国外分布式能源发展状况
- 格式:docx
- 大小:347.71 KB
- 文档页数:17
国外电力系统大电网发展趋势分析1 国外常规电网发展情况分析由于电力交易需求的发展和不同电源互补调剂的需要,国外常规电网同步网的规模有增大的趋势。
(1)北美电网互联情况北美电力系统包括了美国东部、西部和得克萨斯以及加拿大魁北克4个互联系统。
美国东部、西部和得克萨斯3大系统之间只有非同步联系。
东部电力系统和西部电力系统分别与加拿大的几个地区电力系统并网运行,西部的加利福利亚电网和南部得克萨斯电网与墨西哥电网连接。
加拿大、美国、墨西哥三国主要因能源构成不同和电力交易需求的发展促进了电网互联。
新英格兰的大部分是燃油发电机及核电,电价比较高,因此从加拿大的新不伦瑞克和魁北克引入水电。
魁北克和安大略的水电供给纽约和新泽西地区。
在1989-1990年加拿大干旱时期,纽约向魁北克送电。
美国西北部从加拿大不列颠哥伦比亚进口水电,输送到整个西部,主要是加利福尼亚地区。
加州还从墨西哥进口地热电力,按照固定的协议送电。
西南部地区基本自给自足,只与墨西哥有少量交换。
国际互联一般作为后备。
加拿大和美国各地区之间已建有许多联络线。
1998年统计,在美国-加拿大之间有79条输电线,美国-墨西哥之间有27条输电线,大部分为交流输电线路。
最大的输电项目是丘吉尔瀑布电站从拉布拉多至魁北克及美国新英格兰,通过长期合同输送丘吉尔瀑布发出的电力。
美国西部电网的南部加利福尼亚州与墨西哥之间也有三条230kV线路和一条69kV联络线路,德克萨斯和墨西哥之间有几条138kV线路和一些其他线路。
(2)巴西电网互联情况巴西水电资源和电力负荷中心分布不均衡,因此采取加强电网互联的措施,以实现能源的传输和利用。
巴西电网结构按区域可分为南部电网、东南及中西部电网,北部和东北部电网,通过互联形成全国同步电网。
其中南部地区-东南部地区电网通过750kV伊泰普交流干线实现同步互联。
北部-东北部地区电网由单回500KV的交流线路的互联。
北部-南部通过单回500KV交流线路互联,实现跨流域补偿。
电源国外发展现状及未来趋势分析电源作为现代电子设备的核心组成部分,对各行各业的发展起着至关重要的作用。
在全球化的背景下,电源技术正不断发展和进步,为各个国家和地区的经济发展提供了强有力的支撑。
本文将对电源国外发展现状及未来趋势进行分析,以帮助我们更好地了解电源行业在全球范围内的动态和潜力。
首先,我们来分析电源国外发展的现状。
目前,电源市场呈现出以下几个主要特点:1. 高效能电源的需求日益增长:环境保护和节能减排已成为各国政府的重要政策目标。
因此,对于高效能电源的需求日益增长。
例如,欧洲减少温室气体排放的目标要求各个行业使用更加节能的电源设备,从而推动了高效能电源在欧洲市场的快速发展。
2. 可再生能源电源的兴起:随着全球可再生能源的推广和应用,太阳能、风能等可再生能源电源在国外市场得到了广泛应用。
世界各国纷纷制定能源政策,鼓励可再生能源的发展,这为可再生能源电源行业提供了巨大的商机。
特别是在欧洲和北美市场,可再生能源电源已成为主流。
3. 电动车充电设备的需求增长:随着电动汽车的普及,对电动车充电设备的需求也在迅速增长。
各个国家纷纷制定电动车推广政策,建设充电桩网络,并提供相应的优惠政策。
这为电源行业提供了新的增长点,并促使各大企业加大对电动车充电设备的研发和生产。
其次,我们来讨论电源国外发展的未来趋势。
根据目前的市场动态和技术发展方向,可以预见未来电源行业将呈现以下几个趋势:1. 绿色环保电源的需求将持续增长:随着全球环境问题的日益突出,对电源设备的环保要求也会进一步提高。
未来,绿色环保电源将成为市场的主流,高效能和低功耗的产品将会更受欢迎。
因此,企业应不断加大对绿色环保电源的研发投入,不断提升产品的能效和环保性能。
2. 智能电源的发展势头迅猛:随着人工智能、物联网和大数据技术的不断发展,智能电源行业将迎来新的发展机遇。
未来的电源设备将更加智能化、自动化,并具备更强的远程监控和控制能力。
例如,智能家居将成为未来住宅电源市场的重要驱动力。
国内外分布式能源发展现状国外分布式能源发展状况及政策支持(1)丹麦是世界上能源利用效率最高的国家,自1990 年以来,丹麦大型凝气发电厂容量没有增加,新增电力主要依靠安装在用户侧的、特别是工业用户和小型区域化的分布式能源电站(热电站)和可再生能源项目,热电发电量占总发电量的61.6%。
2005年7月,丹麦政府宣布计划铺设全球最长的智能化电网基础设施,这将使分布式能源系统成为丹麦主要的供电渠道。
丹麦对于分布式能源采取了一系列明确的鼓励政策,先后制定了《供热法》《电力供应法》和《全国天然气供应法》等,在法律上明确了保护和支持立场。
《电力供应法》规定,电网公司必须优先购买热电联产生产的电能,而消费者有义务优先使用热电联产生产的电能(否则将做出补偿)。
(2)1988年,荷兰启动了一个热电联产激励计划,制定了重点鼓励发展小型的热电机组的优惠政策。
实践证明,荷兰的分布式能源为电力增长做出巨大贡献,热电联产装机容量由1987年的2 700 MW猛增到1998年的7 000 MW,占总发电量的48.2%。
荷兰实行了能源税机制,标准为6.02欧分/kWh,但绿色电力可返还2欧分。
