供热管道及其附件+补偿器
- 格式:ppt
- 大小:1.05 MB
- 文档页数:97
热力管道补偿及常见补偿器浅谈丁真裔【摘要】论述了热力管道安装运行过程中发生的管道热胀冷缩的问题,详细介绍了几种常用的补偿器形式,并针对各个补偿器的特点进行了阐述,同时也介绍了几种补偿器在实际安装运行中的注意事项及常见的问题.【期刊名称】《化工装备技术》【年(卷),期】2018(039)006【总页数】5页(P28-32)【关键词】热力管道;补偿器;布置形式【作者】丁真裔【作者单位】华东理工大学工程设计研究院有限公司【正文语种】中文【中图分类】TQ055.8在热力管道设计时,必须重视管道热胀冷缩的问题。
为了使管道在热态工况下稳定安全地运行,必须减少管道热胀冷缩时所产生的应力。
管道受热时的热伸长量应考虑采用补偿方式来维持管道稳定安全地运行,因此补偿方式的选择显得尤为重要。
常用的补偿方式可分为两大类:一是利用管道本身的弯曲进行自然补偿,二是利用补偿器进行补偿。
1 自然补偿自然补偿即利用管道本身自然弯曲来补偿管道的热伸长量,当弯管转角小于150°时才能作为管道的自然补偿。
动力配管设计中常用的自然补偿分别为L形直角弯、Z形折角弯及空间立体弯三类补偿方式。
自然补偿的管道臂长决定了端点处的位移量,因此自然补偿时靠近弯角处管道支架顶面大小应根据管道的位移量进行计算,以免管道自然膨胀导致管托从支架上掉落。
在考虑蒸汽外管网的管道补偿时,自然补偿是不可忽略的,充分利用管道的自然补偿,可以最大限度地减少管道对补偿器的依赖度,降低工程的总造价。
2 补偿器补偿器按大类可分为方形补偿器(π型补偿)、套筒式补偿器、波纹补偿器及旋转式补偿器。
由于套筒式补偿器容易泄漏、检修频繁、轴向推力大,现在已经较少使用,文中主要介绍几类常用的补偿器。
2.1 方形补偿器方形补偿器是最常用的补偿器,由四个90°弯头组成。
安装方形补偿器时,一般需对管道进行预拉伸,预拉伸量一般为管道膨胀伸长量的50%,具体如图1所示。
图 1 方形补偿器安装示意图方形补偿器的优点为制造、维修方便,轴向推力小,运行可靠且不存在介质泄露的隐患。
补偿器补偿器习惯也叫膨胀节,或伸缩节。
由构成其工作主体的波纹管(一种弹性元件)和端管、支架、法兰导管等附件组成。
属于一种补偿元件。
利用其工作主体波纹管的有效变形,以吸收管线、导管、容器等由热胀冷缩等原因而产生的尺寸变化,或补偿管线、导管、容器等的轴向、横向和角向位移。
也可用与降噪减振。
在现代工业中用途广泛。
供热上,为了房子供热管道升温时,由于热伸力或温度应力而引起管道变形或破坏,需要在管道上设置补偿器,以补偿管道的热伸长,从而减小管壁的应力和作用在阀件或支架结构上的作用力。
产品分类一、轴向型主要用于补偿向位移,也可以补偿横向位移或轴向与横向的合成位移,具有补偿角位移的能力,但一般不应用通用型补偿器来补偿角位移。
对管架的设计要求1.安装轴向型补偿器的管段,在管道的盲端、弯头、变截面出,装有截止阀或减压阀的部门及侧支管线进入主管线入口处,都要设置主固定管架。
主固定管架要考虑波纹管静压推力及变形弹性力的作用。
推力计算公式如下:Fp=100*P*AFp-补偿器轴向压力推(N),A-对应于波纹平均直径的有效面积(CM2),P-此管段管道最高压力(MPa)。
轴向弹性力的计算公式如下:Fx=f*Kx*X*,Fx-补偿器轴向弹性力(N),KX-补偿器轴向刚度(N/mm);f-系数,当“预变性”(包括预并行量△X=0时,f=1/2,否则f=1。
管道除上述部位外,可设置中间固定管架。
中间固定管架可不考虑压力推力的作用。
