粉末冶金密度知识介绍
- 格式:pdf
- 大小:640.80 KB
- 文档页数:30
粉末冶金基础知识(一)粉末的化学成分及性能尺寸小于1mm的离散颗粒的集合体通常称为粉末,其计量单位一般是以微米(m)或纳米(nm)。
1.粉末的化学成分常用的金属粉末有铁、铜、铝等及其合金的粉末,要求其杂质和气体含量不超过1%~2%,否则会影响制品的质量。
2.粉末的物理性能⑴粒度及粒度分布粉料中能分开并独立存在的最小实体为单颗粒。
实际的粉末往往是团聚了的颗粒,即二次颗粒。
实际的粉末颗粒体中不同尺寸所占的百分比即为粒度分布。
⑵颗粒形状即粉末颗粒的外观几何形状。
常见的有球状、柱状、针状、板状和片状等,可以通过显微镜的观察确定。
⑶比表面积即单位质量粉末的总表面积,可通过实际测定。
比表面积大小影响着粉末的表面能、表面吸附及凝聚等表面特性。
3.粉末的工艺性能粉末的工艺性能包括流动性、填充特性、压缩性及成形性等。
⑴填充特性指在没有外界条件下,粉末自由堆积时的松紧程度。
常以松装密度或堆积密度表示。
粉末的填充特性与颗粒的大小、形状及表面性质有关。
⑵流动性指粉末的流动能力,常用50克粉末从标准漏斗流出所需的时间表示。
流动性受颗粒粘附作用的影响。
⑶压缩性表示粉末在压制过程中被压紧的能力,用规定的单位压力下所达到的压坯密度表示,在标准模具中,规定的润滑条件下测定。
影响粉末压缩性的因素有颗粒的塑性或显微硬度,塑性金属粉末比硬、脆材料的压缩性好;颗粒的形状和结构也影响粉末的压缩性。
⑷成形性指粉末压制后,压坯保持既定形状的能力,用粉末能够成形的最小单位压制压力表示,或用压坯的强度来衡量。
成形性受颗粒形状和结构的影响。
(二)粉末冶金的机理1.压制的机理压制就是在外力作用下,将模具或其它容器中的粉末紧密压实成预定形状和尺寸压坯的工艺过程。
钢模冷压成形过程如图7.1.2所示。
粉末装入阴模,通过上下模冲对其施压。
在压缩过程中,随着粉末的移动和变形,较大的空隙被填充,颗粒表面的氧化膜破碎,颗粒间接触面积增大,使原子间产生吸引力且颗粒间的机械楔合作用增强,从而形成具有一定密度和强度的压坯。
粉末冶金复习题填空:1.粉末冶金是用(金属粉末货金属粉末与非金属粉末的混合物)作为原料,经过(成形)和(烧结)制造金属材料、复合材料以及各种类型制品的工艺过程。
2.从制粉过程的实质来分,现有制粉方法可归纳为(物理化学法)和(机械法)。
机械法是将原材料机械地粉碎,而(化学成分)基本上不发生变化的工艺过程;物理化学法是借助(化学的)或(物理)的作用,改变原材料的(化学成分)或(聚集状态)而获得粉末的工艺过程。
3.通常把固态物质按分散程度不同分成(致密体)、(粉末体)和(胶体)三类;〔1〕,即大小在1mm以上的称为(致密体),0.1μm 以下的称为(胶体),而介于二者的称为(粉末体)。
4.粉末冶金工艺过程包括(制粉)工序,(成形)工序和(烧结)工序。
5.粉末冶金成形前的预处理包括(粉末退火)、(筛分)、(混合)、(制粒)、和(加润滑剂)等。
6.粉末特殊成形方法有(等静压成形)、(连续成形)、(无压成形)、(注射成形)、(高能成形)等。
7.粉末的等温烧结过程,按时间大致可以划分为三个界限(1)(粘结阶段)(2)(烧结颈长大阶段)(3)(闭孔隙球化和缩小阶段)。
8.通常按烧结过程有无明显的液相出现和烧结系统的组成进行分类分为(单元系烧结)、(多元系固相烧结)、(多元系液相烧结)。
