高性能智能微电网系统集成关键技术及计测控装备研发与-东南大学
- 格式:doc
- 大小:67.50 KB
- 文档页数:7
2017年国家重点研发计划“高效能云计算数据中心关键技术
与装备”项目启动会召开
佚名
【期刊名称】《电力信息与通信技术》
【年(卷),期】2018(016)001
【摘要】2018年1月12日,由中国电科院牵头的国家2017年重点研发计划项
目“高效能云计算数据中心关键技术与装备”启动会在京召开j国网信通部主任王继业、副主任魏晓菁及国网科技部修建、信通部、项目参与单位相关人员参加会议,中国电科院副总经理(副院长)王继业主持会议.
【总页数】1页(PI0004-I0004)
【正文语种】中文
【中图分类】TP393.4
【相关文献】
1.国家重点研发计划"城市智能系统可信任机理与关键技术"项目启动会召开 [J],
2.国家重点研发计划《新能源汽车运行安全性能检验技术与装备研究》项目启动会顺利召开 [J],
3.“十三五”国家重点研发计划“矿山安全生产物联网关键技术与装备研发”项目启动暨实施方案论证会在京召开 [J],
4.国家重点研发计划“典型重大生产安全事故人员安全保护技术与装备研发”项目启动暨实施方案论证会在北京召开 [J],
5.国家重点研发计划“航空医学应急救援关键技术装备研发及应用示范”项目启动暨实施方案论证会顺利召开 [J], 施凯文(摄影/报道)
因版权原因,仅展示原文概要,查看原文内容请购买。
封面人物Cover Characters教授,32岁晋升为教授并评为博士生导师。
从刚毕业的博士迅速成长为独当一面的博士生导师,在宋爱国看来虽有自己的付出,但更有恩师的指引。
受少年百科丛书《飞向星星》的影响,宋爱国从小就对太空、宇宙充满着探索的好奇心。
高考时被招生老师“志在蓝天”的宣讲所感染,宋爱国将“南京航空学院”填在了志愿表上,之后在那里完成了本科、硕士学业。
为了领略不同学校的学术氛围,他到东南大学仪器科学与工程系攻读了博士研究生,师从黄惟一教授从事机器人技术研究。
宋爱国至今难以忘怀黄老师上第一节课的情形,“机器人传感技术”开课的第一天,黄老师向弟子们讲述了实验室从事机器人研究的历史,回忆起了一段悲痛的往事。
他说:“我们实验室的机器人研究事业,是实验室的创始人查礼冠老师用生命换来的!不将东南大学的机器人技术研究发展好,就对不起查老师!”那段话,一直激励着宋爱国。
宋爱国查礼冠教授是我国机器人事业的开拓者,她1958年就率领师生研制了我国第一台仿人机器人。
“文革”结束后的1978年,她敏锐地感觉到,机器人的时代将会到来,她征求了黄惟一等人的意见后,决定以机器人传感技术作为重点,组建实验室及团队,开展机器人的感知、控制和人工智能研究。
黄惟一老师作为查老师的主要助手,开始从陀螺仪与惯性导航技术的研究转为从事机器人技术的研究。
1983年,全国第一次机器人大会在华南理工大学召开,查老师作为大会的3个主要发起人之一带领黄老师及两位研究生一起去参加会议。
会议刚结束,两人走在华南理工大学校园里,一辆失控的汽车从斜坡上直冲而下,撞倒两位教师。
查老师当场身亡,黄老师重伤昏迷。
一年后,康复的黄惟一老师重新回到工作岗位,扛起了建设机器人传感与控制技术实验室的重任。
在他的带领下,团队重点开展机器人非视觉传感器的研究。
从1986年开始实验室得到国家原“863”高技术计划项目(以下简称“863”计划)的持续支持,并成为“863”计划先进制造领域机器人传感技术网点实验室的副组长单位。