)2.在管段的两个固定管架之间,仅能设置一个轴向型补偿器。
3.补偿器一端应靠近固定管架,若过长则要按第一导向架的设置要求设置导向架,其它导向架的最大间距可按下计算LGmax-最大导向间距;E-管道材料弹性模量(N/cm2);i-tp管道断面惯性矩(cm4);KX-补偿器轴向刚度(N/mm),X0-补偿额定位移量(mm)。
当补偿器压缩变形时,符号“+”,拉伸变形时,符合为“-”。
当管道壁厚按标准壁厚设计时,LGmax可按有关标准选取。
第三节供热管道及其附件供热管道及其附件是供热管线输送热媒的主体部分。
供热管道附件是供热管道上的管件(三通、弯头等)、阀门、补偿器、支座和器具(放气、放水、疏水、除污等装置)的名称。
这些附件是构成供热管线和保证供热管线正常运行的重要部分。
一、供热管道供热管道通常都采用钢管。
钢管的最大优点是能承受较大的内压力和动荷载,管道连接简便;但缺点是钢管内部及外部易受腐蚀。
供热管道及其附件是供热管线输送热媒的主体部分。
供热管道附件是供热管道上的管件(三通、弯头等)、阀门、补偿器、支座和器具(放气、放水、疏水、除污等装置)的名称。
这些附件是构成供热管线和保证供热管线正常运行的重要部分。
二、阀门阀门是用来开闭管路和调节输送介质流量的设备。
在供热管道上,常用的阀门型式有:截止阀、闸阀、蝶阀、止回阀、调节阀和球阀等。
截止阀按介质流向可分为直通式、直角式和直流式(斜杆式)三种。
其结构型式,按阀杆螺纹的位置可分为明杆和暗杆两种。
图14-10是最常用的直通式截止阀结构示意图,截止阀关闭严密性较好,但阀体长,介质流动阻力大,产品公称通径不大于200mm。
闸阀的结构型式,也有明杆和暗杆两种。
另外按闸板的形状及数目,有楔式与平行式,以及单板与双板的区分。
图14-11是明杆平行式双板闸阀构造示意图;图14-12是暗杆楔式单闸板闸阀构造示意图。
闸阀的优缺点正好与截止阀相反。
它常用在公称通径大于200mm的管道上。
图14-10直通式截止阀图14-11明杆平行式双板闸阀截止阀和闸阀主要起开闭管路的作用。
由于其调节性能不好,不适于用来调节流量。
图14-13所示为蜗轮传动式蝶阀。
截止阀、闸阀、蝶阀的连接方式可用法兰、螺纹连接或采用焊接。
它们的传动方式可用手动传动(用于小口径),齿轮、电动、液动和气动等(用于大口径)传动方式。
《热网规范》规定,对公称直径大于或等于500mm的闸阀,应采用电动驱动装置。
止回阀是用来防止管道或设备中介质倒流的一种阀门。
有图有真相!供热管道直埋式补偿器安装要求固定点,一是在直管段的端部,二是在管道的分支处。
长的无分支的直线管道两补偿器之间可以不设固定点,靠管道自然形成的“驻点”即可发挥固定点的作用。
驻点是两补偿器之间管道的那个不动点,在管径相同,埋深一致时,驻点与两补偿器间的距离相等。
褡补偿器(包括转角处自然补偿器)至固定点之间的距离不得超过管道的最大安装长度Lmax,管道最大安装长度的定义是固定点至自由端(补偿器)的长度,在此长度下产生的摩擦力不得超过管道许用应力下相应的弹性力。
Lmax按下式计算:常用管道的最大安装长度Lmax。
应考虑16kgf/cm2内压力所产生的环向应力的综合影响。
3.2固定支座的设计计算具有2个管道分支并在主干线上有一处转角管道平面,补偿器的布置应满足Ln <Lmax的条件。