9.常用的粉末冶金锻造方法有(粉末热锻)和(粉末冷锻);而粉末热锻又分为(粉末锻造)、(烧结锻造)和(锻造烧结)三种。
10.粉末冶金复合材料的强化手段包括(弥散强化)、(颗粒强化)和(纤维强化)。
11.粉末是颗粒与颗粒间的空隙所组成的分散体系,因此研究粉末体时,应分别研究属于(单颗粒)、(粉末体)及(粉末体的孔隙)等的性质。
12.粉末在压制过程中,粉末的变形包括(弹性变形)、(塑性变形)和(脆性变形)。
13.通常等静压按其特性分成(冷等静压)和(热等静压)。
14. 烧结过程有自动发生的趋势。
从热力学的观点看,粉末烧结是(系统自由能减小)的过程,即烧结体相对于粉末体在一定条件下处于(能量较低)状态。
1.粉末冶金:制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结制造金属材料、复合材料以及各种类型制品的工艺过程。
2.二次颗粒:单颗粒以某种方式聚集就构成二次颗粒3.松装密度:粉末在规定条件下自然充填容器时,单位体积内自由松装粉末体的质量g/cm3。
4.孔隙率:孔隙体积与粉末体的表观体积之比的百分数称为孔隙度(θ)。
5.中位径:将各种粒级粉末个数或百分数逐一相加累积并做图,可以得到累积分布曲线,分布曲线对应50%处称为中位径弹性后效:在压制过程中,粉末由于受力而发生弹性变形和塑性变形,压坯内存在着很大的内应力,当外力停止作用后,压坯便出现膨胀现象6.合批:将成分相同而粒度不同的粉末进行混合,称为合批7.烧结机构:研究烧结过程中各种可能的物质迁移方式及速率。
8.热压:热压又称为加压烧结,是把粉末装在模腔内,在加压的同时使粉末加热到正常烧结温度或更低一些的温度,经过较短时间烧结成致密而均匀的制品。
9.活化烧结:是指采用化学或物理的措施,使烧结温度降低、烧结过程加快,或使烧结体的密度和其它性能得到提高的方法。
10.单颗粒:粉末中能分开并独立存在的最小实体称为单颗粒。
11.振实密度:粉末装于振动容器,规定条件下,经振动敲打后测得的粉末密度。
12.粒度:以mm或μm的表示的颗粒的大小称颗粒直径,简称粒径或粒度。
13.混合:将两种或两种以上不同成分的粉末混合均匀。
分为机械法和化学法。
14.搭桥:粉末在松装堆集时,由于表面不规则,彼此之间有摩擦,颗粒相互搭架而形成拱桥孔洞的现象。
15.快速冷凝技术的特点:(1)急冷可大幅度地减小合金成分的偏析;(2)急冷可增加合金的固溶能力;(3)急冷可消除相偏聚和形成非平衡相;(4)某些有害相可能由于急冷而受到抑制甚至消除;(5)由于晶粒细化达微晶程度,在适当应变速度下可能出现超塑性等。
16.粉末颗粒的聚集形式:聚合体、团粒、絮凝体;区别:通过聚集方式得到的二次颗粒被称为聚合体或聚集颗粒;团粒是由单颗粒或二次颗粒靠范德华力粘接而成的,其结合强度不大,用研磨。
粉末冶金重点整理名词解释:1,熔解析出:溶解和析出阶段。
如果固相在液相中可以溶解,那么在液相出现后,特别是细小的粉末和粗大的颗粒的凸起及棱角局部会在液相中溶解消失。
由于细小的粉末颗粒在液相中的溶解度要比粗颗粒大,因此在细小颗粒溶解的同时,也会在粗颗粒外表上有析出的颗粒。
2,蒸发凝聚:外表层原子向空间蒸发,借蒸汽压差通过气相向颈部空间扩散,沉积在颈部。
3,密度等高线:密度一样的区域连在一起形成的类似等高线的线分布4,比外表:粉末比外表定义为1g 质量的粉末所具有的总外表积,用m2/g 表示;致密固体的比外表用m2/cm3 为单位,称容积比外表。
