圆锥曲线的最值问题课件
- 格式:ppt
- 大小:1.39 MB
- 文档页数:10
圆锥曲线最值问题1 常见的几何模型①圆外点到圆上点的距离圆⊙O外一点A与圆上一点B的距离AB最小值是AB1=AO−r,最大值AB2=AO+r(r是圆的半径).②圆上点到圆外直线的距离圆上一动点P到圆外一定直线l的距离最小值是d−r,最大值d+r(r是圆的半径,d是圆心到直线l的距离);③三点共线模型一动点P到两定点A、B的距离分别为PA、PB,当P、A、B共线,且点P在A、B之间时,PA+PB取到最小值P1A+P1B=AB;当P、A、B共线,且点P在A、B同侧时,|PA−PB|取到最大值|P1A−P1B|=AB;其本质是三角形两边之和大于第三边,两边之差小于第三边;④将军饮马模型点A、B在直线l同侧,点P在直线l上,那(AP+BP)min=AP1+BP1;⑤垂线段最值模型点A是∠MON内外的一点,点P在OM上,PA与点P到射线ON的距离之和为PA+PB.(1) 点A是∠MON外,(PA+PB)min=AB1(2) 点A是∠MON内,(PA+PB)min=A′B1⑥胡不归模型如图,求k∙AC+BC(0<k<1),构造射线AE,使得角度sinα=k,则k∙AC+BC=CD+BC,问题转化为“垂线段模型”,则(k∙AC+BC)min=BF.⑦阿氏圆模型如图,圆O半径是r,点A,B在圆O外,点P是圆O上一动点,已知r=k∙OB,求k∙BP+AP的最小值.在线段OB上截取OC=k∙r,则COOP =OPOB=k⇒∆BPO∽∆PCO,即k∙PB=PC,则k∙BP+AP的最小值转化为PC+PA的最小值,当然是AC,即(k∙BP+AP)min=AC.2最值问题常见处理方法①几何法通过观察掌握几何量的变化规律,利用几何知识点找到几何量取到最值的位置,从而求出最值,这需要熟悉常见的几何模型.②代数法理解几何量之间的变化规律,找到“变化源头”,通过引入恰当的参数(一般与源头有关),把所求几何量表示成参数的式子,再利用求函数最值的方法(基本不等式、换元法、数形结合等)求得几何量的最值.【方法一】几何法【典题1】已知椭圆C:x225+y216=1内有一点M(2 ,3),F1 ,F2为椭圆的左、右焦点,P为椭圆C上的一点,求:(1)|PM|-|PF1|的最大值与最小值;(2)|PM|+|PF1|的最大值与最小值.【解析】(1)由椭圆C:x 225+y216=1可知a=5 ,b=4 ,c=3,则F1(-3 ,0) ,F2(3 ,0),则||PM|-|PF1||≤|MF1|=√34,当且仅当P、M、F1三点共线时成立,所以−√34≤|PM|-|PF1|≤√34,所以|PM|-|PF1|的最大值与最小值分别为√34和−√34;(2)2a=10 ,F2(3 ,0) ,|MF2|=√10,设P是椭圆上任一点,由|PF1|+|PF2|=2a=10 ,|PM|≥|PF2|-|MF2|,∴|PM|+|PF1|≥|PF2|-|MF2|+|PF1|≥2a-|MF2|=10−√10,等号仅当|PM|=|PF2|-|MF2|时成立,此时P、M、F2共线,由|PM|≤|PF2|+|MF2|,∴|PM|+|PF1|≤|PF2|+|MF2|+|PF1|=2a+|MF2|=10+√10,等号仅当|PM|=|PF2|+|MF2|时成立,此时P、M、F2共线,故|PM|+|PF1|的最大值10+√10与最小值为10−√10.【点拨】本题采取几何法,通过三点共线模型与椭圆的定义进行求解.【典题2】设P是抛物线y2=4x上的一个动点,F为抛物线的焦点,记点P到点A(-1 ,1)的距离与点P到直线x=-1的距离之和的最小值为M,若B(3 ,2),记|PB|+|PF|的最小值为N,则M+N=.