粉末冶金介绍
- 格式:doc
- 大小:262.50 KB
- 文档页数:10
粉末冶金基础知识(一)粉末的化学成分及性能尺寸小于1mm的离散颗粒的集合体通常称为粉末,其计量单位一般是以微米(m)或纳米(nm)。
1.粉末的化学成分常用的金属粉末有铁、铜、铝等及其合金的粉末,要求其杂质和气体含量不超过1%~2%,否则会影响制品的质量。
2.粉末的物理性能⑴粒度及粒度分布粉料中能分开并独立存在的最小实体为单颗粒。
实际的粉末往往是团聚了的颗粒,即二次颗粒。
实际的粉末颗粒体中不同尺寸所占的百分比即为粒度分布。
⑵颗粒形状即粉末颗粒的外观几何形状。
常见的有球状、柱状、针状、板状和片状等,可以通过显微镜的观察确定。
⑶比表面积即单位质量粉末的总表面积,可通过实际测定。
比表面积大小影响着粉末的表面能、表面吸附及凝聚等表面特性。
3.粉末的工艺性能粉末的工艺性能包括流动性、填充特性、压缩性及成形性等。
⑴填充特性指在没有外界条件下,粉末自由堆积时的松紧程度。
常以松装密度或堆积密度表示。
粉末的填充特性与颗粒的大小、形状及表面性质有关。
⑵流动性指粉末的流动能力,常用50克粉末从标准漏斗流出所需的时间表示。
流动性受颗粒粘附作用的影响。
⑶压缩性表示粉末在压制过程中被压紧的能力,用规定的单位压力下所达到的压坯密度表示,在标准模具中,规定的润滑条件下测定。
影响粉末压缩性的因素有颗粒的塑性或显微硬度,塑性金属粉末比硬、脆材料的压缩性好;颗粒的形状和结构也影响粉末的压缩性。
⑷成形性指粉末压制后,压坯保持既定形状的能力,用粉末能够成形的最小单位压制压力表示,或用压坯的强度来衡量。
成形性受颗粒形状和结构的影响。
(二)粉末冶金的机理1.压制的机理压制就是在外力作用下,将模具或其它容器中的粉末紧密压实成预定形状和尺寸压坯的工艺过程。
钢模冷压成形过程如图7.1.2所示。
粉末装入阴模,通过上下模冲对其施压。
在压缩过程中,随着粉末的移动和变形,较大的空隙被填充,颗粒表面的氧化膜破碎,颗粒间接触面积增大,使原子间产生吸引力且颗粒间的机械楔合作用增强,从而形成具有一定密度和强度的压坯。
粉末冶金的定义粉末冶金是一种通过将金属或非金属粉末进行冶炼和成形的加工方法。
粉末冶金技术广泛应用于制造业中,包括航空航天、汽车、电子、医疗器械等行业。
本文将从粉末冶金的定义、原理、工艺流程和应用领域等方面进行介绍。
粉末冶金是一种以金属或非金属粉末为原料,通过粉末的加工和烧结等工艺,制造出具有特定形状和性能的零部件的方法。
相比传统的加工方法,粉末冶金具有独特的优势。
首先,粉末冶金能够制造出复杂的形状,例如孔洞、槽口和凹凸等。
其次,粉末冶金能够制造出高精度的零件,满足不同行业对产品精度的要求。
此外,粉末冶金还能够制造出具有特殊性能的材料,例如高强度、耐磨、耐腐蚀等。
粉末冶金的基本原理是将金属或非金属原料粉末通过特定的工艺进行成型和烧结。
首先,将金属或非金属原料粉末进行混合,可以根据需要添加一定比例的添加剂。
然后,将混合后的粉末进行成型,常用的成型方法有压制、注射成型和挤压成型等。
成型后的粉末零件具有一定的强度和形状,但还不能满足使用要求,需要进行烧结。
烧结是将成型后的粉末零件在高温下进行热处理,使粉末颗粒之间发生结合,形成致密的材料。
粉末冶金的工艺流程主要包括原料制备、混合、成型、烧结和后处理等环节。
首先,需要对金属或非金属原料进行制备,通常采用机械研磨、球磨和化学还原等方法。
制备好的原料粉末需要进行混合,以保证成品的均匀性。
混合的方法有干法混合和湿法混合两种。
接下来,将混合后的粉末进行成型,可以根据需要选择不同的成型方法。