粉末比外表是粉末的平均粒度、颗粒形状和颗粒密度的函数。
5,二流雾化:借助高压水流或气流的冲击来破碎液流,称为水雾化或气雾化.也称二流雾化。
6,临界转速:当转速达一定的速度时,球体受离心力的作用,一直紧贴在圆筒壁上,以致不能跌落,物料就不能被粉碎。
这种情况下的转速称为临界转速。
7,松装密度:松装密度是粉末试样自然地充满规定的容器时,单位容积的粉末质量。
8,标准筛:标准筛,采用SUS304〔0Cr18ni9〕不锈钢拉伸抛光而成,壁厚0.6毫米,外表光可鉴人,整体成型巩固耐用,没有磁性,筛网与筛框通过锡焊固定,不会松弛。
9,粒度分布:由于组成粉末的无数颗粒一般粒径不同,故又用具有不同粒径的颗粒占全部粉末的百分含量表示粉末的粒度组成,又称粒度分布.10,二次颗粒:单颗粒如果以某种形式聚集11,真密度:粉末质量与除去开孔和闭孔体积的粉末体积的比值,是材料的理论密度12,相对密度: 压坯密度与真密度的比。
13, 压坯密度:压坯密度是压坯单位体积实际质量的平均值,用g/cm3表示。
14,团粒:由单颗粒或二次颗粒依靠范德华的作用下结合而成的粉末颗粒,易于分散.15,粉末压制性: 压制性是压缩性和成形性的总称。
压缩性就是金属粉末在规定的压制条件下被压紧的能力。
成形性是指粉末压制后,压坯保持既定形状的能力。
编号:SY-AQ-07207( 安全管理)单位:_____________________审批:_____________________日期:_____________________WORD文档/ A4打印/ 可编辑粉末冶金基础知识Basic knowledge of powder metallurgy粉末冶金基础知识导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。
在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。
(一)粉末的化学成分及性能尺寸小于1mm的离散颗粒的集合体通常称为粉末,其计量单位一般是以微米(μm)或纳米(nm)。
1.粉末的化学成分常用的金属粉末有铁、铜、铝等及其合金的粉末,要求其杂质和气体含量不超过1%~2%,否则会影响制品的质量。
2.粉末的物理性能⑴粒度及粒度分布粉料中能分开并独立存在的最小实体为单颗粒。
实际的粉末往往是团聚了的颗粒,即二次颗粒。
实际的粉末颗粒体中不同尺寸所占的百分比即为粒度分布。
⑵颗粒形状即粉末颗粒的外观几何形状。
常见的有球状、柱状、针状、板状和片状等,可以通过显微镜的观察确定。
⑶比表面积即单位质量粉末的总表面积,可通过实际测定。
比表面积大小影响着粉末的表面能、表面吸附及凝聚等表面特性。
3.粉末的工艺性能粉末的工艺性能包括流动性、填充特性、压缩性及成形性等。
⑴填充特性指在没有外界条件下,粉末自由堆积时的松紧程度。
常以松装密度或堆积密度表示。
粉末的填充特性与颗粒的大小、形状及表面性质有关。
⑵流动性指粉末的流动能力,常用50克粉末从标准漏斗流出所需的时间表示。
流动性受颗粒粘附作用的影响。
⑶压缩性表示粉末在压制过程中被压紧的能力,用规定的单位压力下所达到的压坯密度表示,在标准模具中,规定的润滑条件下测定。
影响粉末压缩性的因素有颗粒的塑性或显微硬度,塑性金属粉末比硬、脆材料的压缩性好;颗粒的形状和结构也影响粉末的压缩性。
1.粉末冶金定义:由粉末制备、粉末成形、高温烧结以及加工热处理等重要过程组成的材料制备和生产的工程技术。