【解析】如图所示,过点P作PG垂直于直线x=-1,垂足为点G,由抛物线的定义可得|PG|=|PF|,所以点P到直线x=-1的距离为|PG|,所以|PA|+|PG|=|PA|+|PF|≥|AF|=√5,(三点共线模型)当且仅当A、P、F三点共线时,|PA|+|PG|取到最小值,即M=√5.如图所示,过点P作直线PH垂直于直线x=-1,垂足为点H,由抛物线的定义可得|PH|=|PF| ,点B到直线x=-1的距离为d=4,所以|PB|+|PF|=|PB|+|PH|≥4,当且仅当B、P、H三点共线时,等号成立,即N=4,(垂线段最值模型)因此M+N=√5+4.【点拨】①本题采取几何法,通过几何模型与抛物线的定义进行求解;②处理抛物线类似的题目,注意点在抛物线之内还是之外,比如本题点A在抛物线外,点B在抛物线内.=1,如图,点A的坐标为(−√5 ,0),B是圆x2+(y−√5)2=1上的点,【典题3】已知双曲线方程为x2−y24点M在双曲线的右支上,求|MA|+|MB|的最小值.【解析】设点D的坐标为(√5,0),则点A ,D是双曲线的焦点,由双曲线的定义,得|MA|-|MD|=2a=2.∴|MA|+|MB|=2+|MB|+|MD|≥2+|BD|,(此时相当于把点B看成“定点”看待,当M,B,D三点共线时|MB|+|MD|取到最小值,这是处理两动点的常规方法)又B 是圆x 2+(y −√5)2=1上的点,圆心为C(0,√5), 半径为1,故|BD|≥|CD|-1=√10−1, 从而|MA|+|MB|≥2+|BD|≥√10+1,当点M ,B 在线段CD 上时取等号,即|MA|+|MB|的最小值为√10+1.【点拨】本题眨眼一看,存在两动点M 、B ,有些头疼.题中通过双曲线的定义把|MA|+|MB|的最小值转化为|BD|最小值问题,这就是圆外一点到圆上最短距离问题,即|BD|≥|CD|-1=√10−1.注意两动点最值问题处理的方式.【典题4】 椭圆x 24+y 23=1上的点到直线l :2x +√3y -9=0的距离的最大值为 .【解析】 设与直线2x +√3y -9=0平行的直线2x +√3y +m =0与椭圆x 24+y 23=1相切,由{2x +√3y +m =0x 24+y 23=1得25x 2+16mx +4m 2−36=0, 由∆=0得m =±5,设直线2x +√3y +m =0与直线2x +√3y -9=0的距离为d , 当m =5时,d =4√77; 当m =−5时,d =2√7.椭圆x 24+y 23=1上的点到直线2x +√3y -9=0的距离的最大值为2√7.【点拨】通过观察,可知与直线l 平行且与椭圆相切的直线与椭圆的切点即是取到最小距离的点,最小距离为两平行线的距离.【方法二】代数法【典题1】 求点A(a ,0)到椭圆x 22+y 2=1上的点之间的最短距离. 【解析】设椭圆x 22+y 2=1上的点P(x ,y),其中−√2≤x ≤√2,则PA 2=(x −a )2+y 2=(x −a)2+1−x 22=x 22−2ax +a 2+1 (曲线消元)设f (x )=x 22−2ax +a 2+1, −√2≤x ≤√2,其对称轴为x =2a ,(构造函数,问题转化为二次函数定区间动轴最值问题) ① 当2a <−√2,即a <−√22时,y =f(x)在[−√2 ,√2]上递增,则f (x )min =f(−√2)=a 2+2√2a +2=(a +√2)2,即PA 的最小值为|a +√2|; ②当−√2≤2a ≤ √2,即−√22≤a ≤√22时,y =f(x)在[−√2 ,√2]上先递减再递增,则f (x )min =f (2a )=2a 2−4a 2+a 2+1=1−a 2,即PA 的最小值为√1−a 2; ③当2a > −√2,即a >−√22时,y =f(x)在[−√2 ,√2]上递减,则f (x )min =f(√2)=a 2−2√2a +2=(a −√2)2,即PA 的最小值为|a −√2|; 综上,当a <−√22时,|PA|最小为|a +√2|;−√22≤a ≤√22时,|PA|最小为√1−a 2;a >−√22时,|PA|最小为|a −√2|.