驻点G1、G2的推力为零,所以,此点处不必设置固定支座,但为了防止回填土的不均匀,埋深的不一致和预制保温管外壳粗糙度的不规则等可能会造成驻点的漂移,所以,对处于驻点位置的管道分支处G1、G2需设置支座,以G1为例其轴向推力可按下式计算:F1=Pb2+L2f-0.8(Pb3+L2f)式中F1-固定支座G1的水平推力,kgf;f-管道单位长度摩擦力,Kgf/mPb2-B2膨胀节的弹性力,Kg;Pb3-B3膨胀节的弹性力,Kgfk2-B2膨胀节的刚度,Kgf/mm;△L2-B2膨胀节的补偿量,mm;L2-膨胀节至G1的距离,m;假如某一分支如自G2接出的分支带有补偿器B。
那么,G2还受到一侧向推力的作用,如图中的F2(y),当L5很短(实际布置时L5也应很短),那么,侧向力F2(y)的大小为:F2(y)=Pn*A5+Pb5式中Pn-管道工作压力,Kgf/cm2A5-B5膨胀节的有效面积,cm2;Pb5-B5膨胀节的弹性力kgf。
固定支座G3也驻点位置,从管道和土壤的摩擦力来讲,该点也受到大小相等,方向相反的两个时作用,但应注意到该点同时又受到转角处的盲板力的作用,考虑驻点漂移的影响,固定支座G3的推力F3=1.2Pn*A4式中F3-作用在固定支座G3的水平推力,Kgf;Pn-管道工作压力,Kgf/cm2;A4-B4膨胀节的有效面积,cm2。
采暖固定支架及补偿器的选择、设计与计算1、固定支架及热补偿的重要性在暖通空调设计中,固定支架是一个不可避免的技术节点。
特别是在北方冬季的热水采暖管道、冬季空调冷冻水供回水管道以及生活热水管道中,管道在“热胀冷缩”的情况下必然产生巨大的自然推力。
如果不按照预先的设计方案来泄掉这部分巨大的自然推力,其产生的后果将是毁灭性的。
例如,前段时间某商业广场项目地库车位上方的热水管道瞬间脱离,管道支吊架等根本支撑不住瞬间的巨大推力。
许多非专业人员基本都会认为是施工技术差,或者认为施工方偷工减料,其实首先应该检查的是热水系统管道是否做了冷热补偿和合理的固定支架。
2、补偿器的分类在大面积的地库平面图中,如何做热水管道冷热补偿和合理的固定支架是有规律和技巧的。
但这些规律和技巧对于刚刚入职设计院的暖通设计师来说根本不掌握,或者说根本引起不了设计人员的注意。
在“三边工程”盛行的今天,出事的概率是非常高的。
首先,热水管道的托架和吊架跟固定支架并非一个意思。
只有把管道固定不动的吊架才叫“固定支架”,而普通支吊架是允许管道在其内顺着管道敷设方向自由移动的。
因为热膨胀产生多余的管道长度必须在此处让其释放、延申,吸收此多余长度的管件就是“补偿器”。
所以采暖系统中必须设置固定支架限定其只向一个预想的方向延申,而设置固定支架就必须配合使用补偿器用于吸收管道因温度增高引起膨胀造成的长度增大。
在本文中,我们首推“自然补偿器”。
管道的自然补偿是利用管道本身自然弯曲来补偿管道的热伸长。
自然补偿常用的有L形补偿器、Z字形补偿器及“几”字型补偿器。
与自然补偿相对应的是人工补偿器,常用的人工补偿器有波纹补偿器、套筒补偿器、球形补偿器、方形补偿器及填料式补偿器等。
自然补偿器相对于人工补偿器来说优点颇多,比如减少初投资、节省施工工期、系统安全不漏水以及补偿能力不会随着时间的推移而打折扣等。
当供回水系统为大口径管道时,人工煨弯也存在一定难度。
3、自然补偿器的设计步骤自然补偿器的设计步骤主要包括以下几个方面:1)确定管道的自由长度,即管道在不受限制的情况下,由于热胀冷缩而产生的长度变化。
直埋供热管道补偿器设置工程实例、补偿器的作用供热工程中,为了防止供热管道升温时,由于热伸长或温度应力而引起管道变形或破坏,需要在管道上设置补偿器,以补偿管道的热伸长,从而减小管壁的应力和作用在阀件或支架结构上的作用力。
供热管道形成有补偿管段的补偿装置分为以下几种:1)管道定线时自然形成的补偿弯管;(2)人为设置的L型、Z型和U型补偿弯管;3)波纹补偿器、套筒补偿器、旋转补偿器等。
当供热管道经过应力分析需要设置补偿装置,且没有设置自然补偿的条件时,就需要设置补偿器。
而当采用补偿器时,补偿器势必会取代管道,形成管网的危险点,这又会增加管网的事故必要使整个管网都处于有补偿管段中,这样,既增加了管网的投资,又增加大了出现事故的概率,降低管网的可靠性。
概率。
因此,在管网设计中,应尽量减少补偿器的设置,更没有二、常用补偿器类型在直埋供热管道中,最常用的补偿器为套筒补偿器和波纹管补偿器。
2.1 套筒补偿器套筒补偿器主要有套筒(芯管),外壳,密封材料等组成用于补偿管道的轴向伸缩及任意角度的轴向转动. 具有体积小补偿量大的特点适用于热水、蒸气、油脂类介质,通过滑动套筒对外套筒的滑移运动,达到热膨胀的补偿。
套筒式补偿器适用于介质工程压力W2.5MPa介质温度-40C〜600C,热补偿量可按要求进行设计。
单向补偿型产品,热补偿量实际使用可达500mn以上,双向补偿型产品,热补偿量实际使用可达1000mm以上。
2.2 波纹管补偿器由单层或多层不锈钢板组成,其单层厚度一般为0.3〜1.2毫米,其波形经过胀波挤压形成。
波纹管尺寸参数根据设计压力、设计温度等确定。
波纹管使用极限寿命一般以许用循环次数1000次为标准。
三、工程实例3.1 工程简介焦作市万方电厂配套供热管网工程,以万方电厂热电联产机组为热源,向焦作市东部供热区进行集中供热。
该工程最大设计管径DN1200供回水设计温度采用130/70 C,设计压力1.6MPa。
本工程为DN600分支管工程,沿规划的市政道路下敷设,总长度约1.4 公里,中间需要穿越铁路一次。
供热技术监督——名词解释名词:热电联产热电厂同时生产电能和可用热能的联合生产方式。
名词:供热系统供热系统包括热源,供热热网和热用户三个基本组成部分。
名词:供热规划确定集中供热发展规模和制定建设计划的工作。
名词:供热介质在供热系统中,用以传送热能的媒介物质。
名词:输送干线自热源至主要负荷区且长度超过2km无分支管的干线。
名词:最低供热量保证率保证事故工况下用户采暖设备不冻坏的最低供热量与设计供热量的比率。
名词:多热源供热系统具有多个热源的供热系统。
名词:热应力管道由于温度变化引起热胀,冷缩形变受约束而产生的应力。
名词:支干线从主干线上引出的,至热力站(或热用户)分支管处的管线。
名词:主干线单热源供热系统的供热管网中由热源至最远热力站(或最远热用户)分支管的干线;多热源供热系统中由热源经水力汇流点(或水力分流点)至最远热力站(或最远热用户)分支管处的干线。
名词:枝状管网呈树枝状布置的供热管网。
枝状官网,干线管网名词:一级管网在设置一级换热站的供热系统中,由热源至换热站的供热管网。
名词:供热管道敷设将供热管道及其管路附件按设计条件组成整体并使之就位的工作。
名词:覆土深度管沟敷设时管沟盖板顶部或直埋敷设时保温结构顶部至地表的距离。
名词:管道支座直接支撑管道并承受管道作用力的管路附件。
名词:预制保温管在工厂将保温结构与输送供热介质的工作管结合在一起预制成整体的保温管。
名词:固定墩嵌固直埋管道固定节,并与其共同承受直埋管道所受推力的钢筋混凝土构件。
名词:补偿器起到热补偿作用的管路附件。
名词:供热管网事故工况流量供热管网发生故障工况时,关断故障元部件后供热系统仍能向热用户供给的流量。
名词:事故补水量事故工况下,单位时间内向热水供热系统补充的水量。
名词:失水率热水供热系统单位时间漏失水量与总循环流量的百分比。
名词:定压热水供热系统中循环水泵运行和停止工作时,保持定压点水的压力稳定在某一允许范围内波动的技术措施。