2.工艺过程:粉末的制备、粉末的加工成形、粉末的烧结以及烧结后处理四个工序。
3.特点:能耗低、材料利用率高以及低成本等优点;与普通熔炼方法相比,有如下特点:1)粉末冶金能生产用普通熔炼无法生产的具有特殊性能的材料。
a.能控制制品的孔隙度b.能利用金属和金属、金属和非金属的组合效果,生产具有各种特殊性能的材料c.能生产各种复合材料2)粉末冶金生产的材料,与普通熔炼相比,性能优越。
a.高合金元素含量粉末冶金材料的性能比熔炼法生产的合金材料要好。
b.粉末冶金法还可用来生产难熔金属材料或制品。
c.在制造机械零件方面,粉末冶金法是一种少切削或无切削的新工艺,可以大大减少机加工量,节约金属材料,提高劳动生产率。
缺点:粉末冶金法成本高,制品的大小和形状受到一定的限制,烧结零件的韧性较差。
第二章.粉体制备的原理与技术1.粉体制备是粉末冶金的第一个重要步骤。
2.方法:1)在固态下制备粉末的方法:机械粉碎法和电化学腐蚀法、还原法、还原-化合法、高温反应合成法2)在液态下制备粉末的方法:雾化法、置换法、溶液氢还原法、水溶液电解法、熔盐电解法3)在气态下:蒸汽冷凝法、热离解法、气相氢还原法、化学气相沉积法3.机械粉碎是靠压碎、碰撞、击碎和磨削等作用,将粗颗粒金属或合金机械的粉碎成粉末的过程。
4.球磨的三种情况:1)球磨机转速慢时,球和物料沿筒体上升至坡度角,然后滚下,称为泻落。
此时物料粉碎主要靠球的磨擦作用2)球磨转速较高时,球在离心力作用下,随着筒体上升至比第一种情况更高的高度,然后在重力作用下掉下来,称为抛落。
这时物料不仅靠球与球之间的磨擦作用,主要靠球落下时的冲击作用被粉碎,其效果最好3)继续增加球磨机的转速,当离心力超过球体的重力时,紧靠球磨筒内衬板的球不脱离筒壁而与筒体一起回转,此时物料的粉碎作用停止。
这种转速称为临界转速。
粉末冶金基础知识集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-粉末冶金基础知识(一)粉末的化学成分及性能尺寸小于1mm的离散颗粒的集合体通常称为粉末,其计量单位一般是以微米(μm)或纳米(nm)。
1.粉末的化学成分常用的金属粉末有铁、铜、铝等及其合金的粉末,要求其杂质和气体含量不超过1%~2%,否则会影响制品的质量。
2.粉末的物理性能⑴粒度及粒度分布粉料中能分开并独立存在的最小实体为单颗粒。
实际的粉末往往是团聚了的颗粒,即二次颗粒。
实际的粉末颗粒体中不同尺寸所占的百分比即为粒度分布。
⑵颗粒形状即粉末颗粒的外观几何形状。
常见的有球状、柱状、针状、板状和片状等,可以通过显微镜的观察确定。
⑶比表面积即单位质量粉末的总表面积,可通过实际测定。
比表面积大小影响着粉末的表面能、表面吸附及凝聚等表面特性。
3.粉末的工艺性能粉末的工艺性能包括流动性、填充特性、压缩性及成形性等。
⑴填充特性指在没有外界条件下,粉末自由堆积时的松紧程度。
常以松装密度或堆积密度表示。
粉末的填充特性与颗粒的大小、形状及表面性质有关。
⑵流动性指粉末的流动能力,常用50克粉末从标准漏斗流出所需的时间表示。
流动性受颗粒粘附作用的影响。
⑶压缩性表示粉末在压制过程中被压紧的能力,用规定的单位压力下所达到的压坯密度表示,在标准模具中,规定的润滑条件下测定。
影响粉末压缩性的因素有颗粒的塑性或显微硬度,塑性金属粉末比硬、脆材料的压缩性好;颗粒的形状和结构也影响粉末的压缩性。