荷兰颁布了新的《电力法》,赋予分布式能源(热电联产)特别的地位,使电力部门须接受此类项目电力,政府对其售电仅征收最低税率。
由荷兰能源分配部门起草的《环境行动计划》中,电力部门将积极使用清洁高效能源技术以承担其对环境的责任。
其中分布式能源是最为重要的手段,将负担40%的二氧化碳减排任务。
(3)日本是亚洲能源利用效率最高的国家,自1981 年东京国立竞技场第一号热电机组运行起,截至2000 年,分布式能源项目共1 413个,总容量2 212 MW。
分布式能源能够在日本快速发展,关键是政府的有效干预。
1986年5月日本通产省发布了《并网技术要求指导方针》,使分布式能源可以实现合法并网。
1995年12月又更改了《电力法》,并进一步修改了《并网技术要求指导方针》,使拥有分布式能源装置的业主,可以将多余的电能反卖给供电公司,并要求供电公司为分布式能源业主提供备用电力保障。
楼宇式分布式能源的若干方面探讨1.发展背景分布式能源是一种供能形式,其定义是建立在用户侧,直接向用户提供冷、热、电等多种能量形式的一种多联产能源系统。
分布式能源兴起于上个世纪70年代初,主要分布在高度重视节约能源和保护环境的欧美发达国家。
到上个世纪90年代末期,我国也出现了类似于分布式能源的供能单位。
从那时算中国的分布式能源到现在也有近20年的发展历史。
2004年,国家能源局的文件中首次使用“分布式能源系统”一词。
在我国发展分布式能源的目的是为了调整和改善目前高耗能、低效率、重污染的能源结构。
2.发展现状1)国内发展现状十几年来,我国已建成40多个天然气分布式能源项目,目前约半数在运行。
其中,典型的区域分布式能源系统为广州大学城项目,楼宇式分布式能源系统包括上海浦东国际机场能源中心、上海黄浦区中心医院等。
但也有项目因电力并网、效益或技术等问题处于停停顿状态,例如北京南站在2008年投入使用后,其冷热电三联供的并网手续直到2012年才批下来,但由于设备改造仍未完成,并没有实现真正的并网,只不过相当于“空调”的功能。
我国发展天然气分布式能源最主要地区包括北京、上海、广州等。
上海市于2008年11月15日发布了《上海市分布式供能系统和燃气空调发展专项扶持办法》,对分布式供能系统和燃气空调项目单位给予一定的设备投资补贴,并优先保障天然气供应。
其中,分布式供能系统按照1000元/kw补贴,燃气空调按100元/kw制冷量补贴。
目前,上海已建成浦东国际机场一期工程、闵行中心医院、华夏宾馆、奥特斯(中国)有限公司、711研究所莘庄研发基地、航天能源飞奥基地、申能能源中心,老港垃圾场(沼气)、虹桥商务区公共事务中心等分布式能源项目。
广东省也将合理布局建设工(产)业园区冷热电联供项目和分布式能源项目列入“十二五”规划纲要,2012年6月发布的《广州市热电联产和分布式能源站发展规划》中显示,未来将在广州市建设16个区域分布式能源站、33个商贸及楼宇分布式能源站,其中,“十二五”期间拟建成10个左右分布式能源站。
分布式能源系统及可再生能源科技发展随着能源需求的不断增长和环境问题的日益严重,分布式能源系统及可再生能源科技发展已成为全球能源领域的热门话题。
分布式能源系统是指将能源产生和消费过程分散到多个地点,以减少能源传输和分配损失、提高供能可靠性的能源系统。
而可再生能源科技则是指利用自然界中取之不尽、用之不竭的能源来源,如太阳能、风能、水能等,以减少对有限资源的依赖,降低环境污染和气候变化。
随着技术的进步和全球对可再生能源的共同关注,分布式能源系统正在迅速发展。
首先,分布式能源系统具有更高的可靠性。
相比于传统的中央化能源系统,分布式能源系统由多个能源设备组成,如果其中一个设备出故障,其他设备可以继续供能,确保能源的稳定供应。
而且,分布式能源系统可以避免单一能源来源耗尽或断供的问题,使能源供应更加稳定可靠。
其次,分布式能源系统能够提高能源利用效率。
传统的中央化能源系统需要将能源从发电厂输送到使用地点,这过程中会有能源传输损耗。
而分布式能源系统将能源产生和消费过程集中到同一个地点,减少了能源传输距离,提高了能源利用效率。
尤其是在城市中,分布式能源系统可以将能源产生设备安装在建筑物上,使电力消耗直接从建筑物内部得到满足,进一步减少能源传输损耗。
另外,分布式能源系统还能够降低能源消耗与环境污染。
可再生能源科技的应用使得分布式能源系统可以使用太阳能、风能和水能等清洁能源进行发电,减少了对传统化石能源的依赖。
与此同时,传统能源系统在能源生产过程中会排放大量的二氧化碳等温室气体,而可再生能源科技的应用可以显著降低这些排放,减少环境污染和气候变化对地球的影响。
分布式能源系统及可再生能源科技的发展离不开政府的支持和推动。
政府可以通过出台各项政策和法规,鼓励和支持分布式能源系统的建设与运营。
例如,政府可以提供财政补贴,降低分布式能源系统的建设和运营成本,以吸引更多投资者和企业进入这一领域。
同时,政府还可以建立相关的技术研发机构和实验室,推动可再生能源科技的创新与发展,促进分布式能源系统的智能化、高效化。