成型后的粉末零件需要进行烧结,烧结温度和时间根据原料和产品要求进行调控。
最后,对烧结后的产品进行后处理,包括热处理、表面处理和精加工等。
粉末冶金技术在众多领域中得到了广泛应用。
首先,在航空航天领域,粉末冶金技术可以制造出轻质高强度的零部件,提高航空器的性能。
其次,在汽车工业中,粉末冶金技术可以制造出高强度、耐磨的发动机零部件,提高汽车的可靠性和经济性。
此外,粉末冶金技术还可以应用于电子行业,制造出高导电性和磁导率的材料,用于电子元器件的制造。
粉末冶金原理粉末冶金是一种特殊的金属加工方法,它利用金属和非金属粉末的物理特性和化学特性,通过粉末成型、烧结和后处理等工艺制备出各类金属材料和相关制品。
在这种加工方法中,粉末被视为材料的原子和晶粒的集合体。
本文将介绍粉末冶金的基本原理以及其在工业上的应用。
粉末冶金的基本原理1.原料选择:粉末冶金的首要任务是选择适当的原料。
原料可以是金属、合金或陶瓷等材料的粉末。
原料的选择应该考虑材料的化学成分、晶体结构、粒子形状和尺寸分布等因素。
2.粉末的制备:粉末的制备是粉末冶金的关键步骤之一。
常见的粉末制备方法包括研磨、机械合金化、溶液沉淀和气相反应等。
不同的制备方法可以获得不同尺寸和形状的粉末。
3.粉末的成型:成型是将粉末转变为所需形状的工艺。
常用的成型方法包括压制、挤出、注射成型和3D打印等。
通过成型,粉末可以被固化成具有一定强度和形状的零件。
4.烧结:烧结是粉末冶金过程中的关键步骤之一。
经过成型的粉末件放入高温环境中,粉末颗粒与颗粒之间发生扩散和结合,形成致密的材料。
烧结温度和时间会影响材料的致密性和力学性能。
5.后处理:烧结后的材料可能需要进行后处理。
常用的后处理方法包括热处理、表面处理和加工等。
通过后处理,可以改善材料的性能和功能。
粉末冶金的应用领域粉末冶金广泛应用于各个领域,包括汽车、航空航天、电子、能源、医疗和军工等。
1.汽车行业:粉末冶金技术在汽车行业中得到广泛应用。
例如,通过粉末冶金可以制备高强度和轻质的发动机零件和齿轮等关键部件,提高汽车的燃油效率和排放性能。
2.航空航天:航空航天行业对材料的要求非常高。
粉末冶金可以制备出具有优异的高温强度和耐腐蚀性能的钛合金和镍基合金等材料,用于制造航空发动机和航天器件。
3.电子:在电子行业中,粉末冶金可以制备具有高导电性和磁导率的材料,例如铜粉末用于制造电子线路板和电磁元件。
4.能源:粉末冶金在能源领域的应用主要集中在制备高温抗氧化和热电材料。
例如,通过粉末冶金可以制备铁素体不锈钢和铬基合金等材料,用于制造高温炉和热交换器等设备。
粉末冶金的原理粉末冶金是一种利用金属及其合金的可塑性和高活性的特点,通过粉末的制备、成型和烧结等工艺,制造出具有特定形状和性能的金属制品的方法。
粉末冶金的基本原理是将金属原料熔化后急速凝固形成细小的颗粒,再经过后续的粉末处理工艺,最终使颗粒状金属粉末具有特定的物理、化学和结构性能。
具体的工艺流程包括原料的选择和处理、粉末的制备、成型和烧结。
原料的选择和处理是粉末冶金的关键步骤之一。
适当选择合适的金属粉末原料是保证成品性能的关键。
通常,金属原料的选择要考虑其物理性质、化学性质及可塑性等因素。
为提高冶金反应的活性和金属粉末的可塑性,常常需要对原料进行预处理,如氧化还原处理、合金化处理等。
粉末的制备是将金属原料加工成颗粒状金属粉末的过程。
目前常用的粉末制备方法主要有气雾化法、溶剂法、机械研磨法等。
其中,气雾化法是一种常见的制备方法,它通过高压气流将金属熔化后迅速喷雾成粉末。
这样可以得到细小均匀的金属颗粒。