【点拨】① 两点A 、B 距离AB 往往用两点距离公式√(x A −x B )2+(y A −y B )2表示;② 本题把求距离最值问题转化为函数的最值问题,函数问题优先讨论定义域x ∈[−√2 ,√2],函数含有参数a ,则按照“二次函数动轴定区间最值问题”的解题套路根据对称轴x =2a 与区间[−√2 ,√2]的相对位置进行分类讨论;③ 本题还是利用椭圆的参数方程{x =acosθy =bsinθ,设椭圆上点P(√2cosθ ,sinθ),从而构造函数|PA|=√cos 2θ−2√2acosθ+a 2+1进行分析,相当引入变量θ表示PA ,而解析中是引入变量x .【典题2】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1,F 2,左顶点为A ,离心率为√22,点B 是椭圆上的动点,△ABF 1的面积的最大值为√2−12. (1)求椭圆C 的方程;(2)设经过点F 1的直线l 与椭圆C 相交于不同的两点M ,N ,线段MN 的中垂线为l′.若直线l′与直线l 相交于点P ,与直线x =2相交于点Q ,求|PQ||MN|的最小值.【解析】(1)过程略,椭圆C 的方程为x 22+y 2=1. (2)(采取代数法,思路很直接,引入变量表示|PQ||MN|再求其最值,而|PQ |,|MN|是线段,用两点距离公式和弦长公式求出,由于它们是由直线l 引起,故该变量与直线方程有关) 由题意知直线l 的斜率不为0,故设直线l 的方程为x =my -1, 设M(x 1 ,y 1) ,N(x 2 ,y 2) ,P(x P ,y P ) ,Q(2 ,y Q ). 联立{x 2+2y 2=2x =my −1,得(m 2+2)y 2-2my -1=0.此时△=8(m 2+1)>0.∴y 1+y 2=2mm 2+2,y 1y 2=−1m 2+2.由弦长公式,得|MN |=√1+m 2|y 1−y 2|=√1+m 2√4m 2+4m 2+8m 2+2=2√2⋅m 2+1m 2+2,(用m 表示|MN |,弦长公式求得) 又y P =y 1+y 22=m m 2+2,∴x P =my P -1=−2m 2+2.∴P(−2m 2+2,mm 2+2),∵直线l 与直线l′相互垂直,∴k PQ ∙k l =−1 ∴y Q −m m 2+22+2m 2+2⋅1m=−1⇒y Q =−2m −mm 2+2, 即Q(2 ,−2m −mm 2+2),∴|PQ|=√1+m 2⋅2m 2+6m 2+2,∴|PQ||MN|=22√2√m 2+1=√22⋅2√m 2+1=√22(√m 2+1√m 2+1)≥2,当且仅当√m 2+1=√m 2+1m =±1时等号成立.∴当m =±1,即直线l 的斜率为±1时,|PQ||MN|取得最小值2. 【点拨】 ① 本题中求|PQ||MN|的最小值,用代数法,则可把|PQ|、|MN|表示出来,|MN|用到了弦长公式,而|PQ|用两点距离公式,最后|PQ||MN|=√222√m 2+1,则问题就转化为求函数f (m )=√22⋅2√m 2+1的最小值,利用了基本不等式求解;② 求|PQ|时,也可以|PQ |=√1+m 2|x P −2|=√1+m 2⋅2m 2+6m 2+2.【典题3】P是抛物线x2=2y上的动点,过P(x0 ,y0)作圆C:x2+(y-1)2=1的两条切线l1,l2交x轴于A,B 两点,(1)若两条切线l1,l2的斜率乘积为1,求P点的纵坐标;(2)求当4<y0<8时,△PAB面积的取值范围.