德国分布式能源发展经验浅析作者:李秀云来源:《风能》2014年第11期近些年,随着环境、气候变化,能源供应问题日益严峻,世界各国都把加大可再生能源开发利用作为重要发展方向,其中,分布式能源因变负荷性灵活、初投资低、供电可靠性高、输电损失小和适合可再生能源发展等特点,受到了各国的青睐,特别是欧洲的德国,在成功发展风电经验的基础上,以政策为导向,以推进智能电网和存储技术研发等为手段,极大促进了本国分布式能源的发展,这对于致力于改善能源结构、促进能源消费革命的中国,具有极其重要的借鉴意义。
德国分布式能源应用的经验近几年,随着风能、太阳能、生物质能比例的不断增加,德国能源系统发生了显著变化,分布式可再生能源成为德国国家电力供应的重要组成部分,为提高可再生能源电力在能源中的比例,大力发展分布式能源供应,成为德国能源结构调整的主要工作内容,除出台一系列的政策支持外,运用信息、通讯技术,有效平衡电力供给与需求的智能电网技术和高效能储能技术,也成为德国发展分布式可再生能源的重要驱动。
一、政策的大力支持长期以来,德国传统能源依赖煤炭和核能。
随着能源危机的出现、温室气体减排压力日益增加,德国的能源方针发生了较大转变。
主要是积极发展可再生能源、大力利用低碳能源,在这背景下,德国通过制定法律等措施,使分布式应用的热电联产得到了长足发展。
2002 年,德国制定了热电联产(CHP)法,规定电网运行商必须与CHP 并网,同时以标准电价收购CHP的上网电量。
2007年德国修订CHP 法,规定电网运行商有义务接纳CHP电厂,并且予以优先调度,原有奖励措施延伸到2016年,并取消了容量限制。
此外,德国对于运用CHP改造传统供热锅炉的工业企业,凡负荷率超过70%可免交环境保护税,并按德国《可再生能源供热法》规定,新建大楼必须使用部分可再生能源供热。
若安装CHP,可以视同可再生能源供热。
德国的CHP 可以适用《可再生能源法》规定的优惠政策。
国外分布式能源发展状况一、分布式发电概况分布式发电是指位于用户所在地附近的,所生产的电力除由用户自用和就近利用外,多余电力送入当地配电网的发电设施、发电系统或有电力输出的多联供系统;分布式发电形式多种多样,因资源条件和用能需求而异,发电方式包括三大类:1、天然气分布式能源,主要是热电联产和冷热电多联供等;2、可再生能源分布式发电:主要包括小型水能、太阳能、风能、生物质能、地热能等;3、废弃资源综合利用,涵盖工业余压、余热、废弃可燃性气体发电和城市垃圾、污泥发电等;由于发达国家的热电联产主要采用天然气在用户端或靠近用户区域发电供热,故均被纳入分布式能源;“国际热电联产联盟”已将其名字更改为“国际分布式能源联盟”WADEWorld Alliance Decentralized Energy,Decentralized在英文中强调了分散化或非集中化的含义,是受到“互联网革命”去中心化的影响,而Energy强调并非单一供电,能源就地供应的种类可以是多样性的;但该组织更加侧重天然气为燃料的分布式能源,兼顾了燃煤的热电联产,未覆盖中小水电等可再生能源发电;据统计,世界主要国家及地区的热电联产CHP2006年装机容量已达到32,920万千瓦表-1;美国将分布式能源称为Distributed Energy或DERDistributed EnergyResources,Distributed虽然也是指“分布式”,但是更多地应用于互联网式的分布信息处理分散化的扁平式解决方案,显示了能源行业受到互联网革命的启迪,暗喻了这些分布在用户端或资源现场的系统是相互联系或相互连接的,更向一个网络化的能源系统;加入Resources一词,反应了人们将阳光普照的可再生能源和分散化的废弃资源视为一种资源,充分涵盖的可再生能源和废弃能源资源的分散化利用;全球分布式风电2008年装机容量达到万千瓦表-2;2010年底,全球光伏发电装机总量高达3,950万千瓦表-3,其中日本、欧洲等地分布式光伏发电位居世界前列;国外分布式能源的发展主要是通过支持市场化的独立发电商IPP和能源服务商ESCO为用户提供了专业化的能源服务与节能服务,因地制宜、因需而异、因势利导,建设个性化的能源梯级利用设施,转变了传统低效的所谓“集约化”、“规模化”的能源生产供应模式,直接对社会分工进行了重构,为未来不断提高能源利用效率和大量利用可再生能源,吸引更多企业和个人参与清洁能源供应和提高能效,推动信息技术与能源系统的整合优化进行了制度设计和法律保障;美国、欧洲和日本在先进的分布式发电基础上推动智能电网建设,为各种分布式能源提供自由接入的动态平台;为节能和需求侧管理提供智能化控制管理平台;为高效利用天然气冷热电联供梯级利用;为因地制宜地利用小水电资源、生物质资源及可再生能源;为清洁回收利用各种废弃的资源能源来增加电力和其他能量供应提供支撑;美国和西欧目前基本不再建设大型电源及大型能源设施,正是这些依附于用户终端市场的能源梯级利用系统、可再生能源系统和资源综合利用系统,将他们的能源利用效率不断提高,排放不断减少,能源结构不断优化;美国分布式发电方式包括天然气多联供、中小水能、太阳能、风能、生物质能、垃圾发电等等;2000年美国商业、公共建筑热电联产980座,总装机490万千瓦;工业热电联产1,016座,总装机4,550万千瓦,合计超过5,000万千瓦;到2003年,热电联产总装机5,600万千瓦,占全美电力装机7%,发电量占9%;2010年这一类的分布式总装机容量约为9,200万千瓦,占全国发电量14%;根据美国能源部规划,2010-2020年将再新增9,500万千瓦装机容量,占全国发电装机容量29%;美国的分布式发电以天然气热电联供为主图-1,年发电量1,600亿千瓦时,占总发电量的%;美国能源部积极促进天然气为燃料的分布式能源系统,利用这些系统为基础发展微电网,再将微电网连接发展成为智能电网;图1—美国可再生能源电力构成不含水电来源:EIA-annual