成型是将金属粉末按照所需形状装入一定模具中,并施加一定压力,使金属粉末紧密结合成形状固定的坯体。
常用的成型方法包括压制成型、注塑成型、挤压成型等。
通过成型,可以得到具有所需形状的零部件或半成品。
最后,经过成型的金属粉末坯体还需要进行烧结,即在一定温度下对金属粉末进行加热处理,使其颗粒之间发生结晶和扩散,相互融合并形成坚固的金属材料。
烧结可以通过自发热烧结、辅助烧结等方法来实现。
烧结过程中,金属粉末之间的氧化物和杂质也会在高温下被还原和挥发。
通过以上的处理工艺,粉末冶金可以制备出具有复杂形状、高强度、良好磨损性能和耐磨性能的金属制品。
由于粉末冶金具有成本低、能耗少、无需后加工等优势,因此在汽车、航空航天、工具等领域得到广泛应用。
粉末冶金知识大全简介粉末冶金是一种重要的制备材料的方法,它通过将金属或非金属加工成粉末,再通过压制和烧结等工艺将粉末粒子紧密结合形成所需的材料。
本文将介绍粉末冶金的基本原理、工艺流程和应用领域。
1. 粉末制备粉末冶金的第一步是制备粉末。
常见的粉末制备方法包括:•原子熔化法:通过将金属或合金加热到高温,使其熔化后迅速冷却,冷却过程中形成的微细颗粒即为粉末。
•机械研磨法:将金属块或合金块放入球磨机中与球磨介质一起磨碎,经过一定时间后得到所需的粉末。
•物理气相法:通过高温蒸发和凝聚,使金属或合金从气相转变为粉末。
常见的物理气相制备方法有气体凝聚法、物理溅射法等。
2. 粉末冶金工艺粉末冶金包括压制、烧结和后处理等多个工艺步骤。
2.1 压制压制是将制备好的粉末以一定的压力塑造成所需形状的过程。
常见的压制方法有:•静态压制:即将粉末放置在模具中,施加垂直于模具方向的压力,使粉末颗粒之间发生塑性变形,形成一定形状的绿体。
•动态压制:即通过提供一个快速冲击力,使粉末颗粒互相碰撞并发生变形,形成一定形状的绿体。
2.2 烧结烧结是将压制好的绿体在一定温度下进行加热,使粉末颗粒之间发生扩散和结合,形成致密的材料。
常见的烧结方法有:•常压烧结:将绿体放在电炉或气炉中进行加热,使粉末颗粒熔结或固相扩散结合。
•热等静压烧结:在加热的同时施加一定的压力,用于加强绿体的结合。
2.3 后处理烧结完成后,还需要进行一些后处理步骤以提高材料的性能。
常见的后处理方法有:•热处理:通过控制温度和时间,在一定的条件下改变材料的组织结构,提高其硬度、强度等性能。
•表面处理:在材料表面形成覆盖层、涂层或改变表面形貌,以提高耐磨、耐腐蚀等性能。
3. 应用领域粉末冶金在许多领域都有着广泛的应用。
3.1 金属制品粉末冶金可以制备各种金属制品,如汽车零部件、工具等。
由于独特的结构和物理性能,粉末冶金制品具有优异的耐磨、抗拉伸和耐腐蚀等特点。
3.2 陶瓷制品通过粉末冶金技术可以制备出高纯度、高强度的陶瓷制品,如陶瓷刀具、陶瓷齿轮等。
粉末冶金手册粉末冶金是一种将金属或非金属粉末通过压制、烧结等工艺加工成成型品的制造工艺。
粉末冶金具有高效、低成本、可成型性好、材料利用率高等优势,因此在航空航天、汽车工业、电子行业等领域得到广泛应用。
本手册将介绍粉末冶金的基本原理、工艺流程、材料选择、设备介绍等内容。
一、粉末冶金的基本原理粉末冶金的基本原理是将金属或非金属物质经过粉碎或原料特殊制备得到的粉末,经过压制成型或注射成型,再经过高温烧结得到所需产品。
这种工艺利用了粉末颗粒之间的相互扭曲和扩散,从而实现了物质的成型。
同时,由于粉末冶金是一种非液态冶金工艺,不需要溶解和凝固过程,避免了材料在液态下的气体、夹杂物等问题,因此可以获得更高的材料纯度和均匀性。
二、粉末冶金的工艺流程粉末冶金的一般工艺流程分为原料制备、混合、成型、烧结和后处理等步骤。