【解析】(1)设点直线PA ,PB的斜率分别为k1 ,k2,记P(x0 ,y0)∴PA的方程:y-y0=k1(x-x0),则由直线l1与圆相切得:010√1+k1=1⇒(x02−1)k12+2x0(1−y0)k1+y02−2y0=0同理直线l2与圆相切可得(x02−1)k22+2x0(1−y0)k2+y02−2y0=0所以k1 ,k2是(x02−1)k2+2x0(1−y0)k+y02−2y0=0的两根,∴k1k2=y02−2y0 x02−1又∵k1k2=1.∴y02−2y0=x02−1,又x02=2y0,∴y02−4y0+1=0,∴y0=2±√3.(2)由(1)得x A=x0−y0k1,x B=x0−y0k2,∴S△PAB=12|AB||y P|=12y02|1k1−1k2|=12y02|k2−k1k1k2|由(1)知:|k1k2|=|y02−2y0x02−1| ,|k1−k2|=|2√y02−2y0+x02x02−1|=|2√y02x02−1|=|2y0x02−1|;∴S△PAB=12y02|k2−k1k1k2|=12y02|2y0y02−2y0|=y02|y0−2|=y02y0−2,故令t=y0-2∈(2 ,6),∴S△PAB=y02y0−2=(t+2)2t=t+4t+4∵f(t)=t+4t+4在(2 ,6)上递增,故函数值域为(8 ,323),即△PAB 面积的取值范围为(8 ,323).【点拨】① 若x 1、x 2满足ax 12+bx 2+c =0 ,ax 22+bx 2+c =0(a ≠0),则x 1、x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根;② 本题求△PAB 面积的取值范围,则先求出S △PAB =y 02y 0−2(本题给出了y 0的范围,用y 0作为变量表示面积很自然),则问题就变成求函数f (y 0)=y 02y 0−2, y 0∈(4 ,8)的值域问题,用到了换元法与对勾函数f (t )=t +4t的性质.【典题4】 如图,已知抛物线C :y 2=2px(p >0),G 为圆H :(x +2)2+y 2=1上一动点,由G 向C 引切线,切点分别为E ,F ,当G 点坐标为(-1 ,0)时,△GEF 的面积为4. (1)求C 的方程;(2)当点G 在圆H :(x +2)2+y 2=1上运动时,记k 1,k 2,分别为切线GE ,GF 的斜率,求|1k 1−1k 2|的取值范围.【解析】(1)设切线方程为:y =k(x +1),不妨设k >0. 联立{y =k(x +1)y 2=2px ,化为k 2x 2+(2k 2-2p)x +k 2=0,则△=(2k 2-2p)2-4k 4=0,化为p =2k 2.方程k 2x 2+(2k 2-2p)x +k 2=0化为(x -1)2=0,解得x =1. ∴E(1 ,2k),由对称性可知F(1,−2k),∵△GEF 的面积为4,∴12×2×4k =4,解得k =1. ∴p =2.∴C 的方程为:y 2=4x .(2)设G(x 0 ,y 0) ,(-3≤x 0≤-1),则y 02=1−(x 0+2)2.设切线方程为:y -y 0=k(x -x 0),联立{y −y 0=k(x −x 0)y 2=4x ,化为ky 2-4y +4(y 0-kx 0)=0,△1=16-16k(y 0-kx 0)=0.∴x 0k 2-ky 0+1=0,∴k 1+k 2=y 0x 0,k 1k 2=1x 0,∴|k 1-k 2|=√(k 1+k 2)2−4k 1k 2=√y 02x 02−4x 0=√y 02−4x 0|x 0|.∴|1k 1−1k 2|=|k 1−k 2||k 1k 2|=√y 02−4x 0=√1−(x 0+2)2−4x 0=√−(x 0+4)2+13∈[2 ,2√3].∴|1k 1−1k 2|的取值范围是[2 ,2√3].