国内外分布式能源发展现状
- 格式:doc
- 大小:18.00 KB
- 文档页数:4
国内外对分布式能源的定义
分布式能源是一种建在用户端的能源供应方式,既可独立运行,也可并网运行,而无论规模大小、使用什幺燃料或应用的技术。
分布式能源高效、节能、环保,目前许多发达国家已可以将分布式能源综合利用效率提高到90%以上,大大超过传统用能方式的效率。
由于这种能源利用方式正处于发展过程,因此无论是国内还是国外,在概念和名词术语的叙述和采用上均比较混乱。
国际分布式能源联盟WADE是这样定义分布式能源的:由下列发电系统组成,这些系统能够在消费地点或很近的地方发电(1)高效的利用发电产生的废能生产热和电(2)现场端的可再生能源系统(3)包括利用现场废气、废热以及多余压差来发电的能源循环利用系统。
这些系统归为分布式能源系统,而不考虑这些项目的规模、燃料或技术,及该系统是否联网等条件。
北京燃气集团给出的定义为:分布式能源是相对于传统的集中供电方式而言,是指将冷热电系统以小规模、小容量(数千瓦至50MW)、模块化、分散式的方式布置在用户附近,可独立地输出冷、热、电能(Cooling,。
国内外分布式能源发展现状国外分布式能源发展状况及政策支持(1)丹麦是世界上能源利用效率最高的国家,自1990 年以来,丹麦大型凝气发电厂容量没有增加,新增电力主要依靠安装在用户侧的、特别是工业用户和小型区域化的分布式能源电站(热电站)和可再生能源项目,热电发电量占总发电量的61.6%。
2005年7月,丹麦政府宣布计划铺设全球最长的智能化电网基础设施,这将使分布式能源系统成为丹麦主要的供电渠道。
丹麦对于分布式能源采取了一系列明确的鼓励政策,先后制定了《供热法》《电力供应法》和《全国天然气供应法》等,在法律上明确了保护和支持立场。
《电力供应法》规定,电网公司必须优先购买热电联产生产的电能,而消费者有义务优先使用热电联产生产的电能(否则将做出补偿)。
(2)1988年,荷兰启动了一个热电联产激励计划,制定了重点鼓励发展小型的热电机组的优惠政策。
实践证明,荷兰的分布式能源为电力增长做出巨大贡献,热电联产装机容量由1987年的2 700 MW猛增到1998年的7 000 MW,占总发电量的48.2%。
荷兰实行了能源税机制,标准为6.02欧分/kWh,但绿色电力可返还2欧分。
荷兰颁布了新的《电力法》,赋予分布式能源(热电联产)特别的地位,使电力部门须接受此类项目电力,政府对其售电仅征收最低税率。
由荷兰能源分配部门起草的《环境行动计划》中,电力部门将积极使用清洁高效能源技术以承担其对环境的责任。
其中分布式能源是最为重要的手段,将负担40%的二氧化碳减排任务。
(3)日本是亚洲能源利用效率最高的国家,自1981 年东京国立竞技场第一号热电机组运行起,截至2000 年,分布式能源项目共1 413个,总容量2 212 MW。
分布式能源能够在日本快速发展,关键是政府的有效干预。
1986年5月日本通产省发布了《并网技术要求指导方针》,使分布式能源可以实现合法并网。
1995年12月又更改了《电力法》,并进一步修改了《并网技术要求指导方针》,使拥有分布式能源装置的业主,可以将多余的电能反卖给供电公司,并要求供电公司为分布式能源业主提供备用电力保障。
国内外分布式能源发展现状.doc随着能源需求的不断增加,分布式能源逐渐成为全球范围内的热点话题,各国都在加快推进分布式能源的发展。
以下是国内外分布式能源发展现状的简要介绍。
随着分布式能源政策的加码,国内分布式能源市场迎来快速发展。
2019年国家能源局颁布了《分布式光伏发电政策(2019年版)》文件,明确提出逐步降低分布式光伏发电补贴标准和限制规模,同时支持智能化的分布式电网建设。
这促使分布式光伏发电行业快速发展,积极推广各类分布式光伏发电场地建设。
国内分布式风电、燃气、储能等多领域均表现出飞速发展的态势,成为推动低碳能源转型的重要力量。