1.原料制备:原料制备阶段主要包括选料和粉末制备。
选料是指根据成品的要求选择合适的原料,如金属、合金、陶瓷或复合材料等。
粉末制备可以通过粉碎、化学方法、电化学方法等得到所需粉末。
2.混合:将所选的原料粉末按照一定比例进行混合。
混合的目的是使各种材料的粒子均匀分散,以获得更高的均匀性。
3.成型:将混合好的粉末通过压制成型,可以使用冷压、热压或注射成型等方法。
成型一般可以分为干压成型和液相成型两种方式。
4.烧结:成型件通过高温烧结,使粉末颗粒之间发生结合,形成致密的材料。
烧结温度和时间根据材料种类、成型件形状等因素确定。
5.后处理:烧结后的材料可以进行表面处理、热处理、加工等工艺。
目的是使产品达到所需的性能和尺寸要求。
三、粉末冶金的材料选择粉末冶金可以应用于各种金属和非金属材料的制备,包括纯金属、合金、陶瓷、塑料等。
在选择材料时需要考虑材料的物理性质、化学性质、应用环境等因素。
例如,对于需要高强度和耐磨性的零件可以选择使用金属粉末冶金制备的合金材料;对于需要绝缘性能和耐高温的零件可以选择使用陶瓷粉末冶金制备的材料。
粉末冶金概念一、什么是粉末冶金粉末冶金是一种通过粉末冶金工艺制备金属制品的方法。
它将金属粉末进行混合、压制和烧结等一系列工艺,最终制得具有一定形状和性能的金属制品。
粉末冶金通常包括粉末的制备、粉末混合、压制、烧结等过程。
二、粉末冶金的制备过程粉末冶金的制备过程主要包括原料制备、粉末的制备和形状成型。
2.1 原料制备原料制备过程是粉末冶金的第一步。
原料通常是金属或非金属的块材料,通过一系列的物理和化学方法,使其转化为适合制备粉末的形态。
2.2 粉末的制备在粉末制备过程中,通常采用机械化方法将块材料加工成颗粒状物料。
常见的粉末制备方法有研磨、球磨和气流研磨等。
2.3 形状成型形状成型是指将粉末加工成具有一定形状的工件。
常见的形状成型方法有压制、注塑和挤压等。
在形状成型的过程中,可以通过加入不同的添加剂和改变工艺参数,来调控工件的性能。
三、粉末冶金的优势和应用领域粉末冶金具有以下的优势:1.单一制备能力:粉末冶金可以制备纯净度高、化学成分准确的金属制品。
2.可混合性:粉末冶金可以将不同成分的粉末进行混合,制备出具有特殊性能的材料。
3.无损制造:粉末冶金通过压制和烧结等过程,可以制备出具有复杂形状和良好性能的工件,且不需要进行二次加工。
4.可持续发展:粉末冶金过程中产生的废料可以进行回收再利用。
粉末冶金在许多领域都有广泛的应用,包括:1.汽车工业:粉末冶金可以制备出高强度、高耐磨的汽车零部件,如发动机曲轴和齿轮等。
2.电子工业:粉末冶金可以制备出具有高热导率和高耐腐蚀性能的电子散热器和接触材料等。
3.医疗器械:粉末冶金可以制备出无毒、无菌的医疗器械,如人工关节和牙科种植体等。
4.能源领域:粉末冶金可以制备出高温合金和热电材料等,用于核能、航天和新能源等领域。
四、粉末冶金的未来趋势粉末冶金作为一种高效、环保的金属制造技术,具有广阔的发展前景。
未来,粉末冶金可能会在以下几个方面实现进一步的发展:1.新材料的研发:随着科学技术的不断进步,新材料的研发成为粉末冶金的一个重要方向。
粉末冶金的定义粉末冶金是一种通过粉末的物理性质和化学性质来制备材料的工艺。
它是将金属或非金属的粉末通过一系列的加工步骤,包括混合、成型、烧结等,制备成所需的工程材料的过程。
粉末冶金具有许多优点,例如可以制备复杂形状的零件、减少材料的浪费、改善材料的性能等。
在粉末冶金的过程中,首先需要选择合适的原料粉末。
这些粉末可以是金属的,也可以是陶瓷的,甚至是复合材料的。
