圆的面积 (3)
- 格式:doc
- 大小:32.50 KB
- 文档页数:3
《圆的面积》教学设计5教学内容:人教版六数上第66页、67页教学目标:1.了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。
能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。
2.经历圆的面积计算公式的推导过程,体验实践操作、逻辑推理的学习方法。
3.培养学生合作探究的意思,感悟数学知识的内在联系。
教学重点、难点:1.理解圆面积公式的推导过程.2.会正确计算圆的面积。
教学准备:课件、圆面积演示器、分组实验材料(圆形纸片、胶水、剪刀)、两个大小不同的圆教学过程:(课前游戏)猜谜:前面有一片草地(打一植物)草地上来了一群羊(打一水果)草地上有一群羊,突然来了一群狼(打一水果)师:我发觉大家刚才猜谜语时第一个猜得最困难,第二个第三个猜时脱口而出,这是为什么呢?有了解决一种问题的难舍难分,就可以用这种经验解决类似的问题。
数学学习中也常是这样的。
一、导入:师:请看屏幕,马总是被人们用一根缰绳拴在固定的地方,马就困惑了,它的活动范围有多大呢?它绕来绕去会在一个什么样的圈中?会形成什么样的形状?这个面有多大?面有多大,用数学上的语言或者词语描述就是指它的什么?这节课我们就来学习《圆的面积》。
(板书课题)二、认识圆的面积:1.师:老师这有一个圆,请看这个圆,什么是这个圆的面积呢?谁愿意上来比划比划?(出示教具)一学生上台比划。
师:圆表面的大小就叫做圆的面积。
2.师:老师还带来了一个圆,请你将这两个圆比较一下,你发现了什么?生:一个圆面积大,一个圆面积小。
师:那你发现圆的面积大小会与什么有关呢?结合这两个圆来好好观察观察。
生:半径或者直径越长,圆的面积就越大。
师:看来大家都知道了圆的面积大小与半径或者直径有关,但圆的面积究竟怎么样来计算呢,下面我们就一起来探究下。
三、观察与尝试猜测:1.(出示正方形与圆的课件)师:我们先用一个简单的办法来猜想一下圆面积的.公式。
以圆的半径r为周长画一个正方形,再画这个的三个,你能计算出这个大正方形的面积是多少吗?在圆中再画一个小正方形,小正方形的面积又是多少呢?生:大正方形的面积是4r,小正方形的面积是2r。
人教版数学六年级上册圆的面积教案(精选3篇)〖人教版数学六年级上册圆的面积教案第【1】篇〗一、教学内容:小学数学北师大版六年级上册第一单元“圆”的第三节——《圆的面积》二、教材分析圆的面积是在学生了解和掌握了圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。
而圆这样的曲边图形的面积计算,学生还是第一次接触到,如果学生完全自主地探索如何把圆转化成长方形或其他平面图形是有很大难度的,所以教材首先出示了估算图,再让学生利用学具进行操作,让学生自主发现圆的面积与拼成的长方形的面积的关系,推导出圆的面积计算公式。
所以本课的教学活动将化曲为直和极限的数学思想纳入到学生原有的认知结构之中,从而完成新知的构建。
三、学情分析学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比、推理的数学经验,并具有了转化的数学思想。
所以在教学中应注意联系现实生活,组织学生利用学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感体验和感受数学的价值。
四、教学目标1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。
2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。
3、在估一估和探究面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
五、教学重难点教学重点:圆面积计算公式的推导和应用教学难点:理解把圆转化为平行四边形,长方形推导出圆的面积的计算公式的过程。
六、教具准备:多媒体课件,等分好的圆形纸片。