目前,国内分布式能源发展还存在一些问题。
一方面,电网规划、监管等方面仍需进一步完善;另一方面,市场化运作机制有待建立。
不过总的来说,国内分布式能源发展前景广阔,具有重大的经济、社会和环境价值。
全球范围内,分布式能源也是备受关注的领域。
据国际能源署数据显示,全球分布式能源市场规模从2015年的700亿美元增长至2018年的1100亿美元,预计到2025年,市场规模将达到2300亿美元。
主要发展国家包括美国、欧洲、澳大利亚、加拿大等。
(1)美国美国是全球分布式能源发展最为成熟的国家之一,拥有大量的太阳能和风能潜力。
目前,美国的分布式能源主要集中在太阳能和风能领域,其中太阳能占比超过70%。
美国政府通过补贴和税收优惠等政策鼓励分布式能源的发展,并已经成立了分布式能源智能化协会、太阳能盟等机构,推动技术研发和行业自律发展。
(2)欧洲欧洲国家也在积极推广分布式能源的发展。
欧盟颁布的“2030气候变化和能源框架”明确规定,到2030年,应该实现至少27%的可再生能源消费占比。
德国是欧洲分布式能源市场最为成熟的国家之一,其分布式光伏发电量位居全球前列,已经计划到2030年前逐步取代化石燃料的发电。
另外,法国、意大利、比利时等国家也在积极推动分布式能源的发展。
(3)澳大利亚澳大利亚的分布式能源主要以光伏和风能为主,能源转型进程加速。
重要用户应急供电保障技术国内外发展现状重要用户的应急供电保障技术,在国内外研究较少,是该领域的一个前沿课题。
城市范围内是大量重要用户所在地,负荷高度集中,负荷密度很大,一旦城市电网遭遇危机引发大面积断电,这些重要用户的供电安全将要受到严重影响。
因此对城市电网而言,如何在应急过程中优先确保重要用户的供电安全是摆在城市电网规划设计和运行人员面前的一个富有挑战性的课题。
国外的城市供电应急管理体系非常完善,其组织机制主要包括应急机制、政策、法律、法规、行业规定等,重要用户的管理由政府和电力企业共同执行,应急电源的管理可以参照相关的电力法规、国际、国家或行业标准。
我国政府相关部门和电力企业已于2000年开始对国外发生的大面积断电事故开始关注,并已经给出了供电应急管理措施和应急预案方面的一些具体规定。
但政府与行业对重要用户的供电安全管理力度不够,重要用户的危机意识亟待提高。
1 国外经验发达国家基本上都是依据法律建立立体化、网络化的综合减灾和应急管理体系,从上到下常设专职机构,由相关专业人员组成抢险救援队伍,运用严格、高效的政府信息发布系统,明确政府职能及其与其它部门的合作事项,形成超前的灾害研究和事故预防机制,通过灾害意识的培养和全社会的应急培训获得更充足的应急准备。
国外在城网应急供电保障技术方面主要从两方面着手。
一方面,从规划角度至上而下考虑,通过加强主网和配网的安全性,适应性和灵活性,提高电网的供电裕度、负荷失电容忍程度来提高城市电网面对突发事件的综合预防能力。
另一方面,从用户端自下而上考虑,通过为重要用户配置应急电源增强用户的供电安全可靠性,保证重要用户的不间断供电和业务的连续性,从而提高电网抵御风险和应急抗灾能力。
主要相关研究包括通过对重要用户断电损失分析研究和应急电源系统的研究,实现配电网的供电保障。
以下是发达国家关于供电应急管理的研究方向:(1) 英国英国应急管理措施的实施不依赖国家层面的机构,一般是在突发事件发生后,由当地政府负责处理,但当灾难过于严重,超过当地政府的承受能力时,通常从邻近地区就近调度支援。
太阳能的利用现状及未来发展研究一、内容描述随着全球能源危机与环境问题日益严重,新能源研究与利用受到广泛关注。
太阳能作为一种清洁、可再生、永续的能源,其利用研究成为热点。
本文将介绍太阳能的利用现状及未来发展,并对发展趋势进行展望。
太阳能是指太阳产生的能量。
根据其直接利用方式,可以将太阳能划分为两大类:一是光伏发电,即利用太阳光电池将太阳光直接转化为电能;二是光热发电,即利用太阳光对工质进行加热,然后利用热力循环产生电能。