第45卷第2期2021年4月南京理工大学学报JournalofNanjingUniversityofScienceandTechnologyVol.45No.2Apr.2021㊀收稿日期:2020-07-07㊀㊀修回日期:2020-09-24㊀基金项目:江苏省自然科学基金(BK20161499)㊀作者简介:张善路(1990-)ꎬ男ꎬ博士生ꎬ主要研究方向:电力系统ꎬ电力电子功率变换器ꎬE ̄mail:zhangshanlu312@126.comꎻ通讯作者:李磊(1975-)ꎬ男ꎬ教授ꎬ博士生导师ꎬ主要研究方向:电力系统分析㊁电力电子应用㊁先进储能及电源技术智能电网ꎬE ̄mail:lileinjust@njust.edu.cnꎮ㊀引文格式:张善路ꎬ李磊ꎬ陈鹏威ꎬ等.多智能体系统在微电网中的应用[J].南京理工大学学报ꎬ2021ꎬ45(2):127-141.㊀投稿网址:http://zrxuebao.njust.edu.cn多智能体系统在微电网中的应用张善路ꎬ李㊀磊ꎬ陈鹏威ꎬ刘佳乐(南京理工大学自动化学院ꎬ江苏南京210094)摘㊀要:分布式电源的复杂和多样性增加了微电网能量管理和控制的难度ꎬ因此基于多智能体系统(Multi ̄agentsystemꎬMAS)的分布式分层协同控制策略被提出ꎬ其具有平衡功率和能量㊁稳定电压和频率㊁实现资源优化管理和经济协调运行的优点ꎮ该文主要对MAS在微电网中的应用情况进行全面系统的分析㊁对比㊁归纳总结ꎮ对比分析了微电网分层控制策略ꎬ研究表明基于MAS的分布式分层控制可以提高系统灵活性㊁可靠性ꎮ研究了不同的MAS建模方法的优缺点ꎬ为优化控制策略的选择提供依据ꎮ对通信时延㊁一致性协议㊁即插即用拓扑等方面进行阐述ꎬ综合分析了不同通信补偿方法ꎮ归纳出下一步基于MAS的分布式分层协同控制与优化的研究方向ꎮ关键词:智能体系统ꎻ微电网ꎻ分层协同控制ꎻ通信延迟ꎻ一致性中图分类号:TM732㊀㊀文章编号:1005-9830(2021)02-0127-15DOI:10.14177/j.cnki.32-1397n.2021.45.02.001Applicationofmulti ̄agentsysteminmicrogridZhangShanluꎬLiLeiꎬChenPengweiꎬLiuJiale(SchoolofAutomationꎬNanjingUniversityofScienceandTechnologyꎬNanjing210094ꎬChina)Abstract:Thecomplexityandvarietyofdistributedgenerationincreasethedifficultyofenergymanagementandcontrolofmicrogridꎬanddistributedhierarchicalcoordinatedcontrolstrategiesareproposedbasedonthemulti ̄agentsystem(MAS)ꎬwhichshowstheadvantagesofbalancingthepowerandenergyꎬstabilizingvoltageandfrequencyꎬandachievingeconomicandcoordinatedoperationinmicrogrid.ThispapermakesacomprehensiveandsystematicanalysisꎬcomparisonandsummaryoftheapplicationoftheMASinmicrogrid.Firstlyꎬthehierarchicalcontrolstrategiesofmicrogridarecomparedandanalyzed.Theresearchshowsthatdistributedhierarchicalcontrolbased南京理工大学学报第45卷第2期onMAScanimprovetheflexibilityandreliabilityofthesystem.SecondlyꎬthemeritsanddrawbacksofdifferentMASmodelingmethodsarestudiedtoprovideabasisfortheselectionofoptimalcontrolstrategy.Withrespecttothecommunicationdelayꎬconsensusprotocolꎬplugandplaytopologiesareelaboratedꎬandthedifferentcommunicationdelaycompensationsstrategiesmethodsarecomprehen ̄sivelyanalyzed.FinallyꎬthefuturetrendsintermsofdistributedhierarchicalcoordinationcontrolstrategiesandoptimizationschemesbasedontheMASaresummarizedandproposed.Keywords:multi ̄agentsystemꎻmicrogridꎻhierarchicalcoordinationcontrolꎻcommunicationdelayꎻconsensus㊀㊀随着对可再生能源需求的增加ꎬ以清洁能源为主的光伏㊁风力发电等可再生能源的分布式电源已经在微电网中广泛应用ꎮ这种分布式发电比集中式发电具有更大的灵活性ꎬ在未来的智能电网中必将代替传统的发电模式ꎮ为了实现大电网和分布式电源之间功率平衡和能量管理问题ꎬ充分发挥分布式电源灵活㊁高效㊁易扩展的优点ꎬ微电网的概念被提出[1]ꎮ基本的微电网结构如图1所示ꎬ由分布式电源㊁传统发电机㊁能量转换装置㊁能量存储系统㊁负荷等组成ꎮ主要通过微电网集中控制中心或者能量管理系统进行控制ꎮ它比单个分布式电源单元具有更高的灵活性ꎬ能够实现自我控制㊁保护和管理ꎮ微电网的应用已经从根本上改变了传统负荷供电的方式ꎬ实现了分布式电源即插即用的目的ꎬ提高了电能质量ꎮ同时ꎬ有效地解决偏远地区供电问题以及避免由于大面积停电事故所造成的损失ꎬ极大地改善了电网的安全性㊁灵活性和可靠性[2]ꎮ通常微电网有3种工作模式:并网模式㊁孤岛模式以及两种模式之间的切换模式ꎮ微电网是通过公共连接点(PointcommonconnectꎬPCC)与大电网连接实现功率双向流动和模式转换的ꎮ在并网模式下ꎬ微电网不仅可以通过能量装换装置把电能回馈到大电网ꎬ同时当微电网自身发电不足时大电网也可以将电能传输到微电网ꎮ在孤岛模式下ꎬ微电网作为独立供电电源能够平衡本地负载的有功和无功功率ꎬ以确保系统的稳定运行ꎮ图1㊀微电网结构示意图821总第237期张善路㊀李㊀磊㊀陈鹏威㊀刘佳乐㊀多智能体系统在微电网中的应用㊀㊀㊀㊀微电网的发展已经越来越成熟ꎬ但是目前仍然面临一些挑战ꎬ比如缺乏大规模可再生能源的并网能力ꎬ特别是在配电网条件较弱的情况下ꎬ并网能力更差ꎮ同时ꎬ电动汽车和储能技术的发展对智能微电网技术也提出了迫切的需求ꎮ而且要求多个微电网可以并联组成微电网群㊁提高系统稳定性以及电能质量㊁加强能量管理机制ꎬ优化和改进控制性能等问题已经受到越来越多的关注[3ꎬ4]ꎮ此外ꎬ微电网群也越来越受到研究者的关注ꎬ它是由多个基本微电网单元组成ꎮ微电网群出现的目的是在传统的分布式网络基础上增加微电网的渗透率ꎬ实现可再生能源的高效和稳定运行以及与大电网的友好交互[5ꎬ6]ꎮ作为一种高效处理可再生能源间歇性和随机性的方法ꎬ微电网群已经在多篇文献中被讨论ꎮ此外ꎬ微电网群还可用于处理分布式协调问题ꎬ同时保证系统的稳定运行ꎮ目前对于微电网的协同控制策略主要有3种类型:集中式控制㊁分布式控制以及分层控制ꎮ在集中式控制策略中ꎬ会设置一个主控制器ꎬ其能够对整个电网的数据信息进行处理ꎬ并将最终的决策指令发送到执行单元ꎬ从而实现预设的控制目标[7]ꎮ同时在主-从控制器之间需要设置一种通信转换语言来实现上述的信息传输ꎮ这种控制在技术难度和风险方面相对较低ꎬ但是一旦主控制器或者通信发生故障ꎬ整个微电网将不能正常工作ꎬ系统的可靠性将会受到严重损坏ꎮ为了避免上述问题的出现ꎬ提出了分布式控制ꎬ它是每个模块都有自己独立的控制器ꎬ其根据本地信息就能实现自我管理和控制[8]ꎬ避免了由于通信线路故障引起的可靠性问题ꎬ具有很好的扩展性ꎮ但是模块之间工作的独立性使得信息交流缺乏ꎬ难以实现系统整体控制和优化ꎮ结合前两者的优点ꎬ提出了分层控制ꎬ它将多智能体技术应用到微电网控制中ꎮ其利用多智能体的自治性㊁交互性㊁协调性的特点既能实现本地单元的独立运行ꎬ又能实现上层的优化控制和能量管理以及经济调度等[9ꎬ10]ꎮ分布式多智能体控制方法已被广泛应用于通过建立系统模型来加强电网可靠性和能量管理以及优化和改进系统性能等方面ꎮ本文对多智能体系统(Multi ̄agentsystemꎬMAS)模型进行了综述ꎬ包括图拓扑模型㊁遗传算法㊁非合作博弈模型和粒子群优化算法等ꎮ此外ꎬ在复杂的系统中一致性协议是多智能体之间相互交互的最基本的运行机制ꎬ它描述的是智能体之间信息交互的过程以及收敛最优ꎮ在多智能体系统中一致性协议是实现整个协调控制最重要的方向之一ꎮ在本文中ꎬ对基于多智能体的一致性协同控制方法进行了系统的综述ꎮ同时ꎬMAS的运行依赖于通信链路ꎬ不可避免会引起通信延迟稳定性问题ꎮ通信延迟主要分为固定通信延迟和随机通信延迟ꎬ本文分别对其各种补偿方案进行了比较ꎮ对基于MAS的微电网的研究ꎬ国外已经取得了很大的进展ꎮ国内在该领域的研究尚不成熟ꎬ缺少该领域的综述性文章ꎮ本文将结合国内外研究现状ꎬ对微电网基于MAS的分布式协调控制和优化进行了详细阐述分析ꎬ如建模方法㊁一致性控制㊁通信延迟㊁即插即用切换拓扑㊁能量协调㊁经济调度等问题ꎮ最后ꎬ给出了下一步研究方向ꎬ为该领域的研究学者提供参考ꎮ1㊀微电网中的分层控制微电网拓扑结构多变㊁控制结构复杂㊁控制目标多样ꎬ因此专家学者提出了微电网分层控制理论ꎬ它是以实现每一层的分布式控制为目的ꎬ最终实现微电网有功和无功功率㊁频率㊁电压的控制ꎬ以及各个分布式电源之间的能量协调㊁经济调度等ꎮ同时ꎬ无论是在并网模式还是孤岛模式下微电网的运行必须满足功率平衡的要求来保证系统电压和频率的稳定ꎮ微电网是一个复杂的多目标控制系统ꎬ它显示了多重时间尺度属性ꎬ如何在不同时间尺度下处理负载功率分配问题以及调节电压㊁频率和电能质量的稳定性是首先需要解决的关键问题[11-15]ꎮ为了恰当地应对这些问题ꎬ分层控制作为一种常见㊁有效的用于解决分布式电源的并网方法已得到广泛认可ꎮ1.1㊀传统的分层控制策略传统的分层控制主要是集中式控制ꎬ控制方式不够灵活ꎬ存在单点故障点ꎬ过度依赖通信网络ꎮ整体控制框图如图2所示ꎬ主要包括:初级控制㊁二级控制和三级控制ꎮ对于初级控制采用的是下垂控制ꎬ为了调节功率㊁电压㊁电流ꎬ避免电压和频率的不稳定以及解决多个微电网能量分配问题[16-18]ꎮ下垂控制方程如下㊀ω=ω∗-m (P-P∗)(1)㊀E=E∗-n (Q-Q∗)(2)921南京理工大学学报第45卷第2期式中:ω㊁E分别为输出电压参考值的频率和幅值ꎬω∗㊁E∗为额定参考角频率和电压ꎮP㊁Q是有功功率和无功功率ꎬP∗㊁Q∗是额定有功功率和无功功率参考值ꎮm㊁n为下垂控制系数ꎮ初级控制主要用于平衡分布式电源和储能装置之间的能量ꎮ图2㊀微电网分层控制结构示意图㊀㊀二级控制主要为消差环节ꎬ目的在于消除由初级控制层产生的频率和电压的偏差ꎬ将频率和电压维持在额定值附近[19-21]㊀Δω=1nðni=1Δωi=1nðni=1mi(Pi-P∗i)(3)Δω为角频率补偿量平均值ꎻΔωi为各台逆变器的角频率补偿量ꎮ进一步化简得到㊀Δω=mip∗i(1nðni=1Pi(pꎬu)-1)=㊀㊀K1(1nðni=1Pi(pꎬu)-1)(4)式中:Pi(pꎬu)=Pi/P∗iꎬ为各台逆变器的实际有功功率的标幺值ꎮ在微电网的二级控制中ꎬ集中控制和分散控制是最常用的方法[22-24]ꎮ对于集中式控制来说ꎬ最大的问题是过度的依赖微电网中心控制器ꎬ当微电网中心控制器处于故障状态时就会导致整个系统瘫痪ꎮ而且在这种集中式控制架构下是需要双向通信网络拓扑ꎬ增加了通信频道中数据信号处理的难度ꎮ同时由于通信延迟问题ꎬ测量和控制信号在传输过程中不可避免的存在延迟或者丢失的现象ꎮ在这种情况下ꎬ一方面会增加微电网的网络维护成本ꎬ另一方面也大大降低系统的稳定性[25-29]ꎮ为了解决上述问题ꎬ提出了分散式控制策略ꎮ分散式控制不依赖于微电网中心控制器和下垂控制机制ꎬ因此当某个分布式电源发生故障不会造成整个系统崩溃ꎮ同时ꎬ该控制策略还具有更好的通信容错的能力ꎬ也可以实现即插即用的性能ꎬ并且很容易扩展到更多的分布式电源单元ꎬ使得系统具有更好的可扩展性[30ꎬ31]ꎮ三级控制为调度层ꎬ控制各个分布式电源之间及微电网与外界的功率流动[32]ꎮ三级控制是微电网控制中最高水平控制ꎬ它可以根据系统状态㊁市场情况和需求预测来进行决策ꎬ优化微电网的容错能力和运行状态[33]ꎮ当微电网运行在并网模式下ꎬ通过调节电压频率和幅值可以控制能量在微电网内部的流向ꎮ㊀ω∗MG=kp(P∗G-PG)+kiʏ(P∗G-PG)dt(5)㊀E∗MG=kp(Q∗G-QG)+kiʏ(Q∗G-QG)dt(6)式中:kp㊁ki是三级控制补偿器的控制参数ꎬ根据P∗G和Q∗G额定有功功率和无功功率参考值ꎬ可以计算出实际的微电网出力情况[34]ꎮ1.2㊀基于MAS的分布式分层控制策略在传统的微电网分层控制中不能实现对电压㊁频率㊁功率的高智能性㊁强扩展性㊁高冗余和高可靠性的调节ꎮ作为一种智能控制方法ꎬ多智能体控制策略被逐渐应用到微电网中ꎮ多智能体控制的主要思想就是将复杂的大规模的系统分成若干个子系统ꎬ并且每个子系统之间都具有自治性和交互性的特点ꎮ文献[35]中ꎬ给出了Agent的031总第237期张善路㊀李㊀磊㊀陈鹏威㊀刘佳乐㊀多智能体系统在微电网中的应用㊀㊀定义ꎬ认为一个Agent是具备自治性㊁社会性㊁反应性和主动性的建立在计算机平台之上的软硬件系统ꎬ即一般智能体具有以下3个特征[36-38]ꎮ(1)反应性ꎮ每个智能体都能够对其环境中的变化及时的做出反应ꎬ并根据这些变化和它要实现的功能采取一些应对措施ꎮ(2)主动性ꎮ每个智能体不仅仅能感知和响应环境变化ꎬ而且还表现出目标导向的行为ꎮ目标导向行为是指为了实现目标ꎬ智能体会动态地改变自己的行为ꎮ例如ꎬ如果一个代理丢失了与另一个代理的通信ꎬ而它需要另一个代理的服务来实现其目标ꎬ那么它将搜索提供相同服务的另一个代理ꎮWooldridge教授把它定义为一种主动能力ꎮ(3)社会性ꎮ每个智能体都能够与其他智能体进行信息交互ꎮ社交能力不仅仅意味着在不同的软件和硬件实体之间简单地传递数据ꎬ它还具有以合作的方式谈判和互动的能力ꎮ这种能力通常由智能体通信语言(AgentcommunicationlanguageꎬACL)支持ꎬACL允许智能体进行交谈ꎬ并完成协调㊁协作和协商等交互ꎮ通过每个子系统的智能特性利用多智能控制策略能实现系统的合作运行ꎬ因此适用于微电网中分布式电源的控制[39]ꎮ在近几年的文献中ꎬMAS已经广泛地应用在微电网中ꎮ其中ꎬ文献[40]提出将MAS应用到孤岛微电网的能量管理中并取得良好效果ꎮ文献[41]提出的多智能体策略实现了微电网中混杂的储能装置间的能量分配问题ꎮ文献[42]提出MAS模式下的分散控制在不同的通信网络下通过建立不同控制规则实现控制目标ꎮ当外界环境和负荷都在变化的情况下ꎬ依然能够输出稳定的电压㊁频率和功率ꎮ文献[43]提出基于分布式多智能体的频率控制方法ꎬ每个智能体能够跟相邻的智能体进行通信ꎬ通过采用平均一致性控制策略ꎬ使得控制目标达到最优ꎬ而且所有的信息都能通过这种分布式控制方法被共享ꎮ同时ꎬ在文献[44]中建立了基于MAS的分散式协同控制策略ꎮ文献[45]中提出一种基于MAS的分布式自适应控制设计方法ꎬ能够解决下垂控制中存在的问题ꎬ消除电压和频率偏差ꎬ实现有功和无功功率的合理分配ꎮ随着多智能体理论的发展ꎬ将分布式电源看作智能体并将其应用于微电网控制和管理ꎬ能实现分布式电源的 即插即用 