七、教学流程(一)创设情境,激发兴趣。
师:红岸公园为了减轻工人们的负担,在公园的草坪上安装了许多个自动喷水头,它喷射的距离为5米,喷水头转动一周是什么图形?(生回答:圆形)师:喷水头转动一周可以浇灌多大的面积呢?(课件演示喷射的过程)这个面积就是谁的面积?(圆的面积)(板书:定义:我们把圆所占平面的大小叫做圆的面积)同学们会求圆的面积吗?这节课我们就来研究这个问题。
圆的面积第3课时与圆有关的组合图形的面积(1)◆教学内容:教科书第23页,求与圆有关的组合图形的面积。
◆教学提示:本节课是在学生学习了圆的面积计算之后安排的,学生在以前已经学习了长方形与正方形的面积计算,在此基础上学习与圆有关的组合图形面积的计算,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生综合能力。
让学生自主探索计算组合图形的基本方法,并在交流、讨论中开阔思路,修正想法,从而更好地解决生活中有关组合图形的实际问题教材中一共安排了两个例题,本节课学习例1.例1是两个图形(半圆和正方形)面积的组合,解答时突出它的主要思路是:半圆面积+正方形面积,用主要解题思路指导解题过程,关注对共用条件的分析。
(1.2米既是正方形的边长,又是圆直径)◆教学目标:1.知识与技能:通过计算窗户的面积,掌握求组合图形面积或周长的方法;通过计算花坛周围小路的面积,掌握求圆环面积的方法。
2.过程与方法:经历解决问题的过程,学会从不同的角度去分析解决生活中的现实问题,思考解决问题的不同策略和方案。
3.情感态度与价值观:体会学习圆的面积的现实意义和价值。
◆重点难点:教学重点:掌握求简单组合图形面积的方法。
教学难点:能将组合图形分解成基本图形。
◆教学准备:教具准备:多媒体课件学具准备:圆规、直尺、练习本等◆教学过程:(一)新课导入出示所学过的几何图形:长方形、正方形、平行四边形、三角形、梯形、圆。
让学生说说怎样求这些图形的面积?生活中,有些现实问题并不是直接求这些基本图形的面积。
例如:希望小学的阅览室有这样的窗户(呈现例1图),圆形花坛的周围有一条小路(呈现课堂活动第2题图)。
如何计算它们的面积?解决相关的问题呢?我们这节课就来研究这个问题。
【设计意图:复习学过的几种基本图形的面积计算方法,唤醒学生的旧知,为下面学习组合图形的面积计算作下铺垫。
】(二)探究新知投影出示例1情境图。
学校阅览室的窗户上面是半圆的,下面是正方形(如右图)。
人教版六年级数学《圆的面积》教学设计(优秀7篇)圆的面积教案篇一教学目标1、使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;2、培养学生动手操作的能力,启发思维,开阔思路;3、渗透初步的辩证唯物主义思想。
教学重点和难点圆面积公式的推导方法。
教学过程设计(一)复习准备我们已经学习了圆的认识和圆的周长,谁能说说圆周长、直径和半径三者之间的关系?已知半径,圆周长的一半怎么求?(出示一个整圆)哪部分是圆的面积?(指名用手指一指。
)这节课我们一起来学习圆的面积怎么计算。
(板书课题:圆的面积)(二)学习新课1、我们以前学过的三角形、平行四边形和梯形的面积公式,都是转化成已知学过的图形推导出来的,怎样计算圆的面积呢?我们也要把圆转化成已学过的图形,然后推导出圆面积的计算公式。
决定圆的大小的是什么?(半径)所以,分割圆时要保留这个数据,沿半径把圆分成若干等份。
展示曲变直的变化图。
2、动手操作学具,推导圆面积公式。
为了研究方便,我们把圆等分成16份。
圆周部分近似看作线段,其用自己的学具(等分成16份的圆)拼摆成一个你熟悉的、学过的平面图形。
思考:(1)你摆的是什么图形?(2)所摆的图形面积与圆面积有什么关系?(3)图形的各部分相当于圆的什么?(4)你如何推导出圆的面积?(学生开始动手摆,小组讨论。
)指名发言。
(在幻灯前边说边摆。
)①拼出长方形,学生叙述,老师板书:②还能不能拼出其它图形?学生可以拼出:刚才,我们用不同思路都能推导出圆面积的公式是:S=r2。
这几种思路的共同特点都是将圆转化成已学过的图形,并根据转化后的图形与圆面积的关系推导出面积公式。