选择合适的原料粉末是粉末冶金的关键步骤之一,它直接影响到最终材料的性能。
在混合的过程中,不同的原料粉末会被混合在一起,以确保最终材料的均匀性。
混合的方法可以是机械搅拌、球磨等。
在混合的过程中,还可以添加一些特殊的添加剂,如增塑剂、润滑剂等,以改善材料的可加工性。
接下来是成型的过程,将混合好的粉末通过压制等方法制成所需形状的零件。
成型可以采用冷压、热压、注射成型等不同的方法,具体的选择取决于粉末的性质和所需零件的形状。
成型后的零件通常需要进行烧结,以提高材料的密度和强度。
烧结是将零件在一定的温度和气氛下加热,使粉末颗粒之间发生结合,形成致密的材料。
烧结过程中还会发生晶粒长大和材料变形的现象,这也会对最终材料的性能产生影响。
粉末冶金还可以通过烧结后的零件进行后续的加工工艺,如热处理、热加工等,以进一步改善材料的性能。
同时,粉末冶金还可以通过添加适当的添加剂,如颗粒增强剂、纤维增强剂等,制备出具有特殊性能的复合材料。
粉末冶金技术的应用非常广泛。
例如,在汽车工业中,粉末冶金可以制备出高强度、耐磨、耐腐蚀的齿轮、减震器等零件。
在航空航天工业中,粉末冶金可以制备出高温合金、耐热材料等。
在电子工业中,粉末冶金可以制备出导电材料、磁性材料等。
粉末冶金作为一种先进的材料制备技术,具有许多独特的优点和广泛的应用前景。
随着科技的进步和人们对材料性能要求的不断提高,粉末冶金技术将会得到更加广泛的应用和发展。
粉末冶金材料概述引言粉末冶金材料是一类通过粉末冶金工艺制备的新型材料。
粉末冶金是指通过粉末冶金工艺将金属或非金属粉末压制成型,经过烧结或其他处理方法得到所需材料的一种制备方法。
粉末冶金材料因其独特的结构和性能,在许多工业和科研领域受到广泛关注。
本文将对粉末冶金材料进行概述,包括其制备方法、特点和应用领域等方面。
粉末冶金材料的制备方法粉末冶金材料的制备方法主要包括粉末制备、成型和烧结等步骤。
粉末制备粉末制备是粉末冶金材料制备的第一步。
粉末制备方法有很多种,包括物理方法和化学方法两大类。
物理方法主要包括气雾法、机械法、电解法和溅射法等。
其中,气雾法是指通过气体或喷雾器产生粉末颗粒,例如高温气雾法和超声气雾法。
机械法是指通过机械力使原料产生破碎、研磨或合金化的方法,常见的机械法有球磨法和挤压法等。
电解法是指通过电解原理将金属溶液电解析出粉末。
溅射法是将金属或合金靶材置于真空或较低压力下,在被轰击时产生粉末颗粒。
化学方法主要包括沉积法和还原法等。
沉积法是将金属盐溶液注入电化学池中,通过电解原理在电极上析出粉末。
还原法是指通过还原反应将金属离子还原成金属粉末。
成型是将粉末加工成所需形状的步骤。
常见的成型方法有压制、注射成型和挤压等。
压制是将粉末放入模具中,在一定压力下使其成型。
注射成型是将粉末与有机绑定剂混合,通过注射机将混合物喷射到模具中,经过固化后得到成型件。
挤压是将粉末放入带有孔的金属筒子中,在压力下挤出形状。
烧结是粉末冶金材料制备的最后一步,通过加热使粉末颗粒之间的结合力增强,形成致密的材料。
烧结温度和时间根据材料的要求进行选择,一般在金属的熔点以下,同时需要保证烧结后的材料具有所需的物理和化学性质。
粉末冶金材料的特点粉末冶金材料具有许多独特的特点,使其在许多领域具有广泛的应用前景。
高纯度由于粉末冶金材料可以通过粉末制备方法获得,因此可以获得高纯度的材料。
在制备过程中,可以通过选择合适的原料和控制工艺参数,减少杂质的含量,从而获得高纯度的材料。
粉末冶金的概念
一、粉末冶金的概念
粉末冶金(Powder Metallurgy;PM)是一种材料加工技术,它将金属粉末作为原料,通过压制、热处理等工艺步骤,加工出特定的功能形状,并可以达到特定性能的加工方法。