energy outlook 2011 withprojections to 2035EIA美国2011能源展望指出,2011年到2035年,美国居民以及商业用于购买分布式能源设备、发电系统和建筑节能方面将新增110亿美元的投资;分布式能源的应用包括采暖、通风、空调、水、暖气、照明、烹饪、制冷等,分布式能源平均增长率约%;与2009年相比,能源消耗增长了%,主要是用电和办公室设备耗能图-2;美国商业分布式能源系统装机容量将从2009年的190万千瓦增加到2035年的680万千瓦;在分布式能源系统中微燃机以每年16%的速度增长;在税收优惠的政策激励下,风电增长速到达到11%,预计2035年,可再生能源占分布式能源供应的50%;图2- 商业用分布式能源情景预测来源:EIA-annual energy outlook 2011 with projections to 2035根据美国2011能源展望分析,从2009年到2035年,制造业企业的能源消耗将从65%增长到71%,但农业、矿业和建筑业等非制造业企业的能源消耗比例将减少2%;另外,化工产业的能源消耗比例将下降4%图-3;图3—2009-2035年美国工业能源消耗万亿英热单位来源:EIA-annual energy outlook 2011with projections to 2035美国热电联产技术以内燃机、蒸汽轮机、燃气轮机为主,约46%的热电联产项目采用小型内燃机,燃气-蒸汽联合循环占项目数量的8%,占分布式发电总装机容量53%图-5;图4-美国分布式发电的燃料特点来源:EEA,Inc. 分布式能源建设数据库图5-美国分布式发电的技术特点来源:EEA,Inc. 分布式能源建设数据库1热电联产据美国能源部数据统计,从1998年到2006年,美国分布式热电联产规模翻了一番,装机容量从4600万千瓦增加到8500万千瓦图-6,占全国总装机容量的%,分布式发电站数量达到6000多座,年发电量1600亿千瓦时,占总发电量的%;其中,以天然气为原料的热电联产装机容量达到6180万千瓦,占热电联产总装机容量的73%;天然气项目占热电联产总数量的69%;美国各州的热电联产装机容量分布差异较大,目前主要分布在德克萨斯州、加利福尼亚州、路易斯安那州、纽约州,这四个州的热电联产装机容量均超过500万千瓦表-4;图6-美国热电联产累计装机容量变化来源:EEA/ICF International表4-2010年美国热电联产装机前十名的州来源:Energy and Environmental AnalysisInc./ICF网站统计2分布式风力发电装机容量100千瓦以下的风电机组称为小型风电 ,主要用于居民用电;美国2008年小型风电新增装机容量为万千瓦,小型风机装机总量达到8万千瓦图-7;美国的分布式风力发电主要用于家庭、农场、小企业、工厂、公共设施和学校;图7-美国小型风电装机情况来源:American Wind Energy Association3分布式光伏发电自2005年能源政策法提出屋顶光伏发电项目减免30%的初装费后,美国光伏发电市场发展迅速图-8;目前,分布式光伏发电和风力发电都享有为期8年的30%联邦投资税收优惠政策;图8-美国屋顶光伏装机情况来源:American Wind Energy Association4生物质发电目前,美国生物质发电主要用于现存配电系统的基本发电量;2003年美国生物质发电装机容量约为970万千瓦,占可再生能源发电装机容量的10%,发电量约占全国总发电量的1%;2008年美国有350座生物质发电站,生物质发电的总装机容量已超过1,000万千瓦,单机容量达万千瓦,占美国可再生能源发电装机的40%以上;据美国能源部生物质发电计划的目标是到2020年实现生物质发电的装机容量为4,500万千瓦,年发电2,250亿-3,000亿度;2、美国支持分布式发电的相关政策美国支持分布式发电的优惠政策如下:1减免分布式发电项目部分投资税;2缩短分布式发电项目资产的折旧年限;3简化分布式发电项目经营许可证审批程序;3、美国分布式能源的发展前景按照“分布式发电2020年纲领”目标,到2020年,在美国分布式发电将成为商用建筑高效使用矿物能源的典范,通过能源系统的调整,将极大地推动经济增长和提高居民生活质量,同时最大限度地降低污染物的排放量;根据EIA美国2011能源展望的分析:在基准政策情景中,商业用分布式发电装机容量从2009年的190万千瓦增长到2035年的680万千瓦;在强化政策情况中,2035年分布式发电装机容量将增长至980万千瓦;基准政策情景中,微型涡轮机是分布式发电技术中增长最快的,年平均增长速度为16%;在强化政策情景中,受税收减免政策影响,商业部分风电装机每年增长11%,比参考情况年增长的2倍