例1 一个圆的半径是4厘米,它的面积是多少平方厘米?S=r2=3.1442=3.1416=50.24(平方厘米)答:它的面积是50.24平方厘米。
想一想;求圆面积S应知道什么?如果给d和C,又怎样求圆面积?圆的面积课堂教学设计篇二教学目标:⑴让学生经历探索圆面积公式的过程,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。
人教版六年级数学《圆的面积》教学设计优秀8篇圆的面积教案篇一教学目标1、通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
3、渗透转化的数学思想和极限思想。
教学重、难点:圆面积公式的推导与运用。
学具:16等份和32等份的圆形、剪刀、刻度尺、一张圆形纸片。
边长等于r正方形透明塑料片教学过程一、设疑导入,激发动机1、请同学们拿出准备好的圆,用手摸一摸,引导说说关于圆,都知道了什么,为学新知做好铺垫。
2、引导确定新的学习目标:还想知道圆的什么知识,适时揭示课题,(板书课题:圆的面积)3、引导简单回忆平行四边形、三角形、梯形面积公式的推导方法,鼓励学生自己动手,运用转化法探索圆面积的计算方法。
二、动手操作,探索新知1、猜想、引导,确定方法师:我们曾运用转化法探索出了平行四边形、三角形、梯形面积的计算公式,相信同学们也一定能把圆转化为学过的图形,从而探索出圆面积的计算方法。
同学们猜想一下,圆可能转化为哪些平面图形呢?(学生可能会想到长方形、平行四边形、三角形、梯形等。
)师:请同学们看手中的学具,想一想把圆怎样剪?剪成什么样的图形?(根据学生猜想,指导学生试着把圆平均分成8、16、32个相等的扇形,然后拼一拼,看能拼成什么图形。
)2、动手操作,尝试探究师请同学们动手剪拼一下,看到底能拼成什么图形。
(学生动手操作,小组合作探究)师谁能向大家汇报一下,你把圆拼成了什么图形?请你把拼好的图形放在实物投影上展示给大家看。
(各小组汇报,共享思维成果)3、课件演示,突破难点师课件演示,再现将圆16等份转化成近似的长方形的过程;再将圆32等份转化成近似的长方形的过程。
引导思考:(1)圆与有近似的长方形有什么关系?(2)把圆16等份和32等份后,拼成的图形有什么区别?(3)如果等分份数仅需增加,结果会怎样?师:课件进一步演示把一个圆等分成64份、128份…拼成长方形,是学生之观感知:将圆等分的份数越多,拼成的图形越接近于长方形。
章节测试题1.【答题】要剪一个面积是12.56平方厘米的圆形纸片,至少需要面积是()平方厘米的正方形纸片(π取3.14).A. 12.56B. 14C. 16D. 20【答案】C【分析】本题考察的知识点是圆的面积和正方形的关系.【解答】根据圆的面积公式,求出一个半径,最后得出正方形的面积.2.【答题】圆的半径扩大4倍,这个圆的面积扩大()A. 8B. 12C. 16【答案】C【分析】本题考察的知识点是圆的面积.【解答】根据圆的面积的计算公式圆的半径扩大4倍,那么面积扩大16倍.3.【答题】有大、小两个圆,大圆半径是5厘米,小圆半径是4厘米,小圆面积是大圆面积的()A.B.C. 倍【答案】B【分析】本题考察的知识点是圆的面积.【解答】根据圆的面积的计算公式,可以得出答案选B.4.【答题】如图,已知正方形的面积是36cm2,那么圆的面积是()A. 9πcm2B. 18πcm2C. 36πcm2【答案】A【分析】本题考察的知识点是圆的面积的计算.【解答】根据圆的面积计算公式,以及半径与直径的关系可以得出答案选A.5.【答题】一个直径3厘米的圆,和一个边长3厘米的正方形,它们的面积相比,().A.正方形面积大B.圆面积大C.无法比较D.面积一样大【答案】A【分析】正方形的边长和圆的直径都是3厘米,根据圆和正方形的面积公式算出它们的面积,求出圆和正方形的面积,比较即可解决问题.或画图解决(如下).【解答】正方形的面积:3×3=9(平方厘米),圆的面积:(平方厘米),9平方厘米>7.065平方厘米,所以正方形的面积大.故选A.6.【答题】计算如图阴影部分的面积,已知d=6厘米.