光伏发电市场在全球范围内快速发展。
光伏发电主要设备为太阳能电池板,其原理是利用太阳能光电池吸收太阳光,将太阳光能转化为电能。
据国际能源署(IEA)数据显示,全球光伏产量在过去十年中实现了显著增长。
光热发电也称为集热式太阳能发电,其原理是利用太阳光的热量加热工质产生高温高压蒸汽,驱动蒸汽涡轮机转动发电。
光热发电的主要技术形式包括槽式和塔式。
光热发电目前处于发展起步阶段,但已经开始在全球范围内得到应用。
随着全球对可再生能源的需求不断增长,太阳能市场有着巨大的发展潜力。
尤其在发展中国家,电网覆盖范围有限,太阳能作为一种分布式能源,可以提高能源供应的稳定性和可靠性。
随着科研实力的不断增强,太阳能技术将持续创新。
太阳能电池转换效率将达到新高,光热发电系统将实现更高的工作温度和更低的成本。
各国纷纷出台可再生能源政策,对太阳能发展给予大力支持。
德国、美国等国家实施了一系列扶持政策,促进太阳能产业的发展。
太阳能作为一种清洁、可再生的能源,在全球能源结构转型的大背景下,其研究和利用将继续深化。
光伏发电和光热发电技术将不断完善,市场需求将不断扩大,产业发展前景广阔。
1. 太阳能的重要性与广泛应用前景“太阳能的重要性与广泛应用前景”主要探讨了太阳能作为可再生能源的重要性,以及在未来的能源结构中其广泛应用的潜力。
太阳能作为一种清洁、可再生的能源,具有巨大的发展潜力。
随着科技的进步和成本的降低,太阳能的应用逐渐从理论走向现实,从小规模示范项目到商业化运行,成为推动世界能源转型的重要力量。
国内外分布式能源系统发展现状研究【摘要】分布式能源系统是能源系统发展的重要趋势,不同机构对于分布式能源系统概念有着不同的侧重点和界定。
美国、日本、欧盟是分布式能源系统发展最为迅速、市场推广最成功的国家和地区。
我国分布式能源的发展与国外发达国家相比有着较大的差距,但现有的分布式能源政策表明了我国将大力支持并推动这一领域的发展。
【关键词】分布式能源系统;发展现状;国内外【作者简介】冉娜,同济大学经济与管理学院硕士研究生,研究方向:低碳经济。
分布式能源系统从20世纪70年代末开始兴起于西方发达国家,并迅速发展,也受到了发展中国家的广泛重视。
全球能源危机与气候变化问题是发展分布式能源的宏观背景,分布式能源系统可利用多种能源,并将发电的气体余热用于制冷、供热,实现了能量的梯级利用,提高系统的能源利用率,起到调峰作用且减少了对环境的污染。
因为建设靠近用户,系统无需建设输变电设施和制冷、供热管道,减少投资和线损,具有良好的经济效益。
这些突出的特点让分布式能源系统成为重要的供能模式转变方向。
一、分布式能源的概念分布式能源系统在技术类别、应用场合、容量大小等诸多因素上都存在多样性,不同的国家或机构所采用的名词也有所差异。
以下总结了欧美一些机构对于不同范畴分布式能源系统的定义。
分布式供能(DistributedGeneration,DG):存在于传统公共电网以外任何能发电的系统,原动机包括了以各种能源类型为动力的发电系统。
分布式电力(DistributedPower,DP):在DG的技术基础上,能将电能通过蓄电池、飞轮、再生型燃料电池等将电能储存下来的系统。
分布式能源资源(DistributedEnergyResourc es,DER):在DG的概念上,包含了与公共电网相连接的系统,用户可将本地多余电能通过联网出售给公共电力公司,是更加广泛的概念。
国际能源署(IEA)(2002)将分布式能源系统定义为给客户就地提供产电或支持配电网连接到分布电压水平的服务。
分布式能源发电对电网的影响及面临的问题探讨目前,由于国家对绿色能源进行着大力的推广,可再生能源在我国东部平原及沿海地区的发展作为一个整体呈现出大规模集中接入的特点。
随着光伏发电和风力发电等间歇性可再生能源在电网中占的比重越来越大,由于受到天气、季节等因素的影响,它的出力波动的随机性将给电网的电压、电能质量、系统保护、损耗及供电可靠性形成非常大的威胁。