通常,粉末冶金工艺的原料以金属为主,但也可以是非金属,如碳素或碳/硅酸盐组成的特殊粉末,或者金属与碳素、碳/硅酸盐混合而成的特殊粉末。
粉末冶金工艺的主要特点是:
1、可以制备出具有复杂形状的零件,复杂的压力型件经常用于此项工艺;
2、材料可以以节约能源的方式加工,常见的工艺步骤是压制和热处理,其中压制过程中并没有使用任何溶剂或润滑剂;
3、可以制备出较低的材料强度,特别是在微型压力零件中,这些零件可以以较低的体积加工出来,而且具有较高的强度;
4、有利于机械性能的增强;
5、可以制备出复合材料,这些材料具有良好的塑性性能以及抗磨损和抗腐蚀性能;
6、可以制备出高熔点的材料,如钨、铌、钛、银等高熔点材料。
此外,粉末冶金工艺还可以通过添加各种金属粉末,碳素粉末,碳素/硅酸盐粉末和其他材料的组合来获得复合材料,这些复合材料可以提高材料的强度,E值和抗磨损性能。
在热处理过程中,粉末冶金工艺也可以提高材料的强度和耐高温性能,以及提升材料的热加工
性能。
总之,粉末冶金工艺是目前非常重要的加工方法,可以获得具有多种功能功能和性能的零件。
粉末冶金是什么材料
粉末冶金是一种通过粉末冶金工艺制备金属、合金、陶瓷和复合材料的新型材料。
它是将金属或非金属粉末通过压制、烧结等工艺形成所需产品的一种方法。
粉末冶金技术具有高效节能、原料利用率高、可以制备复杂形状和高性能材料等优点,因此在航空航天、汽车、机械制造、电子等领域得到了广泛应用。
粉末冶金材料主要包括金属粉末和非金属粉末两大类。
金属粉末是指通过机械
方法将金属块破碎、研磨而成的细小颗粒,而非金属粉末则是指氧化物、氮化物、碳化物等非金属材料的粉末。
这些粉末经过混合、压制、烧结等工艺,可以制备出具有特定性能的材料。
粉末冶金技术的优势在于可以制备出具有特殊性能的材料。
通过控制粉末的形状、尺寸、分布以及添加其他元素等方法,可以调控材料的力学性能、磁性能、耐磨性、耐腐蚀性等特性。
而且,粉末冶金材料还可以制备出具有多孔结构的材料,应用于过滤、吸附等领域。
粉末冶金材料还具有良好的加工性能。
由于粉末冶金材料的原料是粉末,因此
可以通过压制、注射成形、烧结等工艺制备出复杂形状的零部件,而且还可以减少加工过程中的废料,提高材料的利用率。
此外,粉末冶金材料还具有良好的均匀性。
由于粉末冶金材料是由微小颗粒组
成的,因此可以实现各向同性的材料性能,而且可以实现多种材料的复合,从而得到具有多种性能的复合材料。
总的来说,粉末冶金是一种重要的材料制备技术,它可以制备出具有特殊性能
的材料,并且具有良好的加工性能和均匀性。
随着科学技术的不断发展,相信粉末冶金技术将会在更多的领域得到应用,为人类的发展做出更大的贡献。
粉末冶金基础知识粉末冶金是一种通过加工金属粉末来制造零件和材料的加工技术。
粉末冶金工艺的基本原理是将金属粉末在高温和高压条件下进行压制和烧结,使其在固态下发生扩散和结合,形成具有一定形状和性能的零件和材料。
粉末冶金的基础知识包括粉末的制备、压制和烧结过程以及粉末冶金材料的性能等方面。
一、粉末的制备粉末冶金的第一步是制备金属粉末。
金属粉末可以通过机械球磨、化学方法、电化学方法和气相沉积等多种方法获得。
其中,机械球磨是常用的制备金属粉末的方法。
通过在球磨机中将金属块或粉末与球磨介质一起进行反复磨蚀,使金属表面不断剥落并形成粉末。
二、粉末的压制粉末的压制是将金属粉末在模具中进行压实,使其形成一定形状和尺寸的零件。
压制主要分为冷压和热压两种方式。
冷压是在室温下进行的压制过程,适用于易压制的材料和简单形状的零件。