【答案】3.87平方厘米【分析】阴影部分的面积是长6厘米,宽为6÷2=3厘米的长方形的面积减去半径为6÷2=3厘米的圆面积的一半,据此根据长方形的面积公式:和圆的面积公式:代入数据进行解答即可.【解答】解:(平方厘米),答:图中阴影部分的面积是3.87平方厘米.7.【答题】明明有一根长60厘米的铁丝围了一个最大的圆.亮亮说:“如果我画一个半径为10厘米的圆,肯定比你围的圆的面积大”.哪个圆的面积大呢?请你帮忙做出判断,并说明理由.【答案】亮亮画的圆的面积大.【分析】根据圆的周长公式:,求出半径为10厘米的圆的周长,与60厘米比较大小即可求解.【解答】解:3.14×10×2=62.8(厘米),因为62.8厘米>60厘米,所以亮亮画的圆的面积大.8.【综合题文】推导圆的面积.9.【答题】下面是推导圆的面积计算公式的示意图.当长方形的长是31.4cm时,圆的面积是______cm².(π取3.14)【答案】314【分析】圆的周长=长方形的长×2,圆的半径=圆的周长÷÷2,长方形的宽=圆的半径,圆的面积=长方形的长×长方形的宽.【解答】当长方形的长是31.4cm时,圆的周长为31.4×2=62.8(cm),所以圆的半径为62.8÷3.14÷2=10(cm),即长方形的宽为10cm,因此圆的面积为31.4×10=314(cm²).故此题的答案是314.10.【答题】在推导圆的面积计算公式时,可以把圆转化成近似于长方形来进行推导,这个长方形的长可以看作圆周长的一半.()【答案】✓【分析】根据圆面积公式推导的过程:把一个圆分成若干等份,拼成的图形近似于长方形,这个长方形的长相当于圆周长的一半,长方形的宽就是圆的半径,据此即可解答.【解答】在推导圆的面积计算公式时,可以把圆转化成近似于长方形来进行推导,这个长方形的长可以看作圆周长的一半,长方形的宽就是圆的半径.故此题是正确的.11.【答题】一个圆平均分成若干份后拼成的一个近似长方形(如下图),该圆的面积是______cm².(单位:cm,π取3.14)【答案】50.24【分析】一个圆平均分成若干份后拼成一个近似长方形,那么这个长方形的长近似等于圆的周长的一半.则圆的半径=长方形的长÷,圆的面积=×圆的半径×圆的半径.【解答】由图可知,这个长方形的长为12.56cm,即圆的周长的一半为12.56cm,则这个圆的半径为12.56÷3.14=4(cm),即长方形的宽是4cm,圆的面积与长方形的面积相等:12.56×4=50.24(cm²).故此题的答案是50.24.12.【答题】推导圆的面积计算公式时,把圆等分的越多,拼出的图形越接近______形,长方形的长相当于圆的______,宽相当于圆的______.(后两个空填“周长”“直径”“半径”或“周长的一半”)【答案】长方周长的一半半径【分析】此题考查的是圆的面积公式的推导.【解答】把一个圆平均分成若干份,可以拼成一个近似于长方形的图形,分得越小,拼成的图形就越接近长方形,长方形的长相当于圆周长的周长的一半,宽相当于圆的半径.故此题的答案是长方,周长的一半,半径.13.【答题】在推导圆的面积计算公式时,将圆分成32等份,拼成一个近似的长方形,已知长方形的周长比圆的周长多4分米,那么这个圆的周长是______分米,这个长方形的面积是______平方分米.【答案】12.56 12.56【分析】在推导圆的面积计算公式时,将圆分成32等份,拼成一个近似的长方形,它的周长比圆的周长多两个圆的半径.求出圆的半径,然后根据圆的周长公式求出其周长,长方形的长近似等于圆周长的一半,长方形的宽等于圆的半径,进而可以求出长方形的面积.【解答】圆的周长:长方形的长等于圆周长的一半:12.56÷2=6.28(分米),长方形的宽等于圆的半径:4÷2=2(分米),所以,长方形的面积为6.28×2=12.56(平方分米).故此题的答案是12.56,12.56.14.【答题】在推导圆的面积计算公式时,把一个圆分成若干等份后,拼成一个近似长方形,这个长方形的宽相当于()A. 圆的半径B. 圆的直径C. 圆的周长D. 