性能ꎬ使得控制更加灵活ꎮ但是ꎬ分布式电源单元之间复杂多样的组合方式给实时控制的实施带来了很大的困难ꎬ也显著增加了系统运行的复杂性ꎮ为了实现MAS的最优运行ꎬ需要建立一个合适的综合优化运行模型ꎬ该模型必须与微电网的架构和运行模式密切相关ꎬ以实现微电网分布式协调控制[46-48]ꎮ2㊀微电网中MAS的建模与一致性由于MAS中分布式控制系统的复杂性使得系统难以控制ꎮ为了设计最优配置和最优控制策略ꎬ需要建立相应的系统模型ꎬ包括微电网拓扑模型和数学模型ꎮ同时ꎬ在复杂的动态模型中一致性是一个很重要的问题ꎬ其表明随着时间的变化ꎬ所有的智能体的状态最终都能收敛到最优值[49ꎬ50]ꎮ2.1㊀基于MAS的分布式分层控制策略在基于MAS的拓扑建模中ꎬ图模型是一种被广泛接受的方法ꎮ在文献[51]中ꎬ提出一种将任意可能非整数平均k次的连通图转化为连通随机m-正则图的离散方案ꎮ通过所提出的局部操作优化图的连通性ꎬ在总体稀疏性变化最小的情况下提高了网络的鲁棒性ꎮ在文献[52]和[53]中提出一种基于图论的多智能体系统的分布式非周期模型预测控制方法ꎬ该模型可以对图中的节点数量约简ꎬ并生成一个降阶的加权对称有向图MAS模型ꎮ在文献[54]中ꎬ研究了一般线性多智能体系统的符号一致问题ꎬ针对几种图拓扑结构ꎬ提出了分布式控制律ꎮ在文献[55]中ꎬ设计了连接实际通信链路的分布式地面站的加权图模型ꎬ如图3所示ꎮAi表示第i个分布式电源DGiꎬ每个Ai可以看作是一个Agentꎬ节点之间的连线表示两个分布式电源之间存在交互作用ꎮ该设计不需要微电网拓扑㊁阻抗或负载的信息ꎬ结构简单ꎬ冗余度高ꎬ易于扩展ꎬ消除了对中央微电网控制器的依赖ꎮ因此ꎬ为了实现MAS的全局优化ꎬ需要在系统状态和远程控制输入之间进行大量的数据通信ꎬ这导致了底层通信网络的高成本[56]ꎮ为了实现经济上可行通信ꎬ在通信成本或稀疏性约束下ꎬ根据通信状态/控制输入对的数量ꎬ文献[57]提出了一个博弈论框架ꎮ随着这种约束的加强ꎬ系统将从密集通信过渡到稀疏通信ꎬ从而在动态系统性能和信息交换之间实现权衡ꎮ131南京理工大学学报第45卷第2期图3㊀多智能体的图模型结构除了上述方法外ꎬ还提出了遗传算法㊁粒子群优化算法(ParticleswarmoptimizationꎬPSO)等数学模型来应用于多目标控制系统ꎮ在文献[58]中ꎬ提出MAS与遗传算法相结合ꎬ形成一种求解全局数值优化问题的多智能体遗传算法ꎬ该算法具有可扩展性ꎬ还可以提高MAS的预测精度和收敛速度ꎮ针对网络可靠性问题ꎬ文献[59]提出一种基于蒙特卡罗仿真(MonteCarlosimulationꎬMCS)的粒子群优化算法ꎬ所提出的MCS ̄PSO可以在可靠性约束下使成本最小化ꎮ这也是首次尝试使用粒子群算法结合MCS来解决复杂的网络可靠性问题ꎬ而不需要事先了解可靠性函数ꎮ与以往的研究工作相比ꎬMCS ̄PSO算法能够更好地解决复杂网络的可靠性优化问题ꎬ具有更高的效率ꎮ在文献[60]和[61]中ꎬ提出了一种改进二进制的粒子群优化算法ꎮ利用实时数字模拟器对电力系统进行建模ꎬ利用JAVA开发出一种基于PSO的多代理负载频率控制(Loadfrequencycon ̄trolꎬLFC)算法与资源代理通信ꎬ提高了孤岛运行下频率和电压的稳定ꎮ因此ꎬ适当地建立管理系统模型是协调控制和分析系统稳定性的前提ꎮ利用这些方法ꎬ可以实现微电网间的友好交互ꎬ实现新能源的有效利用[62]ꎮ表1对前面所述的建模方法和优化算法的优缺点进行了总结ꎮ表1㊀基于MAS的建模方法在微电网中优缺点比较模型和算法优点缺点图论拓扑模型[51-55]模型结构简单冗余度高㊁易于扩展对鲁棒性影响很大博弈模型[57]每个智能体都能实现状态优化算法复杂且耗时遗传算法[58]预测精度高ꎬ收敛速度快可扩展性和并行运行大多数参数根据经验获得动态响应速度慢粒子群优化算法[59]模型结构简单ꎬ计算速度快经济调度高效不能处理离散优化问题改进二进制粒子群优化算法[60ꎬ61]全局搜索性能好能处理离散优化问题缺乏后期的局部搜索能力2.2㊀分布式MAS的一致性在多智能体系统中ꎬ信息交互是指单个智能体与其相邻智能体之间的相互通信作用ꎮ因此ꎬ在智能体系统中实现控制目标一致性是关键问题[63]ꎬ包括对网络变换拓扑的一致性㊁对延迟的一致性㊁对最优目标的一致性㊁对采样数据的一致性ꎬ自适应一致性ꎬ二阶一致性ꎬ多个智能体的一致性[64-69]ꎮ文献[70]提出了一种分布式k均值算法和一种分布式模糊c均值算法ꎮ利用多智能体一致