本文就分布式能源发电对电网的影响做了分析探讨,并且对其面临的问题也进行了阐述。
标签:分布式能源;电网;影响;面临的问题随着社会的进步和科学技术在21世纪的飞速发展,人们对分布式能源的兴产生了的广泛关注。
因为现代工业的快速迅速,所以对电力的需求也在不断的增加,环境问题已成为人们关注的焦点,目前,在环境保护方面新能源分布式发电非常有优势。
从未来的发展方面来看,分布式能源发电必将成为未来发电的主要形式。
分布式能源的基本想法其实古已有之,古人生炉取暖就体现了分布式能源的思想。
随着技术的进步,规模化的集中能源利用渐渐的把分散的能源利用模式所取代。
随着进一步的工业化和城市化发展,能源供应在经济发展中已经走到了一个瓶颈期,并且和能源利用有关的环保问题也被人们所广泛关注。
分布式能源作为一种方法来提高能源利用效率,而重新受到了国内外的广泛关注。
一、分布式能源发电的概念分布式能源系统是相对于能源集中生产来说的,它是在一个区域内通过综合运用一种能源转换技术来进行同时供电、热、冷等多种极端能源,从而使能源实现梯级利用和高效利用。
其中以天然气为主要的输入能量而把可再生燃料作为辅助的输入能量,把所有可以利用的资源都利用起来。
分布式能源的优点分别是:效率高且有利于促进能源的综合利用效率使能源综合利用效率高达90%以上。
具有环保性,特别把天然气、燃料电池、可再生能源作为燃料的热电联产系统,采用分布式能源有利于分散一部分污染使它资源化,从而实现减排的目标,来有效的抑制气候变暖。
分布式能源发电通常是指一种小型化、分散式、高效可靠的发电装置,它的发电功率在数千瓦至几十兆瓦,位于用户周围或在配电网中进行直接布置,能够对用户进行高效、独立和经济的供电。
微电网的基本概念及国内外发展1微电网的提出随着电力需求的不断增长,大电网在过去数十年里体现出来的优势使得其得以快速地发展,成为主要的电力供应渠道。
然而传统电力系统网络比较大,调度困难,造价高,而用户对电网的要求越来越高了。
目前几年里,世界上出现过几次比较重大的电网事故,充分显现出了目前电网的可靠性不够高,抗风险能力还不够强。
各种灾害或者事故随时可能发生,可能对电网造成严重的影响,所以在这种情况下如果停电将可能对国民经济政治军事等带来不可低估的损失,更可能会影响到社会的稳定,国家的安全。
因此,人们开始对电力系统的发展模式另辟蹊径。
全球许多国家在近20年来,建设了很多分布式发电厂,投入大量科研经费对分布式发电系统进行了大量的研究。
传统电力系统的经济性不够高,可靠性有待改进,而分布式发电正好提高了大电网的这些特性,分布式发电成为电力系统的重要发展趋势。
分布式发电有很多优势,适应了能源分布和分散的电力需求,比如污染少、可靠性高,能源利用效率高等,这些特点,使得整个电力系统更新设备要用的巨额投资得到了减少而且缓解了投资,并且它大大改善了大电网的供电稳定性,因为分布式电源是分散开的,位置比较灵活。
分布式发电尽管有很多优点,但是有诸多问题,使其不能充分发挥出优势。
比如有很多问题限制了自身的发展,控制困难,单机接人成本高是两个突出问题。
还有如果电力系统发生故障时其必须马上退出运行,不在工作,直到故障恢复。
因为减小对大电网的冲击,大系统往往采取隔离的方式来处置分布式发电。
还有由于结构上的原因,分布式电源发电能力不够强。
以上种种原因,分布式发电不能得到充分利用,所以新能源的利用发展间受到了限制。
微电网(Microgrid)出现了,它将小功率发电单元(通常数十千瓦)与储能装置以及负荷等连接起来,形成一个可以控制的系统。
它降低了DG的缺陷,同时结合发挥其优势,向用户供热供电。
微电网技术得到了快速的发展,这是因为电力电子技术的发展,还有控制理论的不断完善。
分布式能源规模化发展前景及关键问题摘要:分布式能源具有安全环保、高效清洁等优点,符合节能减排政策,已成为我国能源产业发展重点。