圆周长的一半【答案】A【分析】根据圆面积公式推导的过程:把一个圆分成若干等份,拼成的图形近似于长方形,这个长方形的长相当于圆周长的一半,长方形的宽就是圆的半径,据此即可解答.【解答】把一个圆分成若干等份,拼成的图形近似于长方形,这个长方形的长相当于圆周长的一半,长方形的宽就是圆的半径.选A.15.【答题】在一个圆中,已知半径为,求周长的公式是______,求面积的公式是______.(填序号)A. B. C. D.【答案】A C【分析】此题考查的是圆的周长和面积.【解答】在一个圆中,已知半径为,求周长的公式是;求面积的公式是.故此题的答案是A,C.16.【答题】估计一下,下面方格纸中()的面积相等.A. 1和2B. 1和4C. 2和5【答案】C【分析】此题考查的是圆的面积.【解答】圆的面积,直径,所以只要两个圆的半径或直径相等,那么它们的面积就相等.由图可知,“圆1”的直径约占4.6格;“圆2”的直径约占4格;“圆3”的直径约占2.9格;“圆4”的直径约占4.3格;“圆5”的直径约占4格.即“圆2”与“圆5”的直径基本相等,所以“圆2”与“圆5”的面积基本相等.选C.17.【答题】将一个圆剪拼成一个近似的长方形(如下图),已知这个长方形的周长是82.8分米,圆的面积是______平方分米.(π取3.14)【答案】314【分析】此题考查的是圆的面积的推导,圆的面积的计算.【解答】由题可知,将一个圆剪拼成一个近似的长方形,长方形的周长=圆的周长+半径×2=×半径×2+半径×2=(+1)×半径×2,可以推出半径=长方形的周长÷(+1)÷2.长方形的周长是82.8分米,所以圆的半径为82.8÷(3.14+1)÷2=10(分米),圆的面积是3.14×10×10=314(平方分米).故此题的答案是314.18.【答题】在推导圆面积计算方法时,将圆沿半径剪开平均分成若干份,拼成一个宽与半径相等的近似长方形,已知长方形的长比宽多10.7厘米,圆的面积是______平方厘米.(π的取值为3.14)【答案】78.5【分析】此题考查的是圆的面积的推导.根据长方形的面积=长×宽,圆的周长解答.【解答】在推导圆面积计算方法时,将圆沿半径剪开平均分成若干份,拼成一个宽与半径相等的近似长方形,这个长方形的长是圆的周长的一半,即,已知长方形的长比宽多10.7厘米,即长方形的长为5+10.7=15.7(厘米),圆的面积就是长方形的面积,也就是5×15.7=78.5(平方厘米).故此题的答案是78.5.19.【答题】把一个圆剪拼成一个近似的长方形,如果剪拼成的长方形的长是18.84厘米,宽是6厘米,那么这个圆的周长是______厘米,面积是______平方厘米.(π取3.14)【答案】37.68 113.04【分析】由圆的面积的推导过程可知,圆的周长=长方形的长×2,圆的面积=长方形的面积.【解答】把一个圆剪拼成一个近似的长方形,如果剪拼成的长方形的长是18.84厘米,宽是6厘米,那么这个圆的周长是:18.84×2=37.68(厘米),面积是18.84×6=113.04(平方厘米).故此题的答案是37.68,113.04.20.【答题】把一个圆平均分成若干个相等的扇形(偶数份),拼成一个近似的长方形.已知长方形的周长比圆的周长多4cm,则圆的面积是______cm².(π取3.14)【答案】12.56【分析】此题考查的是圆的面积的推导. 把一个圆平均分成若干个相等的扇形(偶数份),拼成一个近似的长方形,长方形的长近似等于圆周长的一半,宽等于圆的半径,据此解答.【解答】已知长方形的周长比圆的周长多4cm,长方形的周长比圆的周长多一个直径的长度,即这个圆的直径是4cm,则半径是4÷4=2(cm).所以长方形的宽是2cm,长是圆周长的一半,即2×3.14×2÷2=6.28(cm),圆的面积=长方形的面积=长×宽=6.28×2=12.56(cm²).故此题的答案是12.56.。
第3课时圆的面积1.使学生建立圆面积的概念,通过猜测、操作、验证、讨论、归纳,使学生经历并理解圆面积计算公式的推导过程。
2.能正确地应用圆面积的计算公式进行圆面积的计算,并能解答有关圆面积的实际问题。
3.通过对圆的面积公式的推导,使学生进一步体会“转化”方法的价值,初步了解极限思想。