还多图-2;在2035年,强化政策情景中可再生能源占所有商业分布式发电的50%,而基准政策情景中可再生能源占比小于35%;预计可再生能源发电的装机容量从2009年的4,700万千瓦增加到2035年10,000万千瓦,其中增长幅度最大的时风电装机容量,风电装机容量于2012年将达到1,820万千瓦,但2012-2035年增速放缓,新增风电装机容量仅为690万千瓦;太阳能发电装机容量占可再生能源发电装机的比例将从2009的2%增至2035年的5%,发电量将从2009年23亿千瓦时提高到2035年168亿千瓦时;生物质发电的装机容量将从2009年700万千瓦增加到2035年的2,020万千瓦,在可再生能源电力中的占比从15%提高到20%图-9;图9-2009-2035年可再生能源电源结构来源:EIA-annual energy outlook 2011 withprojections to 2035目前,美国能源部认为美国分布式发展的潜力还有11,000-15,000万千瓦,其中工业领域CHP潜力为7,000-9,000万千瓦,商业及民用领域CHP潜力为4,000-6,000万千瓦;同时,美国还制定了大力推广热电冷联供技术CCHP应用的战略目标;1、日本分布式发电现状日本的分布式发电以热电联产和太阳能光伏发电为主,总装机容量约3,600万千瓦 ,占全国发电总装机容量%;其中商业分布式发电项目6,319个,主要用于医院、饭店、公共休闲娱乐设施等;工业分布式发电项目7,473个,主要用于化工、制造业、电力、钢铁等行业图-10;1热电联产近年来,日本分布式能源发展较快,其中热电联产装机容量超过过去20年的总和;2006年,日本热电联产装机容量达到870万千瓦,占日本电力装机4%;其中,以天然气为原料的热电联产装机容量达到450万千瓦,占热电联产总装机容量的%图-11;2分布式光伏发电日本光伏分布式发电应用广泛,不仅用于公园、学校、医院、展览馆等公用设施,还开展了居民住宅屋顶光电的应用示范工程;2006 年底,日本光伏发电累计装机容量达到万千瓦,其中户用光伏系统安装量36万户,累计装机容量达到万千瓦,位居全球第一;截至2009年底,日本光伏发电装机总量达到万千瓦,其中户用光伏系统装机容量占比约80%表-6;2、日本支持分布式发电的相关政策日本制定了相关的法令和优惠政策保证该项事业的发展,有条件、有限度的允许这些分布式发电系统上网,通过优惠的环保资金支持分布式发电系统的建设;优惠政策包括以下几点:1对城市分布式发电单位进行减税或免税;建成分布式发电的项目第一年可享受30%安装成本折旧率或7%免税;总投资的40%至70%部分可享受低息贷款每年利率%;免除供热设施占地的特别土地保有税和设施有关的事业所税;区域供热工程费用、供热的固定资产税、区域供热用折旧资产税等给予优惠;2鼓励银行、财团对分布式发电系统出资、融资;针对区域供热系统需要大规模投资,日本有关金融机构长期施行通融资金、低利息等制度;3修订电力事业法在内的一系列放宽管制的办法出台,允许非公共事业类的供应商对需求大的用户售电,而在以前,该项售电业务通常被电力公司所垄断;并规定新建和改建30,000m2以上的建筑物必须纳入到城市分布式能源系统中;3、日本分布式能源的发展前景日本政府在2003年出台的能源总体规划设计中就系统阐述了发展、普及使用分布式能源燃料电池、热电联产、太阳能发电、风力、生物质能和垃圾发电的目标;其中热电联产的目标是到2010年实现装机1,000万千瓦;2008年3月,日本经济贸易产业省METI预计到2030年日本热电联产装机容量将可能达到1,630万千瓦,接近 2006年的2倍;据国际分布式能源联盟WADE对日本能源供需前景的预测,到2030年日本分布式发电比重将达到总发电量的20%;欧盟国家的分布式发电以太阳能光伏表-7、风能表-8和热电联产为主图-12;欧洲风电的发展侧重于分散接入,在正常情况下风电基本在本地或者区域电网范围内就可以消纳;欧盟对节约能源高度重视;在欧盟委员会发布的能源效率行动计划中,提出到2020年减少一次能源消费20%的节能目标,并减少温室气体排放20%,对此,欧洲有关机构对分布式发电的节能潜力进行评估,结果表明:仅分布式热电联产就能完成1/3的欧盟节能目标,每年可减少CO2排放1亿吨;1、丹麦分布式发电现状、政策和前景丹麦是世界上能源利用效率最高的国家,在过去20年中,GDP翻了一番,能源消耗却没有增加,污染排放反而大幅度下降;其主要的措施就是大力发展分布式能源,丹麦80%以上的区域供热能源采用热电联产方式产生图-13;丹麦分布式发电量超过全部发电量的50%,分散接入低电压配电网的风电总装机容量有300万千瓦;1热电联产自1990年以来,丹麦大型凝气发电厂容量没有增加,新增电力主要依靠安装在用户侧的,特别是工业用户和小型区域化的分布式能源电站热电站和可再生能源项目提供的,热电联产发电量占总发电量的%;丹麦新的目标是在2008年到2012年阶段,将二氧化碳的排放量从1990年的水平降低21%;丹麦从1980年开始大力发展电热联供项目; 