我国分布式能源具有较高发展价值、广阔的能源市场前景和巨大的发展潜力,分布式能源符合可持续发展的战略需求,对我国经济社会发展具有重要意义。
关键词:分布式能源;发展趋势;关键问题分布式能源是一种布置在用户侧的能源供应模式,它将能源生产消费融为一体,能为用户提供冷热电多种能源供应,具有就地利用、清洁低碳、多元互动、灵活高效等特征,是现代能源系统不可或缺的一部分。
一、分布式能源利用方式1、热冷电联产。
分布式能源的利用方式之一是热冷电联产,其最常见形式是燃气-蒸汽系统。
天然气(或煤层气等)燃烧产生1100℃以上的高温气体,进入燃气轮机作功发电。
用余热锅炉收集从燃气轮机排出的高温烟气余热,产生中压蒸汽推动蒸汽轮机发电或直接供暖(冬季)。
在夏季,采用溴化锂吸收式制冷技术,充分利用原用于冬季采暖的蒸汽进行供冷,即构成热电冷多联产系统。
2、可再生能源利用。
分布式能源的另一典型应用是可再生能源,如近用户端的小水电、光伏发电、风力发电、生物质能发电等。
这些可再生能源具有较大分散性,且利用规模小、不适于集中供能,而分布式能源系统为其经济利用提供了可能。
3、电能储存。
由于分布式系统供能的波动性大,需一定储能系统以跟踪负荷变化,减少对电网的冲击。
储能系统作用包括:①平抑功率波动,提高供能稳定性;②在发电单元出现故障时起到备用电源的过渡作用;③可有效实现对可再生能源的调度。
储能技术包括:蓄电池储能、超导储能、飞轮储能、电解水制氢储能等。
二、分布式能源发展趋势1、从总规模来看,分布式电源在未来电源中的比例将显著增加。
分布式电源具有清洁、就地平衡、高效率优势。
随着多重驱动因素的快速发展,将成为大机组大电网的有益补充。
为满足大量分布式电源接入要求,未来传统电力系统需加快向新一代电力系统升级换代。
2、在技术类型上,分布式电源将继续以分布式新能源为主,以燃气多联供为辅。
配电自动化国内外发展现状配电自动化国内外发展现状随着现代科技的不断进步和电力市场的快速发展,配电自动化技术得到了越来越广泛的应用。
本文将对国内外配电自动化的发展现状进行介绍和分析,并对未来发展趋势进行预测。
一、概述配电自动化是一种基于现代通信技术、网络技术和计算机技术的智能化配电管理系统,其主要功能包括监测、控制、保护和优化等。
通过实施配电自动化,可以提高电力系统的可靠性和安全性,降低线损和能耗,提高供电质量和服务水平。
二、国外配电自动化发展现状在欧美等发达国家,配电自动化技术已经得到了广泛应用。
许多电力公司已经实现了全面的配电自动化,其覆盖率达到了较高的水平。
例如,美国的配电自动化覆盖率已经超过了90%,日本的配电自动化覆盖率也达到了80%左右。
这些国家的配电自动化技术发展主要体现在以下几个方面:1、技术创新:不断推出新的配电自动化产品和技术,如智能配电网、能源互联网等,以满足市场需求和应对气候变化的挑战。
2、数据处理和分析:通过大数据技术和云计算技术,对配电系统运行数据进行处理和分析,以提高系统的智能化和自适应性。
3、用户互动:通过配电自动化系统提供的数据,与用户进行互动,提高服务质量和社会效益。
三、国内配电自动化发展现状与国外相比,我国的配电自动化发展相对滞后。
但是,随着电力市场的不断改革和智能电网的推广,我国在配电自动化方面也取得了一定的进展。
1、技术创新:我国在配电自动化技术方面不断进行创新,推出了符合我国国情的配电自动化系统和设备,如智能配电网设备、分布式能源接入技术等。
2、市场推广:我国政府加大了对配电自动化的支持力度,许多电力公司也开始积极推广和应用配电自动化技术。
3、服务提升:通过实施配电自动化,可以提高供电可靠性和服务质量,为用户提供更好的服务体验。
四、未来发展趋势随着电力市场的不断改革和智能电网的推广,配电自动化技术将在未来发挥更加重要的作用。
以下是配电自动化未来发展的几个趋势:1、物联网技术的应用:随着物联网技术的不断发展,未来的配电自动化系统将更加注重与物联网技术的结合,实现更广泛的智能化和自适应性。