热压则需要在高温下进行,可以加快扩散和结合过程,得到更密实的零件。
三、粉末的烧结粉末的烧结是将压制成型的粉末在高温下进行加热,使其发生扩散和结合,形成致密的块状材料。
烧结过程中,金属粉末之间的颗粒通过扩散相互结合,并且形成晶粒长大,使材料的性能得到提高。
烧结温度和时间的选择对于材料的性能具有重要影响。
四、粉末冶金材料的性能粉末冶金材料具有许多优异的性能。
首先,粉末冶金可以制得高纯度的材料,因为粉末冶金材料的成分可以通过调整原料粉末的配比来控制。
其次,粉末冶金可以制造具有复杂形状和内部结构的零件,满足不同的工程需求。
此外,粉末冶金材料具有较高的强度、硬度和耐磨性能,适用于高强度和耐磨的工作环境。
粉末冶金还有一些其他的应用领域,如制备陶瓷材料、复合材料和表面涂层等。
陶瓷材料由陶瓷粉末或金属粉末与陶瓷粉末混合烧结而成,具有低密度、高硬度和高耐热性能,被广泛应用于制造刀具、轴承和结构材料等。
复合材料由金属粉末和陶瓷或有机材料混合烧结而成,结合了金属和陶瓷或有机材料的优点,具有较好的力学性能和导热性能。
表面涂层是将金属粉末喷涂到工件表面,形成保护层或改善表面性能。
目錄
1粉末射出成形
2粉末射出成形過程
3好處,
4製程比較
5材料選擇
6第二段加工
7品質體系及量測設備
8模具設計
9成品設計
10創新應用的個案研究
11粉末射出成形設計重點
1粉末射出成形
粉末射出成形應用了塑膠射出成形的原理去完成成形.
粉末射出成形是在這幾十年前商業化的. 不過它的過程很快的就成長成為一個製造業低成本高效率來取代傳統的技術. 在現今的工業, 粉末射出成形是一個能夠提供高度的設計應用性和節省費用最佳的製造過程.
成品需要形狀的複雜性和要求最後機械特性及密度,磁性,熱性質,化學性質和電器性質的應用過程高於其他製程. 射出成形的合金粉提供了在塑膠和輕合金不可能的完成特性.
2粉末射出成形過程
混料:非常精細的合金粉與熱朔性黏結劑混合. 混合物再再造粒成顆粒狀
射出:在成形時,給料會被加熱來達到溶解黏合劑的目的. 然後射出成想要的形狀. 那個模型製品的部份叫做“Green Part”.
去除黏結劑:聚合的黏合劑在這個步驟裡將會用溶劑脫酯及加熱的方法去移除黏結劑. 去除黏結劑後, 它將會是由很易碎的和多孔的粉末骨架所組成. 再高溫的處理的同時, 粉末部份還必須要保持它原有的大小和形狀.
燒結:粉末射出成形的最後一個步驟是燒結. 在燒結時,多孔的粉末骨架將會被加熱到差不多是材料熔點的90%. 燒結中,密度上升,小孔消除,和部份收縮. 最後的燒結密度是理論上的大約96%,達到所須要理論上物理特性.
3好處,
-能節省相當的費用
-能做的複雜零件形狀和大小的範圍很廣(從0.1克到200克)
-有能力做出很薄的壁到最小到0.4厘米
-有能力組合不同的功能來除去多餘的配件減少組配的工作
-有很好的尺寸控制和一般的公差(+-0.3%)
-減少多餘的形狀製造或排除加工
-範圍廣大包含了各種材料和不同特性
-中到高的生產量有很好的成本效率
-很適合難以理解和很複雜的形狀
-設計可以很有彈性
-最低或是沒有浪費的材料
-很好的表面加工(32RMs;Ra0.8)
4製程比較
粉末射出成形和傳統的金屬成形過程的比較
工業化和自動化長久以來一直是製造工程業所尋求的發展. 當傳統的方法例如加工,沖壓,鍛造,鑄造和粉末冶金還很重要時,粉末射出成形已經快速的成為金屬成形中的一個重要的製程.
材料一覽表
-實際的特性數值依類產品規格,包含密度,顯微結構,純度,和過程,這些都會因為特種的結構而有所不同.
-全部材料不僅僅這些而已,如果需要更多的資料請聯絡本公司.