【点拨】理解到本题的变化源头在点G(x 0 ,y 0),利用直线与抛物线相切把|1k 1−1k 2|用x 0 ,y 0表示,由于y 02+(x 0+2)2=1,想到消元y 0,得到|1k 1−1k 2|=√−(x 0+4)2+13,把问题转化为求函数f (x 0)=√−(x 0+4)2+13的值域,注意到x 0的取值范围. 巩固练习1(★★) 已知抛物线y 2=4x 的焦点为F ,定点A(2 ,2),在此抛物线上求一点P ,使|PA|+|PF|最小,则P 点坐标为( ) A .(-2,2) B .(1,√2)C .(1,2)D .(1,-2)【答案】 C【解析】根据抛物线的定义,点P 到焦点F 的距离等于它到准线l 的距离, 设点P 到准线l :x =-1的距离为PQ,则所求的|PA|+|PF|最小值,即|PA|+|PQ|的最小值;根据平面几何知识,可得当P 、A 、Q 三点共线时|PA|+|PQ|最小, ∴|PA|+|PQ|的最小值为A 到准线l 的距离;此时P 的纵坐标为2,代入抛物线方程得P 的横坐标为1,得P(1,2) 故选:C .2(★★) F 是椭圆x 29+y 25=1的左焦点,P 是椭圆上的动点,A(1 ,1)为定点,则|PA|+|PF|的最小值是( ) A .9−√2B .3+√2C .6−√2D .6+√2 【答案】 C【解析】椭圆x 29+y 25=1的a =3,b =√5,c =2,如图,设椭圆的右焦点为F′(2,0),则|PF|+|PF′|=2a =6;∴|PA|+|PF|=|PA|+6-|PF′| =6+|PA|-|PF′|;由图形知,当P 在直线AF′上时,||PA |-|PF ′||=|AF ′|=√2,当P 不在直线AF′上时,根据三角形的两边之差小于第三边有,||PA|-|PF′||<|AF′|=√2;∴当P 在F′A 的延长线上时,|PA|-|PF′|取得最小值−√2,∴|PA|+|PF|的最小值为6−√2.故选:C .3(★★) 点P 是双曲线x 24−y 2=1的右支上一点,M 、N 分别是(x +√5)2+y 2=1和(x −√5)2+y 2=1上的点,则|PM|-|PN|的最大值是( )A .2B .4C .6D .8 【答案】C【解析】双曲线x 24−y 2=1中,如图:∵a =2,b =1,c =√5,∴F 1(−√5,0),F 2(√5,0),∴|MP|≤|PF 1|+|MF 1|,…①∵|PN|≥|PF 2|-|NF 2|,可得-|PN|≤-|PF 2|+|NF 2|,…②∴①②相加,得|PM|-|PN|≤|PF 1|+|MF 1|-|PF 2|+|NF 2|=(|PF 1|-|PF 2|)+|MF 1|+|NF 2|∵|PF 1|-|PF 2|=2a =2×2=4,|MF 1|=|NF 2|=1∴|PM|-|PN|≤4+1+1=6故选:C .4(★★★) 【多选题】已知抛物线x 2=2py(p >0)的焦点为F ,过点F 的直线l 交抛物线于A ,B 两点,以线段AB 为直径的圆交x 轴于M ,N 两点,设线段AB 的中点为Q .若抛物线C 上存在一点E(t ,2)到焦点F 的距离等于3.则下列说法正确的是( )A .抛物线的方程是x 2=2yB .抛物线的准线是y =-1C .sin∠QMN 的最小值是12D .线段AB 的最小值是6【答案】BC【解析】(1)抛物线C :x 2=2py(p >0)的焦点为F (0,p 2),得抛物线的准线方程为y =−p 2, 点点E(t,2)到焦点F 的距离等于3,可得2+p 2=3,解得p =2, 则抛物线C 的方程为x 2=4y ;所以A 不正确;抛物线的准线方程:y =-1,所以B 正确;(2)由题知直线l 的斜率存在,F(0,1),设A(x 1,y 1),B(x 2,y 2),直线l 的方程为y =kx +1,由{y =kx +1x 2=4y,消去y 得x 2-4kx -4=0,所以x 1+x 2=4k,x 1x 2=-4,所以y 1+y 2=k(x 1+x 2)+2=4k 2+2,所以AB 的中点Q 的坐标为(2k,2k 2+1),|AB|=y 1+y 2+p =4k 2+2+2=4k 2+4,所以圆Q 的半径为r =2k 2+2,在等腰△QMN 中,sin∠QMN =|y Q |r =2k 2+12k 2+2=1−12k 2+2≥1−12=12, 当且仅当k =0时取等号.