1:AB=BC=CD=AD⇒菱形判2:AC⊥BD,□⇒菱形判3:AB=A D,□⇒菱形(邻边可换)判4:平分内角⇒菱形正方形判1:BA∠=∠=︒=∠=∠90DC,AB=BC=CD=AD⇒正方形判2:AB=A D,矩形⇒正方形(邻边可换)判3:︒=∠90α,菱形⇒正方形练习(苏科版):回忆已经知道的平行四边形、矩形、菱形、正方形的性质,在下表相应空格内打“√”:特点平行四边形矩形菱形正方形示意图边对边平行对边相等四边相等角对角相等4个角都是直角对角线对角线互相平分对角线相等对角线互相垂直对角线分别平分对角。
特殊平行四边形知识点归纳1.对角线:特殊平行四边形的对角线分别连接了两对相对顶点,它们相交于一个点,并且该交点将对角线分为两个相等的部分。
2.平行线性质:特殊平行四边形的两对边分别是平行的。
根据平行线的性质,可以推论出特殊平行四边形的一些重要性质,如对边相等和内角和为180度。
3.对角线性质:特殊平行四边形的对角线相等,即对角线BD=AC。
这个性质可以通过两个相似三角形的性质证明得出。
4.垂直线性质:特殊平行四边形的对角线相交于一个垂直点,即∠BOC=90度。
这个性质可以通过垂直线的性质证明得出。
5.邻补角性质:特殊平行四边形的邻补角(共享一条边且内角和为180度的两个角)之和为180度。
这个性质可以通过平行线的性质证明得出。
6.夹角性质:特殊平行四边形的夹角(相邻且共享一条边的两个内角)之和为180度。
这个性质也可以通过夹角的定义和平行线的性质证明得出。
7.对角线中点连线性质:特殊平行四边形的对角线的中点分别连接,即中点E和F相连,则EF平行于对边AB和CD,并且EF=AB=CD。
这个性质可以通过对角线中点连线构造等腰直角三角形的性质证明得出。
特殊平行四边形的这些性质和概念在几何学中有着广泛的应用。
例如,在解决平行四边形的面积、周长、角度和边长等问题时,可以利用这些性质来求解。
特殊平行四边形还与三角形、四边形和多边形等几何图形的关系密切相关,在几何证明和问题求解中起着重要的作用。
总之,特殊平行四边形是一个重要的几何概念,它具有一系列的重要性质和应用。
通过深入理解这些知识点,并善于运用它们来解决问题,可以提高我们的几何学思维能力和分析问题的能力。
平行四边形及特殊平行四边形知识点总结平行四边形、矩形、菱形、正方形的共同性质是:对边平行且相等,对角线相等。
其中,矩形还有一个特殊性质是有一个角为直角,菱形还有一个特殊性质是四条边相等,正方形则同时满足矩形和菱形的特殊性质。
2.判定方法小结:1)判定平行四边形的方法:①两组对边分别平行;②两组对边分别相等;③两组对角分别相等;④对角线互相平分;⑤一组对边平行且相等。
2)判定矩形的方法:①有一个角是直角;②对角线相等;③有三个角是直角;④对角线相等且互相平分。
3)判定菱形的方法:①有一组邻边相等;②对角线互相垂直;③四边都相等;④对角线互相垂直平分。
4)判定正方形的方法:①有一组邻边相等且有一个角是直角;②对角线互相垂直且相等;③对角线互相垂直平分且相等。
3.基础达标训练:1)两条对角线的四边形是平行四边形;2)两条对角线的四边形是矩形;3)两条对角线的四边形是菱形;4)两条对角线的四边形是正方形;5)两条对角线的平行四边形是矩形;6)两条对角线的平行四边形是菱形;7)两条对角线的平行四边形是正方形;8)两条对角线的矩形是正方形;9)两条对角线的菱形是正方形。
1.以不在同一直线上的三个点为顶点作平行四边形,最多能作1个。
2.若平行四边形的一边长为10cm,则它的两条对角线的长度可以是8cm和12cm。
3.在平行四边形ABCD中,直线通过两对角线交点O,分别与BC和AD相交于点E和F。
已知BC=7,CD=5,OE=2,则四边形ABEF的周长为多少?答案:C。
16解析:根据平行四边形的性质,AE=CD=5,BF=BC=7.由于OE=2,因此EF=BC-OE=5.所以ABEF是一个边长分别为5和7的矩形,周长为2(5+7)=16.4.如图,在矩形ABCD中,对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长为多少?答案:B。