十二五”发展规划,但是到目前为止,国内还没有专门关于分布式能源或天然气分布式能源的政策。
国家相关政策缺失与现有电力体制不允许并网、上网的制约,导致10多年来分布式能源在中国的发展相当缓慢。
今年3月1日起,由住建部批准公布的《燃气热电三联供工程技术规程》开始实施。
该规程适用于以燃气为一次能源,发电机总容量小于或等于15MW、新建、改建、扩建的冷热电分布式能源系统的设计、施工、验收和运行,并规定联供系统的年平均综合利用率应大于70%。
近来利比亚危机与日本核电站事故促使中国政府不得不重新考量调整新能源规划与利用比例。
根据国家能源局先前的规划,未来十年天然气分布式能源装机容量将增至5000万千瓦,而据专家透露,为弥补核电建设的“放慢速度”,此目标有望在“十二五”提前实现。
记者获悉,目前国务院法制办《能源法》,国家能源局油气司《天然气基础设施管理条例》与《天然气分布式能源管理规定》以及国家能源局新能源司《分布式发电管理规定》等都在加速起草中。
电网企业积极响应受国家能源局油气司委托,国网能源研究院于去年完成了《我国天然气分布式能源发展相关问题研究》。
记者了解到,由中国电力企业联合会编制的《“十二五”热电联产规划与分布式能源规划》目前已完成初稿,与此同时,西南电力设计研究院也已编制出一套发展分布式能源的相关规划。
遗憾的是,由于缺乏实际支撑,上述规划均有美中不足,还需进一步修正。
吴贵辉指出,电网公司要提高认识,为分布式能源上网创造条件。
近来电网公司的积极表现,也正印证着他们对分布式能源的态度。
据悉,国家电网企业标准《分布式电源接入电网技术规定》(Q/GDW4820—2010)已于去年8月发布并开始实施。
这样的技术标准在国内尚属首次,标准规定了通过35kV及以下电压等级接入电网的新建或扩建分布式电源接入电网时应满足的技术要求。
根据国网北京经济技术研究院、中国电机工程学会热电专业委员会高级工程师王振铭的介绍,国家电网公司在对分布式电源接入电网的相关技术进行研究的基础上,还制定出《分布式电源接入电网技术规定》。
世界各国能源消费结构随着全球气候变化和能源需求的日益迫切,世界各国的能源消费结构调整已成为当下的焦点。
本文将概述全球能源消费结构的现状,并针对几个主要国家探讨其能源消费构成、调整措施及成效,最后总结世界各国能源消费结构调整的重要性和挑战,并提出未来可能的解决方案和前景。
一、全球能源消费结构现状全球能源消费结构呈现出以化石能源为主,核能与可再生能源为辅的格局。
其中,煤炭、石油和天然气占据了全球能源消费的绝大部分。
然而,随着全球气候变化和环境问题的日益严重,这种以化石能源为主的消费结构面临严峻挑战。
二、世界各国能源消费结构调整措施及成效1、美国美国的能源消费结构以煤炭、石油为主,近年来逐渐向天然气、核能和可再生能源转型。
2019年,美国能源消费结构中煤炭占比仍高达25%,但天然气和可再生能源的消费占比正逐年上升。
此外,美国还通过大力推进能源技术创新和立法等手段,加速能源消费结构的调整和优化。
2、中国中国的能源消费结构以煤炭为主,石油、天然气、核能和可再生能源为辅。
近年来,中国政府已开始大力推进能源结构调整,通过实施煤电改造、发展清洁能源等措施,降低煤炭消费占比,提高清洁能源消费比重。
3、印度印度的能源消费结构以煤炭为主,石油、天然气和核能紧随其后。
近年来,印度政府已着手调整能源消费结构,大力发展清洁能源和可再生能源。
例如,印度计划在2030年前实现可再生能源发电能力达到50%的目标。
4、其他国家日本、韩国和欧洲等国家也在积极调整能源消费结构。
这些国家主要是通过提高核能、天然气和可再生能源的消费占比,降低对化石能源的依赖。
例如,欧洲联盟已制定目标,到2030年实现可再生能源占比达到32%。
三、世界各国能源消费结构调整的重要性和挑战世界各国能源消费结构的调整对于应对全球气候变化、减少环境污染、促进可持续发展具有重要意义。