⑷成形性指粉末压制后,压坯保持既定形状的能力,用粉末能够成形的最小单位压制压力表示,或用压坯的强度来衡量。
成形性受颗粒形状和结构的影响。
(二)粉末冶金的机理1.压制的机理2.等静压制压力直接作用在粉末体或弹性模套上,使粉末体在同一时间内各个方向上均衡受压而获得密度分布均匀和强度较高的压坯的过程。
按其特性分为冷等静压制和热等静压制两大类。
装球量:球磨筒内磨球的数量。
球料比:磨球与磨料的质量比电流效率:一定电量电解出的产物的实际质量与通过同样电量理论上应电解出的产物质量之比,用公式表示为ηi=M/(qIt)×100%粒度分布:指不同粒径的的颗粒在粉末总质量中所占的百分数,可以用某种统计分布曲线或统计分布函数描述。
松装密度:粉末在规定条件下自然填充容器时,单位体积内粉末的质量,单位为g/cm3。
振实密度:在规定条件下,粉末受敲打或振动填充规定容器时单位体积的粉末质量。
单颗粒:晶粒或多晶粒聚集,粉末中能分开并独立存在的最小实体。
一次颗粒:最先形成的不可以独立存在的颗粒,它只有聚集成二次颗粒时才能独立存在。
二次颗粒:由两个以上的一次颗粒结合而又不易分离的能独立存在的聚集颗粒称为二次颗粒。
压缩性: 粉末被压紧的能力成形性: 粉末压制后,压坯保持既定形状的能力净压力:单元系烧结:纯金属、固定化学成分的化合物和均匀固溶体的粉末烧结体系,是一种简单形式的固相烧结。
多元系固相烧结:由两种以上组元(元素、化合物、合金、固溶体)在固相线以下烧结的过程。
气氛的碳势:某一含碳量的材料在某种气氛烧结时既不渗碳也不脱碳,以材料中碳含量表示气氛中的碳势。
活化烧结:系指能降低烧结活化能,是体系的烧结在较低的温度下以较快的速度进行,烧结体性能得以提高的烧结方法。
氢损值:金属粉末的试样在纯氢气中煅烧足够长时间,粉末中的氧被还原成了水蒸气,某些元素与氢气生成挥发性的化合物,与挥发性金属一同排除,测的试样粉末的相对质量损失,称为氢损。
液相烧结:烧结温度高于烧结体系低熔组分的熔点或共晶温度的多元系烧结过程,即烧结过程中出现液相的粉末烧结过程统称为液相烧结。
机械合金化是指金属或合金粉末在高能球磨机中通过粉末颗粒与磨球之间长时间激烈地冲击、碰撞,使粉末颗粒反复产生冷焊、断裂,导致粉末颗粒中原子扩散,从而获得合金化粉末的一种粉末制备技术。
热等静压:把粉末压坯或把装入特制容器内的粉末体在等静高压容器内同时施以高温和高压,使粉末体被压制和烧结成致密的零件或材料的过程冷等静压:室温下,利用高压流体静压力直接作用在弹性模套内的粉末体的压制方法1、粉末制备的方法有哪些,各自的特点是什么?1 物理化学法1还原法:碳还原法(铁粉)气体(氢和一氧化碳)还原法(W,Mo,Fe,Ni,Cu,Co及其合金粉末)金属热还原法(Ta,Nb,Ti,Zr,Th,U)→SHS自蔓延高温合成。
1粉末冶金的特点:粉末冶金在技术上和经济上具有一系列的特点。
从制取材料方面来看,粉末冶金方法能生产具有特殊性能的结构材料、功能材料和复合材料。
(1)粉末冶金方法能生产普通熔炼法无法生产的具有特殊性能的材料:1)能控制制品的孔隙度;2)能利用金属和金属、金属和非金属的组合效果,生产各种特殊性能的材料;3)能生产各种复合材料;(2)粉末冶金方法生产的某些材料,与普通熔炼法相比,性能优越:1)高合金粉末冶金材料的性能比熔铸法生产的好;2)生产难熔金属材料和制品,一般要依靠粉末冶金法;从制造机械零件方面来看,粉末冶金法制造的机械零件时一种少切削、无切削的新工艺,可以大量减少机加工量,节约金属材料,提高劳动生产率。