6解析:由于CE∥BD,DE∥AC,因此三角形AOD和BOC相似,三角形COE和DOE相似。
平行四边形的知识点整理(一)引言概述:平行四边形是一种特殊的四边形,具有一些独特的性质和特点。
了解这些知识点有助于我们在几何学中更好地理解和运用。
本文将对平行四边形的知识进行整理和总结,以帮助读者更好地掌握相关内容。
正文:一、平行四边形的定义和特点:1. 平行四边形的定义2. 平行四边形的性质和特点3. 平行四边形的内角和外角性质4. 平行四边形的对角线性质5. 平行四边形的边长和内角关系二、平行四边形的分类:1. 平行四边形的分类方法2. 等边平行四边形的性质和特点3. 矩形和正方形的性质和特点4. 菱形的性质和特点5. 平行四边形的其他特殊分类三、平行四边形的面积和周长计算:1. 平行四边形的面积计算方法2. 平行四边形的周长计算方法3. 面积和周长的相关性质和公式4. 平行四边形的面积和周长实例计算5. 平行四边形的面积和周长在实际问题中的应用四、平行四边形的相关定理和推论:1. 平行四边形的对称性定理2. 平行四边形的角平分线与边平分线定理3. 对角线互相平分的平行四边形定理4. 平行四边形的中位线定理5. 平行四边形的相关推论和应用五、平行四边形的解题方法和技巧:1. 解直角平行四边形的问题的方法和步骤2. 解面积和周长问题的技巧和注意事项3. 解平行四边形的性质问题的思路和方法4. 运用平行四边形求证和构造题的解题技巧5. 平行四边形相关问题的典型例题和解答总结:平行四边形是几何学中的重要内容,了解平行四边形的定义、性质和特点,掌握其分类、面积和周长计算方法,熟悉其相关定理和推论,并具备解题技巧和应用能力,对我们的几何学学习和问题解决能力都有很大的帮助。
通过学习本文所总结的平行四边形的知识点,相信读者会在几何学中取得更好的成绩,对未来的学习和发展起到积极的促进作用。
上淘师·易得优
第一章特殊平行四边行
1.菱形的性质与判定
1.定义:有一组邻边星等的四边形叫做菱形。
2.性质
(1)菱形的四条边都相等;
(2)菱形的对角线互相垂直;
(3)菱形是轴对称图形,七对称轴是对角线所在的直线。
3.判定
(1)定义:有一组邻边星等的四边形叫做菱形。
(2)定理1:对角线互相垂直的平行四边形是菱形。
(3)定理2:四条边相等的四边形是菱形。
2.矩形的性质与判定
1.定义:有一个角是直角的平行四边形叫做矩形,也叫做长方形。
2.性质
(1)矩形的四个角都是直角。
(2)矩形的对角线相等。
(3)矩形是轴对称图形。
3.判定
(1)定义:有一个角是直角的平行四边形是矩形。
(2)定理1:对角线相等的平行四边形是矩形。
(3)定理2:有三个角是直角的四边形是矩形。
4.直角三角形的斜边上的中线等于斜边的一半。
3.正方形的性质与判定
1.定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。
2.性质
(1)正方形的四个角都是直角,四条边相等。
(2)正方形的对角线相等且互相垂直平分,每条对角线平分一组对角。
(3)正方形是中心对称图形,对角线的交点时它的对称中心。
上淘师·易得优
(4)正方形是轴对称图形。
两条对角线所在直线以及过每一组对边中点的直线都是它的对称轴。
3.判定
(1)对角线相等的菱形是正方形。
(2)对角线垂直的矩形是正方形。
(3)有一个角是直角的菱形是正方形。
平行四边形知识点总结及分类练习题一、知识点总结平行四边形是几何学中一个重要的概念,其性质和判定方法对于理解几何学中的其他问题有着至关重要的作用。
以下是对平行四边形知识点的总结:1、定义:平行四边形是一个四边形,其中相对的两边平行且相等。
可以用符号“▭”表示。
2、性质:1)对边平行:平行四边形的对边平行且相等。
2)对角相等:平行四边形的对角相等,邻角互补。
3)平行四边形的面积等于其底乘高。
3.判定方法:1)两组对边分别平行的四边形是平行四边形。