性理论中的一致性算法来交换传感器的测量信息ꎮ通常ꎬ这些问题是由分布式协议处理的ꎬ其中文献[71-73]设计了一个状态观测器和一个干扰观测器ꎬ保证一致误差为零ꎬ完全抑制干扰ꎮ此外ꎬ状态观测器采用自适应耦合增益的全分布方式设计ꎬ其优点是一致性协议的设计不依赖于与通信网络相关联的拉普拉斯矩阵ꎮ文献[74]提出一种通信时延下的线性协商协议ꎬ解决了MAS中的参数不确定性和时延问题ꎮ在这种方法中使用的协商一致协议表达式如下㊀ui(k)=KðjɪNiaij(xj(k-(k))-xi(k-(k))(7)式中:ui(k)和xi(k)分别为协商一致协议和第i231总第237期张善路㊀李㊀磊㊀陈鹏威㊀刘佳乐㊀多智能体系统在微电网中的应用㊀㊀个智能体的状态ꎮK是具有合适维数的反馈增益矩阵常数ꎬ(k)代表了时变延迟ꎮ让δij(k)=xj(k)-xi(k)表示状态之间智能体j和i的误差ꎮ定义离散时间MAS的成本函数JC如下㊀JC=JCx+JCu(8)㊀JCx=ðɕk=0ðNi=1ðNj=1aijδTij(k)Qxδij(k)(9)㊀JCu=ðɕk=0ðNi=1uTi(k)Quui(k)(10)式中:JCx和JCu分别为离散时间MAS的一致调节性能和控制能耗ꎮQx和Qu是对称的正定矩阵ꎮ对于给定的反馈增益矩阵Kꎬ在任意给定的有界初始条件下ꎬ离散时间MAS都能达到鲁棒性的成本一致ꎮ文献[75-77]提出两种情况下的高阶的一致协议:(1)状态反馈控制ꎬ它假设每个代理都可以访问其自身的状态以及其相邻的相对位置ꎻ(2)输出反馈控制ꎬ其中每个代理只测量其自身的位置及其相邻的相对位置ꎮ通过两个实例分析ꎬ说明了所提方案的优越性和有效性ꎮ在文献[78]和[79]中ꎬ建立了一种基于MAS的分布式混合控制策略ꎬ以确保微电网运行模式转换过程中的稳定性ꎻ设计了一种基于分布式稀疏通信网络的二级优化控制器ꎬ可以实现微网内负荷波动时元件上电压㊁频率的快速恢复以及有功功率的精确分配ꎮ文献[80-82]提出一种基于状态观测器的分布式输出反馈控制方案ꎬ保证了MAS的一致性ꎮ此外ꎬ还设计了状态反馈控制来处理MAS中的一致性问题ꎮ文献[83]提出一种克服延迟和噪声干扰的新技术ꎬ采用了增益衰减满足持久性条件的一致性协议ꎮ在微电网系统中ꎬ基于分布式MAS的动态一致性协议得到了广泛的认可ꎮ可以保证微电网的电压和频率稳定ꎬ有效调节有功功率和无功功率ꎮ同时ꎬ在线路阻抗不平衡㊁负载不平衡和非线性等复杂情况下ꎬ也可以改善微电网的电能质量[84ꎬ85]ꎮ3㊀微电网中MAS的通信时延分析智能微电网的发展离不开通信网络的支持ꎮ而通信时延是微电网控制实际应用中的主要障碍ꎮ尤其基于多智能体系统的微电网涉及的通信要求精度更高㊁控制更复杂ꎮ因此ꎬ如何改善和优化通信时延问题ꎬ对于单个微电网系统及微电网群的协调控制稳定运行至关重要ꎮ虽然华为5G通信技术已经成熟并领先世界ꎬ但是在整个国家电力系统中还没有普及ꎮ因此ꎬ研究通信机制㊁优化通信时延补偿是目前和未来一个重要的研究方向[86-88]ꎮ3.1㊀MAS的通信机制通信时延是微电网系统的固有特性ꎬ在通信数据传输过程中普遍存在ꎮ微电网中通信时延的存在阻碍了不同智能体之间的信息传递ꎬ也会引起扰动和不稳定[89]ꎮ微电网系统可以采用多种协议来实现电力系统与智能电子设备之间的高效通信ꎮ图4展示了微电网系统中通信网络的结构示意图ꎮ其中ꎬ通信基站是移动通信网络中最关键的基础设施ꎮ主要功能就是提供无线覆盖ꎬ即实现有线通信网络与无线终端之间的无线信号传输ꎬ保证数据收发信息的稳定性ꎮ通过传感器来获取信息ꎬ并将命令信号发送给分布式电源㊁储能设备㊁负载和开关等ꎮ信息接口采用面向对象的建模技术ꎬ利用可扩展标记语言(ExtensiblemarkuplanguageꎬXML)构建相应的信息模型ꎬ其信息交互符合IEC61850标准规约ꎬ通信架构扩展灵活ꎬ具有良好的开放性㊁互操作性以及设备特性自描述能力ꎬ主要用于监控㊁记录服务器㊁定期记录系统数据ꎮ采集到的电压㊁频率㊁有功㊁无功控制信号等数据通过分布在各