总之,粉末冶金法既是一种能生产具有特殊性能材料的技术,又是一种制造廉价优质机械零件的工艺。
2粉末冶金的工艺过程(1)生产粉末。
粉末的生产过程包括粉末的制取、粉料的混合等步骤。
为改善粉末的成型性和可塑性通常加入汽油、橡胶或石蜡等增塑剂。
(2)压制成型。
粉末在500~600MPa压力下,压成所需形状。
(3)烧结。
在保护气氛的高温炉或真空炉中进行。
烧结不同于金属熔化,烧结时至少有一种元素仍处于固态。
烧结过程中粉末颗粒间通过扩散、再结晶、熔焊、化合、溶解等一系列的物理化学过程,成为具有一定孔隙度的冶金产品。
(4)后处理。
一般情况下,烧结好的制件可直接使用。
但对于某些尺寸要求精度高并且有高的硬度、耐磨性的制件还要进行烧结后处理。
后处理包括精压、滚压、挤压、淬火、表面淬火、浸油、及熔渗等。
现代粉末冶金的主要工艺过程生产粉末制坯烧结3、粉末冶金发展中的三个重要标志:第一是克服了难熔金属(如钨、钼等)熔铸过程中产生的困难第二是本世纪30年代用粉末冶金方法制取多孔含油轴承取得成功第三是向更高级的新材料新工艺发展。
4、怎样理解“粉末冶金技术既古老又年轻”?粉末冶金是一项新兴技术,但也是一项古老技术。
根据考古学资料,远在纪元前3000年左右,埃及人就在一种风箱中用碳还原氧化铁得到海绵铁,经高温锻造制成致密块,再锤打成铁的器件。
粉末冶金密度测试标准
粉末冶金密度测试标准通常采用“振实密度”作为判断标准。
振实密度是指将一定量的粉末装在容器中,通过振动装置振动,直至粉末的体积不再减少,然后测量粉末的质量除以振实后的体积得到的密度。
具体标准如下:
1.范围:本文件规定了振实密度的测定方法,即粉末在规定条件下在容器中被振实后的密度。
2.原理:将一定量的粉末装在容器中,通过振动装置振动,直至粉末的体积不再减少。
粉末的质量除以振实后的体积得到振实密度。
3.仪器设备:天平应具有合适的量程以满足表2的要求,测量质量精度为0.1g。
玻璃量筒容积为100cm3,刻度高度约为175mm,刻度间距为1cm3,测量精度为±0.5cm3。
粉末冶金密度粉末冶金是一种利用非晶粉末物质的重建物料,它是一种新兴的高性能材料制备方法。
它的冶金过程包括合成粉末制备,结构建模,坯料制备,激光熔接等步骤。
它对机械性能和结构精度都有很好的控制效果,在航空航天以及先进制造等领域已得到广泛应用,非晶粉末材料成为重要的研究热点。
粉末冶金材料的本质特性之一是密度,因此,粉末冶金密度变化会影响其机械性能,机械强度和硬度也会随其变化而变化。
粉末冶金的密度的数值是由原料和中间体的密度确定的,但影响最终密度的主要因素有许多。
首先,粉末冶金材料的组分是一个重要因素,其次,中间体料粒形状和尺寸分布也影响最终密度。
此外,受冶炼工艺和参数控制的影响,粉末冶金密度也会受到影响。
粉末冶金的密度通常由密度计和密度分析仪来测定,密度测量的原理是根据比重和容重的关系测定。
在粉末冶金工艺中,有一系列方法可以调控密度,如坯料的类型,压缩比例,压缩温度,再热处理等。
压缩比例是粉末冶金中影响密度最主要的因素,压缩比例较低时,坯料中空隙比较多,因而密度较低;压缩比例较大时,压实度越大,密度越高。
压缩温度是粉末冶金中调控密度的另一个因素,温度越高,粉末中渗入溶剂越多,从而改变粉末的粒度,影响粉末冶金密度。
粉末冶金密度的变化不仅会影响机械性能,还会影响力学性能。