所以sin∠QMN 的最小值为12.所以C 正确; 线段AB 的最小值是:y 1+y 2+2=4k 2+4≥4.所以D 不正确;故选:BC .5(★★) 设P ,Q 分别为圆x 2+(y −6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是 .【答案】 6√2【解析】设椭圆上的点为(x,y),则∵圆x 2+(y -6)2=2的圆心为(0,6),半径为√2, ∴椭圆上的点(x,y)到圆心(0,6)的距离为√x 2+(y −6)2=√10(1−y)2+(y −6)2=√−9(y +23)2+50≤5√2∴P,Q 两点间的最大距离是5√2+√2=6√2.6(★★★) E 、F 是椭圆x 24+y 22=1的左、右焦点,点P 在直线x =2√2上,则∠EPF 的最大值是 .【答案】π6 【解析】设P(2√2,t)(t >0),则tan∠EPF =tan(∠EPM -∠FPM)=3√2t −√2t 1+3√2×√2t 2=2√2t+6t ≤√33(当且仅当t =√6时取等号) 此时tan∠EPF =√33,∠EPF =π6. 7(★★★) 已知过抛物线C :y 2=4x 焦点的直线交抛物线C 于P,Q 两点,交圆x 2+y 2-2x =0于M ,N 两点,其中P ,M 位于第一象限,则1|PM|+4|QN|的最小值为 .【答案】4【解析】设P(x 1,y 1),Q(x 2,y 2),再设PQ 的方程为x =my +1,联立{x =my +1y 2=4x,得y 2-4my -4=0. ∴y 1+y 2=4m ,y 1y 2=-4,则x 1x 2=(y 1y 2)216=1.|PM|∙|QN|=(|PF|-1)(|QF|-1)=(x 1+1-1)(x 2+1-1)=x 1x 2=1,则1|PM|+4|QN|≥2√1|PM|⋅4|QN|=4. ∴1|PM|+4|QN|的最小值为4.8(★★★) 如图,抛物线C :x 2=2py(p >0)的焦点为F ,以A(x 1 ,y 1)(x 1≥0)为直角顶点的等腰直角△ABC 的三个顶点A ,B ,C 均在抛物线C 上.(1)过Q(0 ,-3)作抛物线C 的切线l ,切点为R ,点F 到切线l 的距离为2,求抛物线C 的方程;(2)求△ABC 面积的最小值.【答案】 (1) x 2=4y (2) 4p 2【解析】(1)设过点Q(0,-3)的抛物线C 的切线l :y =kx -3,联立抛物线C :x 2=2py(p >0),得x 2-2pkx +6p =0,则△=4p 2k 2-4×6p =0,得pk 2=6,∵F(0,p 2),F 到切线l 的距离为d =|p 2+3|√k 2+1=2, 化简得(p +6)2=16(k 2+1),∴(p +6)2=16(6p +1)=16(p+6)p∵p >0,∴p +6>0,得p 2+6p -16=(p +8)(p -2)=0,∴p=2.∴抛物线方程为x2=4y.(2)已知直线AB不会与坐标轴平行,设直线AB:y-y1=t(x-x1)(t>0),联立抛物线方程,得x2-2ptx+2p(tx1-y1)=0,则x1+x B=2pt,则x B=2pt-x1,同理可得x C=−2pt−x1.∵|AB|=|AC|,即√1+t2|x B-x1|=√1+1t2|x C-x1|,∴t(x B-x1)=x1-x C,即x1=p(t 2−1t)t+1.