重点:圆面积的含义。
难点:圆面积公式的推导过程。
多媒体课件。
一、创设情境师:同学们,今天,老师带着大家去小区逛一逛。
课件显示:小区门口景色迷人→圆形亭子→用草皮铺成的圆形草坪→草坪上玩耍的小朋友→半圆形的湖→小区内一些娱乐项目、射击游戏的圆形靶纸→回到小区的圆形草坪。
二、探究新知1.揭示课题。
师:同学们,你在小区里看到了什么?(学生自由发言)师:老师步测了一下这个圆形草坪,老师的步长是0.618米,绕这个圆形草坪走一圈用了30步。
通过这些信息,你能知道什么?生1:我能用步长乘步数求出这个圆的周长。
生2:求出了圆的周长,就能求出圆的直径和半径了。
师:同学们说得很棒,请你们在练习本上算一算这个圆形草坪的周长以及直径和半径。
学生独立计算,集体订正。
师:已知每平方米草皮8元,要知道铺满这个圆形草坪需多少元的草皮还得知道什么?生:这个草坪占地多大。
师:求这个草坪占地有多大,你们知道是求什么吗?生1:草坪的地面面积。
生2:实际上就是圆的面积。
师:好,今天我们就一起来研究“圆的面积”。
(板书课题)2.明确概念。
师:什么是圆的面积呢?老师给每个同学发了一张练习纸,上面有一个圆,请你试着用水彩笔把这个圆的面积表示出来。
学生完成后展示学生涂色的圆,同学之间互相评价(是否画出来了,是否画得不完整)。
师:谁能用自己的话说一说什么是圆的面积。
小结:像这样围成的平面图形的大小叫做圆的面积。
3.探究公式。
(1)确定策略。
师:我们知道,圆的半径决定了圆的大小,那么圆的面积和半径之间究竟有怎样的关系呢?请同学们猜猜看。
师:同学们猜测得对吗?我们来想办法验证一下。
圆的面积教材第65、第66页的内容。
1.使学生理解圆的面积计算公式的推导过程,掌握求圆的面积的方法并能正确计算。
2.培养学生运用转化的思想解决问题的能力。
重点:掌握圆的面积的计算公式,能够正确地计算圆的面积。
难点:理解圆的面积计算公式的推导过程。
实物投影,各种图形的纸片。
1.我们学过哪些平面图形的面积计算公式?2.长方形、平行四边形和三角形的面积计算公式分别是什么?3.平行四边形的面积计算公式是如何推导的?小结:平行四边形面积计算公式的推导,给我们提供了一种研究平面图形面积计算公式的方法,即把所学的图形进行分割、拼摆,转化成学过的图形,用旧知识解决新问题。
今天,我们还要用转化的思想研究圆的面积。
1.明确圆的面积的概念。
(1)老师出示一个圆,提问:谁能联系我们学过的图形的面积说一说圆的面积是什么?学生回答,老师归纳:圆所围成的平面的大小叫作圆的面积。
(2)圆的大小是由什么决定的?(3)展示由“曲”变“直”的渐变图。
引导学生观察圆周曲线的变化情况。
把圆等分的份数越多,圆周曲线就越直,当我们继续分下去……圆周曲线就变成一条近似的直线段了,用这样的小块拼摆的图形就更近似于我们学过的图形。
2.学生动手操作,推导圆的面积计算公式。
为了研究方便,我们把圆等分成16份,其中的每一份都近似于等腰三角形。
它们的底是多少?(C)高是多少?(r)16(1)指导学生动手摆学具,并思考几个问题:你摆的是什么图形?你摆的图形的面积与圆的面积有什么关系?所摆图形的各部分相当于圆的什么?你如何推导出圆的面积计算公式?(2)学生动手摆学具,然后发言。
拼成长方形:老师说明:分的份数越多,每一份就越小,拼成的图形就越接近一个长方形。
出示教材第65页的图加以说明。
拼成的近似长方形的长和宽与圆的各部分有什么关系?从图中可以看出圆的半径是r,长方形的长是πr,宽是r。
长方形的面积=长×宽↓↓↓圆的面积=πr×r=πr2如果用S表示圆的面积,那么圆的面积计算公式就是S=πr2。
《圆的面积》教案
【教学目的】
1.通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式;
2.能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。
【重点】圆面积计算公式以及推导。
【教学过程
一、复习并引入课题。
1.口算:2π9.42÷π12.56÷π
2.已知圆的半径是2.5分米,它的周长是多少?