层的路由器传送到微电网主控制中心ꎬ然后经过处理和决策将执行指令发送到执行单元[90]ꎮ微电网系统中分布式电源的稳定运行主要依赖于通信链路的可靠性ꎮ为了进行有效的能量管理和经济调度ꎬ就需要下层为提上层供参数信息ꎬ并接收来自上层的控制指令ꎮ因此ꎬ这种通信延迟可能是恒定的ꎬ也可能是随机的ꎬ随着分层控制和基于一致性控制在微电网系统中的应用ꎬ由低带宽通信引起的延迟问题引起了人们的注意[91]ꎮ时延主要分为固定通信时延和随机通信时延ꎮ固定通信时延有3种ꎬ一是发送时延ꎬ二是传输时延ꎬ三是处理时延ꎮ其中ꎬ接收和处理时延ꎬ取决于目标设备的软硬件性能ꎻ传输时延ꎬ主要依赖于通信网络带宽和传输距离ꎮ而随机时延主要是等待时延ꎬ由MAS层协议㊁连接类型和网络负载决定ꎮ在固定时延和随机时延条件下ꎬ如何保持微电网系统的稳定性是一个重要的问题ꎬ这是应用分层控制和MAS技术解决实际工程问题的主要难点[92]ꎮ331。
新能源微电网项目的关键技术解决方案1.能源互联网能源互联网是新能源微电网项目的核心技术之一、它通过互联网技术、物联网技术和大数据技术,将分散的新能源发电系统、能源储存系统和用电负荷系统进行连接管理,实现能源的高效利用和优化配置。
能源互联网技术可以实现多个微电网之间的能源互联互通,提供灵活、可靠的能源供应和需求平衡。
2.能源储存技术新能源微电网项目需要解决新能源波动性和不可控性带来的能源供需平衡问题,这就需要采用能源储存技术实现能源的调峰填谷和调度控制。
目前常用的能源储存技术包括电池储能技术、储氢技术、压缩空气储能技术等。
这些技术可以将不稳定的新能源发电系统产生的能源储存起来,在用电高峰时供给,从而实现能源的平衡供给。
3.智能微电网控制与管理智能微电网控制与管理是新能源微电网项目中至关重要的一个环节。
通过智能化的微电网控制与管理系统,可以实现对能源的智能分配和调度控制,实时监测和响应能源需求,有效管理能源的使用和分配,提高能源系统的效率和可靠性。
智能微电网控制与管理技术包括分散智能控制技术、混合智能控制技术、智能优化调度技术等。
4.安全保障技术5.经济性优化技术新能源微电网项目需要考虑到经济性的问题,即如何在保证能源供应的前提下,降低能源成本和运营成本。
经济性优化技术包括能源成本优化技术、运营成本优化技术、经济调度技术等。
通过对能源的成本和运营进行优化调整,可以降低整个新能源微电网项目的运营成本,提高经济性。
总之,新能源微电网项目的关键技术解决方案包括能源互联网、能源储存技术、智能微电网控制与管理、安全保障技术和经济性优化技术等方面。
这些技术将有助于实现新能源微电网项目的高效运行、能源的平衡供给和优化配置,以及保障项目的安全和经济性。
东南大学集成电路与MEMS协同设计方面取得重要进展佚名
【期刊名称】《半导体信息》
【年(卷),期】2018(000)002
【摘要】日前,东南大学射频与光电集成电路研究所(射光所)王志功教授团队的王科平副研究员在集成电路与微机电系统(MEMS)协同设计方面取得重要进展。
成果以''''Design of a 1.8mW PLL-free 2.4GHz receiver utilizing temperaturecompensated FBAR resonator(基于温度补偿薄膜体声波谐振器的1.8毫瓦无锁相环2.4GHz接收机芯片)''''为题发表于集成电路领域顶级期刊IEEE Journal
【总页数】2页(P17-18)
【正文语种】中文
【中图分类】TN402
【相关文献】
1.我国在碳纳米材料表面电位设计方面取得进展 [J],
2.东南大学集成电路与MEMS协同设计方面取得重要进展 [J], 无;
3.上海硅酸盐所在钠离子电池材料设计方面取得进展 [J],
4.我国在基于人工维庋全光器件设计方面取得进展 [J], 科苑
5.北京大学在碳纳米管集成电路领域取得重要进展 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。