05第五章变量之间的相关及其描述
- 格式:ppt
- 大小:92.00 KB
- 文档页数:2
统计学名词解释统计学名词解释第⼀章绪论1.随机变量:在统计学上,把取值之间不能预料到什么值的变量。
2.总体:⼜称母全体、全域,指具有某种特征的⼀类事物的全体。
3.个体:构成总体的每个基本单元称为个体。
4.样本:从总体中抽取的⼀部分个体,称为总体的⼀个样本。
5.次数:指某⼀事件在某⼀类别中出现的数⽬,⼜称为频数。
6.频率:⼜称相对次数,即某⼀事件发⽣的次数被总的事件数⽬除,亦即某⼀数据出现的次数被这⼀组数据总个数去除。
7.概率:某⼀事物或某⼀情在某⼀总体中出现的⽐率。
8.观测值:⼀旦确定了某个值。
就称这个值为某⼀变量的观测值。
9.参数:⼜称为总体参数,是描述⼀个总体情况的统计指标。
10.统计量:样本的那些特征值叫做统计量,⼜称特征值。
第⼆章统计图表1.统计表:是由纵横交叉的线条绘制,并将数据按照⼀定的要求整理、归类、排列、填写在内的⼀种表格形式。
⼀般由表号、名称、标⽬、数字、表注组成。
2.统计图:⼀般采⽤直⾓坐标系,通常横轴表⽰事物的组别或⾃变量x,称为分类轴。
纵轴表⽰事物出现的次数或因变量,称为数值轴。
⼀般由图号及图题、图⽬、图尺、图形、图例、图组成。
3.简单次数分布表:依据每⼀个分数值在⼀列数据中出现的次数或总计数资料编制成的统计表,适合数据个数和分布范围⽐较⼩的时候⽤。
4.分组次数分布表:数据量很⼤时,应该把所有的数据先划分在若⼲区间,然后将数据按其数值⼤⼩划归到相应区域的组别内,分别统计各个组别中包括的数据个数,再⽤列表的形式呈现出来,适合数据个数和分布范围⽐较⼤的时候⽤。
5.分组次数分布表的编制步骤:(1)求全距(2)定组距和组数(3)列出分组组距(4)登记次数(5)计算次数6.分组次数分布的意义:(1)优点:A.可将杂乱⽆章数据排列成序,以发现各数据的出现次数及分布状况。
B.可显⽰⼀组数据的集中情况和差异情况等。
(2)缺点:原始数据不见了,从⽽依据这样的统计表算出的平均值会与⽤原始数据算出的值有出⼊,出现误差,即归组效应。
第五章相关分析与回归分析相关分析(Correlation Analysis)和回归分析(Regression Analysis)都是统计学中常用的数据分析方法,用于研究两个或多个变量之间的关系。
相关分析主要用于衡量变量之间的线性关系强度和方向,回归分析则是基于相关分析的基础上建立数学模型来预测或解释因变量的方法。
相关分析是一种用于研究两个变量之间关系强度和方向的统计方法。
相关系数是用来衡量两个变量之间相关关系强度的指标,其取值范围为[-1,1]。
当相关系数为正时,表示两个变量呈正相关,即随着一个变量增加,另一个变量也增加;当相关系数为负时,表示两个变量呈负相关,即随着一个变量增加,另一个变量减少;当相关系数接近于0时,表示两个变量之间关系弱或不存在。
常用的相关系数有皮尔逊相关系数(Pearson correlation coefficient)、斯皮尔曼相关系数(Spearman’s rank correlati on coefficient)和肯德尔相关系数(Kendall’s rank correlation coefficient)等。
皮尔逊相关系数适用于两个变量均为连续型的情况,斯皮尔曼和肯德尔相关系数则适用于至少一个变量为顺序型或等距型的情况。
回归分析是一种建立数学模型来预测或解释因变量的方法。
在回归分析中,通常将一个或多个自变量与一个因变量建立数学关系,然后通过该关系来预测或解释因变量。
回归分析可以分为简单回归分析和多元回归分析两种。
简单回归分析是指只有一个自变量和一个因变量之间的分析。
该方法主要用于研究一个自变量对因变量的影响,通过拟合一条直线来描述自变量和因变量之间的线性关系。
简单回归分析的核心是最小二乘法,即通过最小化误差平方和来确定最佳拟合直线。
多元回归分析是指有多个自变量和一个因变量之间的分析。
该方法主要用于研究多个自变量对因变量的影响,并建立一个多元线性回归模型来描述它们之间的关系。