然而,这一调整也面临着许多挑战,如技术突破、政策支持、经济成本等。
此外,各国的能源消费结构调整还受到资源禀赋、发展阶段等多种因素的影响。
国内外分布式能源发展现状
国外分布式能源发展状况及政策支持
(1)丹麦是世界上能源利用效率最高的国家,自1990年以来,丹麦大型凝气发电厂容量没有增加,新增电力主要依靠安装在用户侧的、特别是工业用户和小型区域化的分布式能源电站(热电站)和可再生能源项目,热电发电量占总发电量的61.6%。
2005年7月,丹麦政府宣布计划铺设全球最长的智能化电网基础设施,这将使分布式能源系统成为丹麦主要的供电渠道。
丹麦对于分布式能源采取了一系列明确的鼓励政策,先后制定了《供热法》、《电力供应法》和《全国天然气供应法》等,在法律上明确了保护和支持立场。
《电力供应法》规定,电网公司必须优先购买热电联产生产的电能,而消费者有义务优先使用热电联产生产的电能(否则将做出补偿)。
(2)1988年,荷兰启动了一个热电联产激励计划,制定了重点鼓励发展小型的热电机组的优惠政策。
实践证明,荷兰的分布式能源为电力增长做出巨大贡献,热电联产装机容量由1987年的2 700 MW猛增到1998年的7 000 MW,占总发电量的48.2%。
荷兰实行了能源税机制,标准为6.02欧分/kWh,但绿色电力可返还2欧分。
荷兰颁布了新的《电力法》,赋予分布式能源(热电联产)特别的地位,使电力部门须接受此类项目电力,政府对其售电仅征收最低税率。
由荷兰能源分配部门起草的《环境行动计划》中,电力部门将积极使用清洁高效能源技术以承担其对环境的责任。
其中分布式能源是最为重要的手段,将负担40%的二氧化碳减排任务。
(3)日本是亚洲能源利用效率最高的国家,自1981年东京国立竞技场第一号热电机组运行起,截至2000年,分布式能源项目共1 413个,总容量2 212 MW。
分布式能源能够在日本快速发展,关键是政府的有效干预。
1986年5月日本通产省发布了《并网技术要求指导方针》,使分布式能源可以实现合法并网。
1995年12月又更改了《电力法》,并进
一步修改了《并网技术要求指导方针》,使拥有分布式能源装置的业主,可以将多余的电能反卖给供电公司,并要求供电公司为分布式能源业主提供备用电力保障。
此外,分布式能源业主不仅能够得到融资、政府补贴等优惠政策,还能享受减免税等鼓励。
(4)美国在1978年颁布公共事业管理政策法后,正式开始推广建设分布式能源系统。
目前,美国已有6 000多座分布式能源站。
美国计划到2020年一半以上新建办公或商用建筑采用分布式能源系统,同时1.5%现有建筑进行改建分布式能源站。
按照美国能源部CCHP 2020纲领的描述,部分新建建筑采用CCHP后,美国CO2可以减排19%。
1987年美国颁发能源法,明确电力公司必须收购热电联产的电力产品,其电价和收购电量以长期合同形式固定。
并于2001年为热电联产系统提供税收减免和简化审核等优惠政策。
美国西部各州的电力企业已开始将提高能源利用率列为长期资源投资战略中的重要一环。
在华盛顿州,电力公司PG&E计划通过投资研发高效节能技术来增强分布式能源系统,通过分布式能源系统来满足未来50%的能源需求。
3.2 我国分布式能源发展现状
我国分布式能源系统的应用刚刚起步,国内的一些科研单位、高校、供电部门等正在开展这方面的研究,有些已有工程及产品,如中科院在西藏建立了多座小型太阳能光伏发电系统(总量达420 kW)。
另外,还开始了分布式能源的模型研究、分布式能源并网系统研究、储能产品的开发等。
随着我国能源结构的调整及天然气在能源利用中比重的不断增加,以及风能、太阳能、生物能源发电的兴起,分布式供电系统在我国广泛引起重视,目前,我国以天然气为燃料的分布式能源系统建设已进入实质性开发实施阶段,在北京、上海、广州等大城市的居民小区、商城楼宇、大学城都有一批热、电、冷联产示范工程投运。