2)两组对边分别相等的四边形是平行四边形。
3)一组对边平行且相等的四边形是平行四边形。
4)对角线互相平分的四边形是平行四边形。
5)邻角互补的四边形是平行四边形。
4.特殊平行四边形:矩形、菱形和正方形都是特殊的平行四边形,它们分别具有以下性质:1)矩形:对角线相等,四个角都是直角。
2)菱形:对角线垂直且平分,四边相等。
3)正方形:对角线垂直且相等,四个角都是直角。
二、分类练习题1、选择题:1)下列哪个条件可以判定一个四边形为平行四边形?A.一组对边相等,一组对角相等B.一组对边平行,另一组对边相等C.一组对角相等,另一组对边平行D.一组对角相等,一组邻角互补答案:(C)一组对角相等,另一组对边平行。
因为一组对角相等,另一组对边平行的四边形可以由一组对边平行,另一组对边相等的四边形经过平移得到,因此选项C正确。
其他选项都不满足平行四边形的定义或判定方法。
2)下列哪个条件可以判定一个四边形为矩形?A.三个内角都是直角B.对角线相等且互相平分C.对角线互相垂直且平分D.一组对边平行且相等,一组邻角互补答案:(B)对角线相等且互相平分的四边形是矩形。
因为矩形的定义是对角线相等的平行四边形,而对角线相等且互相平分的四边形是平行四边形,因此选项B正确。
其他选项分别是矩形的定义或判定方法的一部分,但不足以单独判定一个四边形为矩形。
特殊平行四边形知识点总结及题型一、平行四边形的性质:1、平行四边形的对边平行且相等;2、平行四边形的对角相等;3、平行四边形的对角线互相平分。
新天宇教育授课讲义授课科目初三上册授课时间(2016.9.11)授课内容特殊的平行四边形1基础知识1.基础知识点(概念、公式)1.菱形菱形定义:有一组邻边相等的平行四边形叫做菱形.(1)是平行四边形;(2)一组邻边相等.菱形的性质性质1菱形的四条边都相等;性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;菱形的判定菱形判定方法1:对角线互相垂直的平行四边形是菱形.菱形判定方法2:四边都相等的四边形是菱形.2.矩形矩形定义: 有一个角是直角的平行四边形叫做矩形(通常也叫长方形或正方形).矩形是中心对称图形,对称中心是对角线的交点,矩形也是轴对称图形,对称轴是通过对边中点的直线,有两条对称轴;矩形的性质:(具有平行四边形的一切特征)矩形性质1: 矩形的四个角都是直角.矩形性质2: 矩形的对角线相等且互相平分.矩形的判定方法.矩形判定方法1:对角钱相等的平行四边形是矩形.矩形判定方法2:有三个角是直角的四边形是矩形.矩形判定方法3:有一个角是直角的平行四边形是矩形.矩形判定方法4:对角线相等且互相平分的四边形是矩形.2.正方形正方形是在平行四边形的前提下定义的,它包含两层意思:①有一组邻边相等的平行四边形(菱形②有一个角是直角的平行四边形(矩形)正方形不仅是特殊的平行四边形,并且是特殊的矩形,又是特殊的菱形.正方形定义:有一组邻边相等.......的平行四边形.....叫做正方形.正方形是中心对称......并且有一个角是直角图形,对称中心是对角线的交点,正方形又是轴对称图形,对称轴是对边中点的连线和对角线所在直线,共有四条对称轴;因为正方形是平行四边形、矩形,又是菱形,所以它的性质是它们性质的综合,正方形的性质总结如下:边:对边平行,四边相等;角:四个角都是直角;对角线:对角线相等,互相垂直平分,每条对角线平分一组对角.注意:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,这是正方形的特殊性质.正方形具有矩形的性质,同时又具有菱形的性质.正方形的判定方法:(1)有一个角是直角的菱形是正方形;(2)有一组邻边相等的矩形是正方形.注意:1、正方形概念的三个要点:(1)是平行四边形;(2)有一个角是直角;(3)有一组邻边相等.2、要确定一个四边形是正方形,应先确定它是菱形或是矩形,然后再加上相应的条件,确定是正方形.2.本节课的重点、难点(1)对平行四边形和特殊的几种图形的性质要注意理解(2)对证明特殊平行四边形的方法进行掌握3.学生容易混淆的知识点(1)各种四边形对角线的特点。