∴|AB|=√1+t2|x B-x1|=√1+t2(2pt-2x1)=2p√1+t2(t2+1)t(t+1).∵t2+1t≥2(当且仅当t=1时,等号成立),√t2+1 t+1=√t2+1t2+2t+1≥√t2+1t2+1+(t2+1)=√22(当且仅当t=1时等号成立),所以|AB|≥2√2p,△ABC面积的最小值为4p2.9(★★★★) 已知抛物线C:y2=2px(p>0),焦点为F,直线l交抛物线C于A(x1 ,y1),B(x2 ,y2)两点,D(x0 ,y0)为AB的中点,且|AF|+|BF|=1+2x0.(1)求抛物线C的方程;(2)若x1x2+y1y2=-1,求x0|AB|的最小值.【答案】(1) y2=2x(2) √24【解析】(1)根据抛物线的定义知|AF|+|BF|=x1+x2+p,x1+x3=2x D,∵|AF|+|BF|=1+2x D,∴p=1,∴y2=2x.(2)设直线l的方程为x=my+b,代入抛物线方程,得y2-2my-2b=0,∵x1x2+y1y2=-1,即y12y124+y1y2=−1,∴y1y2=-2,即y1y2=-2b=-2,∴b=1,∴y1+y2=2m,y1y2=-2,|AB|=√1+m2|y1−y2|=√1+m2⋅√(y1+y2)2−4y1y2=2√1+m2⋅√m2+2x D=x1+x22=y12+y124=14[(y1+y2)2−2y1y2]=m2+1,∴x0|AB|=22√m2+1⋅√m2+2令t=m2+1,t∈[1,+∞),则x0|AB|=2√t⋅√t+1=2√1+1t≥√24;即x0|AB|的最小值为√24.。
第一讲:圆锥曲线最值问题 (理科)典型例题分析:例1:已知P 是椭圆2214x y +=在第一象限内的点,A (2,0),B (0,1),O 为原点,求四边形OAPB 的例2:已知△OFQ 的面积为OF FQ m ⋅=(1m ≤≤OFQ ∠正切值的取值范围;(2)设以O 为中心,F 为焦点的双曲线经过点Q (如图),2||,(1)4OF c m c ==- 当 ||OQ 取得最小值时,求此双曲线的方程。
例3:已知椭圆221259x y +=,A (4,0),B (2,2)是椭圆内的两点,P 是椭圆上任一点,求:(1)求5||||4P A P B +的最小值;(2)求||||PA PB +的最小值和最大值例4:如图所示,设点1F ,2F 是22132x y +=的两个焦点,过2F 的直线与椭圆相交于A 、B 两点,求△1F AB 的面积的最大值, 并求出此时直线的方程。
例5:A 、B 是经过椭圆2222 1.x y a b+=(0)a b >> 右焦点的任一弦,若过椭圆中心O的弦//MN AB ,求证:2||MN :||AB 是定值例题答案:例题2解析:(1)设OFQ θ∠=||||cos()1||||sin 2OF FQ mOF FQ πθθ⎧⋅-=⎪⎨⋅⋅=⎪⎩tan θ⇒=6m ≤≤4tan 1θ-≤≤-(2)设所求的双曲线方程为221111221(0,0),(,),(,)x y a b Q x y FQ x c y a b-= >> =-则∴11||||2OFQ S OF y ∆=⋅=1y = 又∵OF FQ m ⋅=,∴2111(,0)(,)()1OF FQ c x c y x c c c ⋅=⋅-=-⋅=-)21,||4x OQx ∴= ∴==当且仅当4c=时,||OQ 最小,此时Q 的坐标是或22222266141216a ab b a b ⎧⎧-==⎪⎪∴ ⇒⎨⎨=⎪⎩⎪+=⎩,所求方程为22 1.412x y -= (借助平面向量,将三角形、圆锥曲线最值、求曲线方程、基本不等式等多个知识点有机的结合起来,综合考察学生应用相关知识点解题的能力例题3分析:(1)A 为椭圆的右焦点。