变量间的相关关系与统计案例教师版教师版:变量间的相关关系与统计案例引言:在统计学中,了解变量间的相关关系是非常重要的。
相关关系描述了两个或更多变量之间的连接,帮助我们理解它们如何相互影响和变化。
本文将介绍变量间相关关系的基本概念,并提供一些统计案例来帮助教师教授有关此主题的课程。
第一部分:相关性的定义和计算相关性是指两个或多个变量之间的关系程度。
直观上,当一个变量的值增加时,另一个变量的值是否也随之增加或减少。
相关性可以是正面的(变量之间的关系是正向的),也可以是负面的(变量之间的关系是反向的)。
相关性的计算可以通过两种方法来完成:Pearson相关系数和Spearman等级相关系数。
Pearson相关系数用于度量两个连续变量之间的线性关系,它的值介于-1和1之间。
当其值接近1时,表示两个变量之间的关系很强;当其值接近-1时,表示两个变量之间的关系是反向的;当其值接近0时,表示两个变量之间的关系较弱。
Spearman等级相关系数用于度量两个等级变量之间的关系,它的计算方式类似于Pearson相关系数,但在计算前将变量转换为等级。
第二部分:相关关系的案例研究案例1:学生的学习时间和学生成绩在这个案例中,我们研究了学生的学习时间和他们的学生成绩之间的相关关系。
我们收集了一组学生的学习时间(以小时为单位)和他们的学生成绩(以百分制为单位)数据。
通过计算Pearson相关系数,我们发现学习时间和学生成绩之间存在较强的正面相关关系(r = 0.8)。
这意味着学习时间越多,学生成绩越高。
案例2:家庭收入和孩子的学习成绩在这个案例中,我们研究了家庭收入与孩子学习成绩之间的相关关系。
我们收集了一组家庭收入水平(以年收入为单位)和孩子的学习成绩(以百分制为单位)数据。
通过计算Pearson相关系数,我们发现家庭收入和孩子学习成绩之间存在较弱的正面相关关系(r = 0.4)。
这意味着家庭收入较高的孩子往往有更好的学习成绩,但这种关系不是很强。
所属章节:第五章相关分析与回归分析1■在线性相关中,若两个变量的变动方向相反,一个变量的数值增加,另一个变量数值随之减少,或一个变量的数值减少,另一个变量的数值随之增加,则称为()。
答案:负相关。
干扰项:正相关。
干扰项:完全相关。
干扰项:非线性相关。
提示与解答:本题的正确答案为:负相关。
2■在线性相关中,若两个变量的变动方向相同,一个变量的数值增加,另一个变量数值随之增加,或一个变量的数值减少,另一个变量的数值随之减少,则称为()。
答案:正相关。
干扰项:负相关。
干扰项:完全相关。
干扰项:非线性相关。
提示与解答:本题的正确答案为:正相关。
3■下面的陈述中哪一个是错误的()。
答案:相关系数不会取负值。
干扰项:相关系数是度量两个变量之间线性关系强度的统计量。
干扰项:相关系数是一个随机变量。
干扰项:相关系数的绝对值不会大于1。
提示与解答:本题的正确答案为:相关系数不会取负值。
4■下面的陈述中哪一个是错误的()。
答案:回归分析中回归系数的显著性检验的原假设是:所检验的回归系数的真值不为0。
干扰项:相关系数显著性检验的原假设是:总体中两个变量不存在相关关系。
干扰项:回归分析中回归系数的显著性检验的原假设是:所检验的回归系数的真值为0。
干扰项:回归分析中多元线性回归方程的整体显著性检验的原假设是:自变量前的偏回归系数的真值同时为0。
提示与解答:本题的正确答案为:回归分析中回归系数的显著性检验的原假设是:所检验的回归系数的真值不为0。
5■根据你的判断,下面的相关系数值哪一个是错误的()。
答案:1.25。
干扰项:-0.86。
干扰项:0.78。
干扰项:0。
提示与解答:本题的正确答案为:1.25。
6■下面关于相关系数的陈述中哪一个是错误的()。
答案:数值越大说明两个变量之间的关系越强,数值越小说明两个变量之间的关系越弱。
干扰项:仅仅是两个变量之间线性关系的一个度量,不能直接用于描述非线性关系。
干扰项:只是两个变量之间线性关系的一个度量,不一定意味着两个变量之间存在因果关系。