自1994年起,70%以上的区域集中供热热源来自热电联供厂;1986年,丹麦政府建设了一批总发电容量为万千瓦的小型热电联产厂;丹麦目前热电联产技术的发展方向一是规模化,二是将地区性的区域供热厂的燃料由煤改为天然气、垃圾以及生物质能等;此外,积极支持有实力的企业和边远地区新建自己的区域供热电联产项目;全丹麦共有8个互联的热电联产大区,目前的技术水平可达到煤/电转化效率超过50%;连同供热考虑,总效率高达90%以上;现在,越来越多的人口密集地区的热电联产厂使用天然气作为燃料,其热电效率指标还略高于燃煤技术;热电联供厂每千瓦容量的建设成本约为1,200-1,600欧元;2分布式风力发电从20世纪80年代开始,丹麦风电装机容量迅速增加图-14,截至2010年丹麦风电新累计装机容量达到万千瓦,风力发电接入电网的比率高达20%见表-8;3分布式发电政策丹麦在分布式发电方面实行的是有计划的市场经济方式;以下两点对分布式发电产业的推广极为重要:建立合理的热电联产-电力定价规则,与燃料成本挂钩,确保联合生产与分别生产相比具有经济优势;参考污染物NOx、CO2排放-税收/补贴条例安排能源税收,投资补贴用于分布式发电项目的支持;2、英国分布式发电现状、政策和前景英国只有5,000多万人口,但在过去20年中,已超过1,000个小型成套的分布式能源CHP 设备被安装在遍布饭店、购物商城、休闲中心、医院、学校、机场、写字楼等公共场所提高能源利用效率;1热电联产热电联产的总功率已由1990年的200万千瓦提高到1999年末的420万千瓦,占英国能源供应的10%;主要集中在建筑物领域,即楼宇热电冷联产BCHP;2分布式风力发电在英国,超过10%的家庭安装了小型风力发电机,其成本价和传统电网的价格持平;2005 年至2008年,英国安装了一万多台小型风力发电机组,装机容量约2万千瓦;2008 年,英国小型风力发电机组新增装机容量为万千瓦;在数量上,的机组仅占五分之一,但就装机容量而言,小型风力发电机组占了总装机容量的61%图-11;3分布式发电政策英国政府在2001年采取了一系列的措施,包括:免除气候变化税;免除商务税;高质量的热电联产项目还有资格申请政府对采用节约能源技术项目的补贴金;英国政府还颁布了一套指南,规定所有发电项目开发商在项目上报之前都要认真考虑使用热电联产技术的可能性;英政府为分布式发电创造了必需的市场和政策条件,这些条件包括合适的能源价格用电和燃气的比价,使用合适的燃料,认识局部供电的价值,当局的政策规定,发展新的财务管理方式等;3、德国分布式发电现状、政策和前景德国分布式发电装机容量约2084万千瓦,占总装机容量的% ;2010年新增光伏发电装机容量万千瓦表-7,其中80%以上为住宅用小型太阳能发电系统;德国还有300多个1万千瓦以下的沼气和其他生物质能发电站;德国政府鼓励发展小型热电联产系统,尤其是在其东部地区;2002年1月25日,德国新的热电法获通过;该部法律中的具体激励措施包括:某些类型的热电企业享有并网权;热电联产电厂在正常售电价格之上还可以按售电量获得补贴;热电近距离输电方式所节约的电网建设和输送成本返还分布式发电厂;这部新法律对已有分布式发电厂,不限规模给予鼓励;对未来万千瓦以下新建电厂和利用燃料电池技术的分布式发电厂亦给予长期的补贴,补贴资金通过小幅调高电网使用费来平衡;。
分布式发电在国内外的发展状况与前景(1)在美国,容量为1kW到10MW分布式电源发电和储能单元正在成为未来分布式供能系统的有用单元。
由于分布式电源的高可靠性、高质量、高效率以及灵活性,故可满足工业、商业、居住和交通应用的一系列要求。
预计几年后,新一代的微汽轮机(10~250kW)可以完全商业化,为调峰和小公司余热发电提供了新机会。
在美国国内到2020年,由于新的能源需求与老的电厂的退役,估计要增加1.7×10?12?kW·h的电,几乎是近20年增量的2倍。
为满足市场需要,下一个10年之后,美国的分布式发电市场装机容量估计每年将达5×109~6×109W,为解决这个巨大的缺口,美国能源部提出了以下几个涉及分布式发电技术的计划,包括燃料电池、分布式发电涡轮技术、燃料电池和涡轮的混合装置等。
可以预料,在不久以后,分布式发电技术将在美国得到相当的发展。
(2)在我国,随着经济建设的飞速发展,我国集中式供电网的规模迅速膨胀。
这种发展所带来的安全性问题不容忽视。
由于各地经济发展很不平衡,对于广大经济欠发达的农村地区来说,特别是农牧地区和偏远山区,要形成一定规模的、强大的集中式供配电网需要巨额的投资和很长的时间周期,能源供应严重制约这些地区的经济发展。
而分布式发电技术则刚好可以弥补集中式发电的这些局限性。
在我国西北部广大农村地区风力资源十分丰富,像内蒙古已经形成了年发电量1亿kW·h的电量,除自用外,还可送往北京地区,这种无污染绿色能源可以减轻当地的环境污染。
在可再生能源分布式发电系统中的除风力发电外,还有太阳能光伏电池、中小水电等都是解决我国偏远地区缺电的良好办法。
因此,应引起足够的重视。
在我国城镇,分布式发电技术作为集中供电方式技术不可缺少的重要补充,将成为未来能源领域的一个重要发展方向。
而在分布式发电技术中应用最为广泛、前景最为明朗的,应该首推热电冷三联产技术,因为对于中国大部分地区的住宅、商业大楼、医院、公用建筑、工厂来说,都存在供电和供暖或制冷需求,很多都配有备用发电设备,这些都是热电冷三联产的多目标分布式供能系统的广阔市场。