3.一个长方形的长是6.2米,宽是4米,它的面积是多少?
4.说出平行四边形的面积公式是怎样推导出来的?
5.出示场景图:这个圆形草坪的占地面积是多少平方米,你们会计算吗?
课题引入:我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。
二、新课讲授
1.圆的面积的含义。
问题:同学们还记得面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。
)以前学过长方形面积的含义是指长方形所围成平面的大小。
那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。
)
2.圆的面积公式的推导。
问题:怎样求圆的面积呢?(学生提出办法,老师引导学生一起分析)
问题:我们用面积单位直接去度量显然是行不通的。
那么我们怎么办呢?我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形。
怎样分割呢?(教师出示场景图)
问题:这三位同学是怎样分割的?你知道他们的做法吗?(学
生回答,老师给予肯定。
)
教师拿出圆的面积教具进行演示:
先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。
(学生试操作,把学具圆拼成一个平行四边形。
)再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。
强调:如果分的等份越多所拼的图形就越接近长方形。
问题:拼成的长方形的长和宽和圆的半径周长有什么关系呢?(学生回答,教师板书)
引导:这样这个长方形的面积就是圆的面积,你能求出这个圆的面积吗?
学生独立完成圆面积公式的推导:
总结:我们用S表示圆的面积,那么圆面积的大小就是:
再次强调:
(1)拼成的图形近似于什么图形?
(2)原来圆的面积与这个长方形的面积是否相等?
(3)长方形的长相当于圆的哪部分的长?
(4)长方形的宽是圆的哪部分?
(5)用S表示圆的面积,那么圆的面积可以写成:S=πr2 3.圆面积公式的应用。
师:我们回头看刚才的问题,圆形花坛的直径是20m,这个花坛占地多少平方米?
学生读题,问:这里要求圆形花坛的面积,条件是否具备?我们该怎样列式呢?
(学生独立完成,教师巡视,对有困难的学生给予辅导。
)
教师板演计算过程。
出示例2:光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是cm,它的面积是多少?
问题:你能利用内圆好外圆的面积求出环形的面积吗?
学生读题,引导学生思考:要求圆环的面积我们可以怎么办?题
目中给出的条件是否具备?怎样列式?(学生独立完成,老师选代表回答问题,在黑板上演示计算方法,集体纠错。
)
三、巩固练习。
1.根据下面所给的条件,求圆的面积。
半径2分米。
直径10厘米。
(1)先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)
(2)强调书写格式,运算顺序与单位名称。
总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式S=πr2计算。
四、课堂小结
总结:在日常生活和工农业生产中经常需要求圆的面积,譬如说:蒙古包做成圆形的是因为可以最大化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以最大化地吸收水分。
我们还可以再举出其他的一些例子,如装菜的盘子为什么要做成圆形的,杯子的横截面为什么是圆形的?大家需要多看多想!
另外,我们在前面也学习了如何求圆的周长,需要注意的是:
(1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。
前者是二维的概念,而后者是一维的概念。
(2)求圆面积的公式是S=πr2,求圆周长的公式是C=πd或C=2πr;
(3)计算圆的面积用面积单位,计算圆的周长用长度单位。
五、巩固应用:
69页的1、2题
六、拓展训练:
一棵树干的周长是125.6厘米,这棵树干的横截面的面积是多少?
七、作业:练习十六的1、2、5题。