*抗拉強度(MPa)
5第二段加工
粉末射出成形中的材料特性跟運作中的棒料很類似. 所以加工,表面處理,和熱處理加工可以在燒結後來處理
賣主和後勤管理
依照客戶的要求,本公司提供了SPC品質管理和評估還有裝配的服務. 作為一個完整的解答供應商,本公司成為了賣方和分包商管理者. 此外,本公司還可以提供存貨管理去迎合客戶特別的需求來達到一個削減存貨和後勤的重擔.
6品質體系
本公司通過了ISO9000認證. 從開始到結束,整個製造過程經過了很詳細的審查來符合國際標準和客戶所設的規範.
量測設備
I.非接觸式三次元測量機
II.投影機
III.表面粗糙度測試儀
IV.客戶設計的檢具標準
冶金
I.比重機
II.硬度試驗機
III.黏度機
IV.粒度分析儀
7模具的設計
根據一個部份的形狀,大小和生產數量,一套模具可以製作在1和16之間的空穴. 本公司的模具壽命的保證是1000,000次,同時還會提供各彈性的模具選項來達到顧客方面個別的需求.
以下是模具及成品的設計要求
包含:
--成形設計標準
-圓弧,孔和鋸齒形
-拔模角度
-頂針和澆口位置
-均衡的橫斷面
-平的表面(有利於燒結擺放)
避免:
-尖銳的內圓角和邊緣
-在功能的地方,避免有分模線及融合線
-更精準的尺寸公差小於±0.5%
尺度公差
8成品設計
在設計粉末射出成品時,參考以下的方針是很重要的. 在堅持住這些簡單的設計方針,設計者可以很有效的利用粉末射出成形的優點然後減少加工的費用.及重量
1.圓弧和孔
i.避免材料過重. 提供圓弧和孔來達到減重和結構改良如以下的圖
建議避免把澆口擺在不重要的面上.
10.建議使用可以把最後粉末射出成形的部份的重量控制在200克的方法.
這個使用孔,圓弧,或是其他的重量減少的方法來達成.
11.在射出成形的過程中,避免設計長的零件跟澆口的方向平行. 改變澆口
流進的方向來減少噴流和流痕確保層流才能達成填模最佳的效果.
以下的圖面各個部份的結合來達到一個多功能的機構. 像這樣的考量可以大大的降低成本.
創新應用的個案研究
综合
四個單獨的配件被組合成一件成品. 這樣子的設計改良有更好的機械結構表現和減少的花費.
創新的設計
原本的設計有一個沒有辦法被澆鑄的清角沿著它的外環. 新的六墊片設計取代了清角,同時也允許了使用金屬射出成形來大量生產.
薄壁的能力
這個零件有很複雜的形狀,中空的結構和一整個部分小於1mm的壁厚度.
複雜化&小型化
這些零件有很複雜的形狀和小於1.0克的重量圖解了本公司金屬射出成形的能力.
高縱橫比和高精準度
這塊尺寸105mm X 105mm X 1.5mm的光纖連接器是用科瓦鐵鎳鈷合金做成的. 這個零件挑戰了為了達到精準尺寸和氣封要求的傳統金屬射出成形的縱橫比和尺寸.
材料的創新–新材料
拥有專利和材料的技術秘訣,本公司有能力去依照客戶特別的要求去研發不標準的材料
材料:粉末射出成形是最適用於某些很難加工的材料,這些材料包括了不銹鋼或是加工硬化材料.
表面加工: 粉末射出成形可以達到高品質的表面和低的加工花費.
複雜性: 複雜性非常高,有多軸的分度及設計用粉末射出成形是最好的選擇.
數量: 一年>20,000個,模具及上模的花費才有符合經濟效率.
結合: 結合多個零件成為一個一個可以減少存貨成本和裝配成本,同時也增強機械性能.
性能: 開發新的產品要預先考慮低衝擊韌性,斷裂韌度,疲勞和腐蝕性質. 如果說性能很重要,則需要高密度製造過程. 這些高性能性質可以使用粉末射出成形來達到.
公差: 在所有的生產程序中,精密的公差有它本身須要的費用. 本公司透過和客戶一起,在設計過程中減少不必要的加工花費來設置公差尺寸是非常的重要的.
設計櫥窗: 產品的設計是非常重要的,因為這是跟後面生產的良率及成本有很大的關係粉末射出成形主要的產品設計標準包含了拔模推拔角度,壁厚度,角弧度,連同其他的.
缺陷: 粉末射出成形會在分模線和澆口區域製造出表面缺陷. 這些缺陷需要被擺置在零件上不重要的區域.。