如:上海浦东国际机场能源中心4 000 kW燃气轮机热电联供项目;上海黄埔区中心医院1 000 kW燃气轮机热电联供项目;
北京中关村软件园热电冷联产项目等。
另外新的北京南站的能源中心使用的电力燃气发电机组,单台持续输出功率1 570 kW,并且和电网并联,成为国家863课题的示范工程之一。
为推动分布式能源的发展,我国政府及其相关部门制定了热电联产的专项规定。
《中华人民共和国节约能源法》第39条明确,国家鼓励发展下列通用节能技术;推广热电联产、集中供热;提高热电机组的利用率;发展热能梯级利用技术,热、电、冷联产技术和热、电、煤气三联供技术,提高热能综合利用率。
原国家计委、原国家经贸委、建设部、国家环保总局“关于发展热电联产的规定”中曾明确提出:以小型燃气发电机组和余热锅炉等设备组成的小型热电联产系统,具有效率高、占地小、保护环境、减少供电线损和应急突发事件等综合功能,在有条件的地区应逐步推广。
在国家发展改革委《能源发展“十一五”规划》中,电力工业发展重点包括推进热电联产、热电冷联产和热电煤气多联供。
《2010年热电联产发展规划及2020年远景发展目标》提出:到2020年,全国热电联产总装机容量将达到2亿kW,其中城市集中供热和工业生产用热的热电联产装机容量都约为1亿kW。
预计到2020年,全国总发电装机容量将达到9亿kW左右,热电联产将占全国发电总装机容量的22%,在火电机组中的比例为37%左右。
国内外分布式能源应用情况
美国:电力公司必须收购热电联产的电力产品,其电价和收购电量以长期合同形式固定。
为热电联产系统提供税收减免和简化审批等优惠政策。
截止2002年末,美国分布式能源站已近6000座。
美国政府把进一步推进“分布式热电联产系统”的发展列为长远发展规划,并制定了明确的战略目标:力争在2010年,20%的新建商用或办公建筑使用“分布式热电联产”供能模式;5%现有的商用写字楼改建成“冷热电联产”的“分布式热电联产”模式。
2020年在50%的新建办公楼或商用楼群中,采用“分布式热电联产”模式,将15%现有建筑的“供能系统”改建成“分布式热电联产”模式。
有报道称,美国能源部计划在2010
年削减460亿美元国家电力投资,采取的办法是加快分布式能源发展。
美国能源部计划,2010年20%的新建商用建筑使用冷热电三联供发展计划,2020年50%的新建商用建筑使用冷热电三联供发展计划。
欧盟:据1997年资料统计,欧盟拥有9000多台分布式热电联产机组,占欧洲总装机容量的13%,其中工业系统中的分布式热电联产装机总容量超过了33GW,约占热电联产总装机容量的45%,欧盟决定到2010 年将其热电联产的比例增加1倍,提高到总发电比例的18%。
丹麦:热电上网;1MW以上燃煤燃油锅炉的天然气热电联产改造项目享受政府30%的补贴;对热电工程给予低利率优惠贷款;将环保所得税作为投资款返还工商业;对工商业的天然气热电联产项目发电价格补贴。
法国:对热电联产项目的初始投资给予15%的政府补贴。
英国:免除气候变化税、免除商务税、高质量的热电联产项目可申请政府关于采用节约能源技术项目的补贴金。
荷兰:建立热电联产促进机构;热电联产的发电量优先上网
日本:重视节能工作,节能系统的研究程度很高,以天然气为基础的分布式冷热电联供项目发展最快,而且应用领域广泛。
日本政府从立法、政府补助、建立示范工程、低利率融资以及给予建筑补助金等角度来促进能源开发及节能事业的发展。
对热电联产项目给予诸多减免税。
截止2000 年底,已建热电(冷)系统共1413个,平均容量477kW,主要是小型系统。
我国政府将天然气的开发和利用作为改善能源结构,提高环境质量的重要措施。
西气东输、广东进口液化天然气、东海天然气开发等大型项目的全面实施,推动了全国天然气的建设。
北京、上海等城市已经采取一些优惠政策鼓励冷热电三联供项目的发展。
到目前为止已建成上海浦东国际机场、北京燃气大楼、北京燃气集团次渠门站大楼等的项目。