特殊四边形知识点总结一.正确理解定义(1)定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.(2)表示方法:用“□”表示平行四边形,例如:平行四边形ABCD 记作“□ABCD ”,读作“平行四边形ABCD ”. 2.熟练掌握性质:平行四边形的有关性质和判定都是从 边、角、对角线 三个方面的特征进行简述的. (1)角:对角相等,邻角互补; (2)边:对边分别平行且相等; (3)对角线:对角线互相平分;(4)面积:①S ==⨯底高ah ;②平行四边形的对角线将四边形分成4个面积相等的三角形.(5)平行四边形不是轴对称图形。
3.平行四边形的判别方法①定义判定:两组对边分别平行的四边形是平行四边形。
②方法2:两组对角分别相等的四边形是平行四边形。
③方法3:两组对边分别相等的四边形是平行四边形。
④方法4:对角线互相平分的四边形是平行四边形。
⑤方法5:一组平行且相等的四边形是平行四边形。
二、几种特殊平行四边形的有关概念(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:① 平行四边形; ② 一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:① 平行四边形;② 一组邻边相等,两者缺一不可.(3)正方形:有一组邻边相等且有一个直角的平行四边形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.三、几种特殊四边形的有关性质(1)矩形: ①边:对边平行且相等;②角:四个角都是直角; ③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条). ⑤面积S =长×宽;A BD OC AD B CO【注意:矩形具有平行四边形的一切性质】(2)菱形:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角; ④对称性:轴对称图形(对角线所在直线,2条). ⑤面积S =底×高=对角线乘积的一半;【注意:菱形具有平行四边形的一切性质】(3)正方形:①边:四条边都相等;②角:四角相是直角;③对角线:对角线互相垂直平分且相等,对角线与边的夹角为450; ④对称性:轴对称图形(4条).⑤面积S =边长×边长=对角线乘积的一半;【注意:正方形具有平行四边形、矩形、菱形的一切性质】四、几种特殊四边形的判定方法(1)矩形的判定: ①有一个角是直角的平行四边形;②对角线相等的平行四边形; ③有三个角是直角的四边形。
平行四边形的性质与运算知识点总结平行四边形是几何形状中的一种特殊形式,具有一些独特的性质和运算特点。
本文将对平行四边形的性质和相关的运算知识点进行总结。
一、平行四边形的定义和性质1. 定义:平行四边形是具有两对对边分别平行的四边形。
2. 性质:a) 对边平行性质:平行四边形的对边是平行的,即如果一对对边平行,则另一对对边也必定平行。
b) 对角线性质:平行四边形的对角线相交于一点,且对角线互相平分。
c) 对边长度性质:平行四边形的对边长度相等。
d) 内角和性质:平行四边形的内角和为180度。
e) 对顶角性质:平行四边形的对顶角相等,即相邻的内角互补。
二、平行四边形的运算知识点1. 周长计算:平行四边形的周长等于各边长度的和。
如果已知平行四边形的一边长度和对角线长度,可以通过相应的运算公式计算周长。
2. 面积计算:平行四边形的面积可以通过底边长度和高的乘积来计算。
即面积 = 底边长度 ×高,其中高是垂直于底边且与底边的长度相等。
3. 直角条件:当平行四边形的对边相等时,可以推断出该平行四边形是矩形,即具有四个直角。
4. 平方差公式:平行四边形的平方差公式表示了平行四边形各边长度平方的差等于对角线长度平方的差。