国外分布式能源发展状况一、分布式发电概况分布式发电是指位于用户所在地附近的,所生产的电力除由用户自用和就近利用外,多余电力送入当地配电网的发电设施、发电系统或有电力输岀的多联供系统。
分布式发电形式多种多样,因资源条件和用能需求而异,发电方式包括三大类:1、天然气分布式能源,主要是热电联产和冷热电多联供等;2、可再生能源分布式发电:主要包括小型水能、太阳能、风能、生物质能、地热能等;3、废弃资源综合利用,涵盖工业余压、余热、废弃可燃性气体发电和城市垃圾、污泥发电等。
由于发达国家的热电联产主要采用天然气在用户端或靠近用户区域发电供热,故均被纳入分布式能源。
国际热电联产联盟"已将其名字更改为国际分布式能源联盟"WADE (World Alliance Decentralized Energy ),Decentralized在英文中强调了分散化或非集中化的含义,是受到互联网革命"去中心化的影响,而Energy强调并非单一供电,能源就地供应的种类可以是多样性的。
但该组织更加侧重天然气为燃料的分布式能源,兼顾了燃煤的热电联产,未覆盖中小水电等可再生能源发电。
据统计,世界主要国家及地区的热电联产(CHP )2006年装机容量已达到32,920万千瓦(表-1 )。
表if 球主要国貳热电联产英机富童*'美国将分布式能源称为( Distributed Energy )或DER (Distributed Energy Resources ) ,Distributed 虽然也是指分布式”但是更多地应用于互联网式的分布信息处理分散化的扁平式解决方案,显示了能源行业受到互联网革命的启迪,暗喻了这些分布在用户端或资源现场的系统是相互联系或相互连接的,更向一个网络化的能源系统。
加入Resources 一词,反应了人们将阳光普照的可再生能源和分散化的废弃资源视为一种资源,充分涵盖的可再生能源和废弃能源资源的分散化利用。
全球分布式风电2008年装机容量达到0.4万千瓦(表-2)。
2010年底,全球光伏发电装机总量高达3,950万千瓦(表-3),其中日本、欧洲等地分布式光伏发电位居世界前列。
M ?金球小型凤电克场艾机情乱-1 ' wind global D13, rkst 2008+-1<3^^主要国家和地区太阳能光伏发电娄札恬况£忑土屁八来溥:0P昭-(中卜和Qw UE「yr 訂帚U" U 1M】”国外分布式能源的发展主要是通过支持市场化的独立发电商(IPP )和能源服务商(ESCO )为用户提供了专业化的能源服务与节能服务,因地制宜、因需而异、因势利导,建设个性化的能源梯级利用设施,转变了传统低效的所谓集约化”、规模化”的能源生产供应模式,直接对社会分工进行了重构,为未来不断提高能源利用效率和大量利用可再生能源,吸引更多企业和个人参与清洁能源供应和提高能效,推动信息技术与能源系统的整合优化进行了制度设计和法律保障。
美国、欧洲和日本在先进的分布式发电基础上推动智能电网建设,为各种分布式能源提供自由接入的动态平台;为节能和需求侧管理提供智能化控制管理平台;为高效利用天然气冷热电联供梯级利用;为因地制宜地利用小水电资源、生物质资源及可再生能源;为清洁回收利用各种废弃的资源能源来增加电力和其他能量供应提供支撑。
美国和西欧目前基本不再建设大型电源及大型能源设施,正是这些依附于用户终端市场的能源梯级利用系统、可再生能源系统和资源综合利用系统,将他们的能源利用效率不断提高,排放不断减少,能源结构不断优化。
美国分布式发电方式包括天然气多联供、中小水能、太阳能、风能、生物质能、垃圾发电等等。
2000年美国商业、公共建筑热电联产980座,总装机490万千瓦;工业热电联产1,016座,总装机4,550万千瓦,合计超过5,000万千瓦。
到2003年,热电联产总装机5,600万千瓦,占全美电力装机7%,发电量占9%。
2010年这一类的分布式总装机容量约为9,200万千瓦,占全国发电量14 %。
根据美国能源部规划,2010-2020年将再新增9,500万千瓦装机容量,占全国发电装机容量29 %。
美国的分布式发电以天然气热电联供为主(图-1 ),年发电量1,600亿千瓦时,占总发电量的 4.1 %。
美国能源部积极促进天然气为燃料的分布式能源系统,利用这些系统为基础发展微电网,再将微电网连接发展成为智能电网。
图1—美国可再生能源电力构成(不含水电)来源:ElA-annual energy outlook 2011 with projections to 2035EIA《美国2011能源展望》指出,2011年到2035年,美国居民以及商业用于购买分布式能源设备、发电系统和建筑节能方面将新增110亿美元的投资。
分布式能源的应用包括采暖、通风、空调、水、暖气、照明、烹饪、制冷等,分布式能源平均增长率约0.6%。
与2009年相比,能源消耗增长了 1.5%,主要是用电和办公室设备耗能(图-2 )。
美国商业分布式能源系统装机容量将从2009年的190万千瓦增加到2035年的680万千瓦。
在分布式能源系统中微燃机以每年16%的速度增长。
在税收优惠的政策激励下,风电增长速到达到11%,预计2035年,可再生能源占分布式能源供应的50%。