粉末冶金密度的变化可能会使材料导致收缩和拉伸变形。
粉末冶金密度的变化也会影响物理性质。
高密度的材料具有更高的热导率和熔点,并且更容易抗氧化和耐腐蚀。
从上述分析可以看出,粉末冶金密度的变化对产品的最终机械性能、力学性能和物理性能都会产生影响。
因此,控制粉末冶金密度变化对于粉末冶金产品的性能调整至关重要,特别是在质量要求比较高的产品中,粉末冶金密度的控制是非常必要的。
粉末冶金密度
1 粉末冶金密度
粉末冶金是指利用粉末金属材料经过压成的一种加工方法。
粉末
冶金的密度是指所使用的粉末材料的密度,也就是指每单位体积中物
质的质量。
在粉末冶金中,粉末密度可以划分为低密度和高密度两种。
2 低密度粉末
低密度粉末又称真空粉末,它的粉末比重一般为2.6~2.8g/cm3,
相对较轻。
低密度粉末到达合适的形状后,具有很高强度,可以用于
铸造、锻造或锻压加工。
因此,低密粉末在航空航天、船舶制造等行
业有着广泛的应用。
3 高密度粉末
高密度粉末的比重通常在4.5g/cm3以上,比重较重。
经过压成后,具有良好的韧性和优异耐磨性能,并可以以低温条件下熔化料理而成
加工品,可用于中小型各类刀具、夹紧元件、增硬元件等部件的制造。
粉末冶金技术是一项非常现代的加工技术,它可以根据客户的需求,选择不同粉末密度,从而制造出不同材料性能的物件。
只要粉末
冶金制造技术不断发展,就可以更好地满足客户的生产要求,极大地
改善我们的生活质量。
金属粉末的密度全文共四篇示例,供读者参考第一篇示例:金属粉末是一种细小颗粒的金属颗粒,通常用于制造金属制品和零部件。
金属粉末的密度是指单位体积中金属粉末的质量,它是衡量金属粉末重量和体积比例的重要参数。
金属粉末的密度会受到多种因素的影响,包括金属种类、粉末粒度、形状和生产工艺等。
金属的种类对金属粉末的密度有着直接的影响。
不同种类的金属具有不同的原子结构和晶格形态,因此其粉末的密度也会有所不同。
一般来说,金属密度较高的金属粉末,如钨、铱等,其密度也会比较大;而金属密度较低的金属粉末,如铝、镁等,其密度则会相对较小。
在选择金属粉末时,需要根据实际需求和应用场景来确定合适的金属种类。
金属粉末的粒度和形状也会对其密度产生影响。
一般来说,粒度较细的金属粉末会在单位体积内填充更多的颗粒,从而使得密度增大;反之,粒度较粗的金属粉末则会在单位体积内填充较少的颗粒,导致密度降低。
金属粉末的形状也会对其密度产生影响,比如球形颗粒和不规则颗粒的密度会有所不同。
在金属粉末生产和加工过程中,需要精确控制颗粒的粒度和形状,以保证金属粉末的密度符合要求。
金属粉末的生产工艺也是影响其密度的重要因素之一。
不同的生产工艺会对金属粉末的颗粒结构和组织产生影响,从而直接影响其密度。
气相沉积法、机械合金化法、热原位合成法等不同的生产工艺会得到具有不同密度的金属粉末。
在金属粉末生产过程中,需要选择合适的生产工艺,并通过优化工艺参数来控制金属粉末的密度。
金属粉末的密度是一个综合性的参数,受到多种因素的影响。
在选择金属粉末时,需要充分考虑金属种类、粒度和形状、生产工艺等因素,以确保金属粉末具有合适的密度。
通过精确控制这些影响因素,可以有效提高金属粉末的密度,从而提高金属制品和零部件的性能和质量。
【2000字】第二篇示例:金属粉末是一种重要的工业原料,广泛应用于金属制品、陶瓷、粉末冶金等领域。
金属粉末的密度是金属粉末的一个重要物理性质,对于金属粉末的加工、应用等具有重要的意义。