如若平行四边形的一对对边平行,其对角线长度分别为d1和d2,对边长度分别为a和b,则有 a^2 -b^2 = d1^2 - d2^2。
5. 平行四边形的判定:判定一个四边形是否是平行四边形的一种方法是通过判定其对边是否平行。
若对边平行,则可以得出该四边形为平行四边形。
综上所述,平行四边形具有对边平行、对角线互相平分、对边长度相等、内角和为180度、对顶角相等等性质。
在运算方面,可以通过周长计算、面积计算、直角条件、平方差公式等方式进行运算和判定。
平行四边形是几何学中常见的形状,对于解决几何问题具有重要的意义。
此外,学习平行四边形的性质和运算,还可以扩展到其他几何形状的学习中,提高几何推理和问题解决的能力。
平行四边形知识点总结平行四边形是一种特殊的四边形,具有许多独特的性质和规律。
本文将对平行四边形的定义、性质以及相关定理进行总结和论述,以加深对平行四边形的理解。
一、定义平行四边形是指具有两组平行的对边的四边形。
它的特点是四条边两两平行。
二、性质1. 对角线性质:平行四边形的对角线互相平分,即对角线交点处是对角线的中点。
2. 边性质:平行四边形的相对边长相等,即对边对应边长相等。
3. 角性质:平行四边形的对角线所夹的两个内角互补,即它们的和为180度。
4. 对边关系:平行四边形的对边互为补角,即相邻内角的和为180度。
5. 直角性质:如果平行四边形的一个角为直角,则它的所有角均为直角。
三、常见定理1. 平行四边形的对边平行定理:平行四边形的对边互相平行。
2. 平行四边形的对边等长定理:平行四边形对边的长度相等。
3. 平行四边形的对角线互相平分定理:平行四边形的对角线互相平分,交点是对角线的中点。
4. 平行四边形的内角和定理:平行四边形的相邻内角和为180度。
5. 平行四边形的补角关系定理:平行四边形的对边互为补角。
四、推论1. 平行四边形的一组对边平行,则另一组对边也平行。
2. 平行四边形的一组对边等长,则另一组对边也等长。
3. 平行四边形的一组对边互相垂直,则另一组对边也互相垂直。
五、例题解析1. 已知ABCD是平行四边形,AC的中点为E,连接BE,证明BE 平分CD。
解析:由平行四边形的对角线互相平分定理可知,BE平分CD。
2. 在平行四边形ABCD中,已知AD=BC,AC的中点为E,连接BE,证明BE平行AD。
解析:由平行四边形的对边等长定理可知,AD=BC,而AC的中点为E,连接BE,则BE平行AD。
3. 平行四边形ABCD中,角A的补角为20度,求角C的度数。
解析:平行四边形的补角关系定理告诉我们,平行四边形的对边互为补角,所以角C的补角也为20度,角C的度数为180度减去20度,得160度。
WORD 格式
专业资料整理 特殊的平行四边形复习
矩形菱形正方形
有一角是直角有一组邻边相等的 有一.组.邻.边.相.等.并且有.一.个. 定义 的平行四边形 叫做矩形
平行四边形叫做菱 形 角.是.直.角.的平.行.四.边.形.叫做 正方形
边对边平行且相等对边平行,四边相等对边平行,四边相等
角四个角都是直角对角相等四个角都是直角
性
质
对 角
线 互相平分且相等 互相垂直平分,且每 条对角线平分一组对 角
互相垂直平分且相等,每条对角 线平分一组对角 ·有三个角是直角;
·是平行四边形·四边相等的四边形;
且有一个角是直·是平行四边形且有角;
一组邻边相等;·是矩形,且有一组邻边相等;
判定·是平行四边形·是平行四边形且两·是菱形,且有一个角是直角。
且两条对角线相条对角线互相垂直。
(矩形+菱形)
等.
·对角线互相垂直平
·对角线相等且分的是四边形
互相平分的四边
形是矩形
对称性既是轴对称图形,又是中心对称图形
(条数)224
面积长*宽 对角线乘积的一半/底
乘高
由矩形的性质,·菱形对角线的平方和
可以得到直角三
等于边长平方的4倍
补充 角形的一个重要 性质,直角三角
形斜边上的中线
·在有一个角是60°角 的菱形中,较短的对角 线等于边长,较长的对 正方形具有平行四边形、菱形、 矩形的一切性质与特性 等于斜边的一角线是较短的对角线的
半.
√3倍。