洲电池貝力传集天輕气;HP太阳能光伏发电图2-商业用分布式能源情景预测来源:ElA-annual energy outlook 2011 with projections to 2035根据《美国2011能源展望》分析,从2009年到2035年,制造业企业的能源消耗将从65%增长到71%,但农业、矿业和建筑业等非制造业企业的能源消耗比例将减少2%。
另外,化工产业的能源消耗比例将下降4%(图-3)图3 — 2009-2035年美国工业能源消耗(万亿英热单位) 来源:ElA-annual energy outlook 2011 with projections to 2035汽联合循环占项目数量的 8%,占分布式发电总装机容量 53% (图-5)图4-美国分布式发电的燃料特点 来源:EEA,lnc.分布式能源建设数据库美国热电联产技术以内燃机、蒸汽轮机、燃气轮机为主,约46%的热电联产项目采用小型内燃机,-蒸八裝机容星占比4^5:一石油共机容星占比图5-美国分布式发电的技术特点来源:EEA,lnc.分布式能源建设数据库(1 )热电联产据美国能源部数据统计,从 1998年到2006年,美国分布式热电联产规模翻了一番,装机容量从4600万千瓦增加到8500万千瓦(图-6),占全国总装机容量的 7.8%,分布式发电站数量达到 6000多座,年发电量1600 亿千瓦时,占总发电量的4.1 %。
其中,以天然气为原料的热电联产装机容量达到 6180万千瓦,占热电联产总装机容量的73% ;天然气项目占热电联产总数量的69%。
美国各州的热电联产装机容量分布差异较大, 目前主要分布在德克萨斯州、 加利福尼亚州、路易斯安那州、纽约州,这四个州的热电联产装机容量均超过500万千瓦(表-4)。
图6-美国热电联产累计装机容量变化来源:EEA/ICF International内燃折 BE 气轮机4-Lb -0圧u 陌讦■■■內脚Tt燃:气轮机12%youQCj i项自披呈占比C urn nil dt I vu- C jp a Li tyr 右r owtii by ApphLa tlon TyiJk!30 000 JAthiorIndustrialwioon-■ Commercial4QOOD»00i0 - 2£J UUU 」 IO 000IEQ 1955 1虫耶 igjQtiw 址A此蜃BP 累现更星贋M K 吏萨*HIIM 和』WSM &命礪息亚册?71 I. i8*/TM開&削嶼4 JIf.tH ■刚T13.15^1161133.441,615J, JM,1 W 密宜IBM3, W1,4|TI, MIJJI 印*蚩型rJ,斗》3D•4」禺□表4-2010年美国热电联产装机前十名的州来源: Energy and Environmental Analysis Inc./ICF网站统计(2 )分布式风力发电装机容量100千瓦以下的风电机组称为小型风电,主要用于居民用电。
美国 2008年小型风电新增装机容量为1.73万千瓦,小型风机装机总量达到 8万千瓦(图-7)。
美国的分布式风力发电主要用于家庭、农场、小企业、工厂、公共设施和学校图7-美国小型风电装机情况来源: American Wind Energy Association(3 )分布式光伏发电自2005年能源政策法提出屋顶光伏发电项目减免30%的初装费后,美国光伏发电市场发展迅速(图 -8)目前,分布式光伏发电和风力发电都享有为期 8年的30%联邦投资税收优惠政策。
5亠-<pd5g1 1 ikw"':r L ;=TiLirtoine RongoU Hi UUW21 1 UCHCW“翻z>OLOMi , T*J Ma 9 Z 7SM3 Ttki.图8-美国屋顶光伏装机情况来源:American Wind Energy Association(4)生物质发电目前,美国生物质发电主要用于现存配电系统的基本发电量。
2003年美国生物质发电装机容量约为970万千瓦,占可再生能源发电装机容量的10%,发电量约占全国总发电量的1%。
2008年美国有350座生物质发电站,生物质发电的总装机容量已超过1,000万千瓦,单机容量达1-2.5万千瓦,占美国可再生能源发电装机的40%以上。
据美国能源部生物质发电计划的目标是到2020年实现生物质发电的装机容量为4,500万千瓦,年发电2,250亿-3,000亿度。
2、美国支持分布式发电的相关政策美国支持分布式发电的优惠政策如下:(1)减免分布式发电项目部分投资税;(2)缩短分布式发电项目资产的折旧年限;(3 )简化分布式发电项目经营许可证审批程序。
3、美国分布式能源的发展前景按照分布式发电2020年纲领”目标,到2020年,在美国分布式发电将成为商用建筑高效使用矿物能源的典范,通过能源系统的调整,将极大地推动经济增长和提高居民生活质量,同时最大限度地降低污染物的排放量。
根据EIA《美国2011能源展望》的分析:在基准政策情景中,商业用分布式发电装机容量从2009年的190万千瓦增长到2035年的680万千瓦。
在强化政策情况中,2035年分布式发电装机容量将增长至980万千瓦基准政策情景中,微型涡轮机是分布式发电技术中增长最快的,年平均增长速度为 税收减免政策影响,商业部分风电装机每年增长 11%,比参考情况年增长的2倍还多(图-2)。