供热管道补偿器主要有自然补偿器、方形补偿器、波纹管补偿器、套筒补偿器和球形补偿器等,前三种利用补偿材料的变形来吸收热伸长,后两种利用管道的位移来吸收热伸长。
具体介绍如下:
1.自然补偿
热力管道敷设时,会形成自然弯曲(L型或者Z型),利用管道这些自然弯曲来吸收热力管道的热伸长量被称为自然补偿。
2.方形补偿器
通常是由四个90°无缝钢管煨弯或机制弯头构成的U型补偿器,依靠弯管的变形来补偿管段的热伸长。
形补偿器制造、安装方便,不需要经常维修,补偿能力大。
3.套筒补偿器
它是由填料密封的套管和外壳管组成的,两者同心套装并可轴向补偿,有单向和双向两种形式。
4.波纹管补偿器
它是用多层或单层薄壁金属管制成的具有轴向波纹的管状补偿设备。
这种补偿器
体积小,重量轻,占地面积和占用空间小,易于布置,安装方便。
5.球形补偿器
具有很好的耐压和耐温性能,能适应230°C的高温和0.4MPa的压力。
使用寿命长,运行可靠,占地面积小,基本上无需维修,补偿能力大。
工作时变形应力小,减少了对支座的要求。
中泰管道设备有限公司是一家专注于管道构件产品研究,生产以及销售为一体的创新企业。
主营产品有:金属软管、防水套管、补偿器、伸缩器、传力接头、双法兰传力接头等管道设备。
供热管网附件及供热站设施安装要点一、供热管网附件(一)补偿器球形补偿器球形补偿器是由外壳、球体、密封圈压紧法兰组成,适用于三向位移的热力管道。
波形补偿器是靠波形管壁的弹性变形来吸收热胀或冷缩量,它的优点是结构紧凑,只发生轴向变形。
缺点是制造比较困难,耐压低,补偿能力小,轴向推力大。
二、供热站管道及设备安装前,土建施工单位、工艺安装单位及监理单位应对预埋吊点的数量及位置,设备基础位置、表面质量、几何尺寸、标高及混凝土质量,预留孔洞的位置、尺寸及标高等共同复核检查,并办理书面交验手续。
设备基础地脚螺栓底部锚固环钩的外缘与预留孔壁及孔底的距离不得小于15mm;拧紧螺母后,螺栓外露长度应为2~5倍螺距;灌筑地脚螺栓用的细石混凝土(或水泥砂浆)应比基础?混凝土的强度等级提高一级;拧紧地脚螺栓时,灌筑混凝土的强度应不小于设计强度的75%。
(10)蒸汽管道和设备上的安全阀应有通向室外的排汽管,热水管道和设备上的安全阀应有接到安全地点的排水管,并应有足够的截面积和防冻措施确保排放通畅。
在排汽管和排水管上不得装设阀门。
排放管应固定牢固。
(11)管道焊接完成,应进行外观质量检查和无损检测,无损检测的标准、数量应符合设计和相关规范要求。
合格后按照系统分别进行强度和严密性试验。
强度和严密性试验合格后进行除锈、防腐、保温。
1K415024供热管道功能性试验的规定一、强度试验(1)强度试验应在试验段内的管道接口防腐、保温施工及设备安装前进行。
(2)试验中所用压力表的精度等级不低于1.0级,量程应为试验压力的1.5~2倍,数量不得少于2块,表盘直径不应小于100mm,应在检定有效期内。
压力表应安装在试验泵出口和试验系统末端。
(3)强度试验压力为设计压力的1.5倍,且不得小于0.6MPa,充水时应排净系统内的气体,在试验压力下稳压10min,检查无渗漏、无压力降后降至设计压力,在设计压力下稳压30min,检查无渗漏、无压力降为合格。
热力管道补偿装置安装要求1. 引言热力管道补偿装置是热力管道系统中的重要组成部分,它能够在温度变化引起的热胀冷缩过程中,吸收和补偿管道的伸缩变形,保证管道系统的正常运行。
本文将详细介绍热力管道补偿装置安装的要求和注意事项。
2. 安装位置选择2.1 补偿器应安装在热力管道系统的伸缩节附近,以便能够有效地吸收和补偿管道伸缩引起的变形。
2.2 安装位置应避免严重震动、冷凝水积聚和其他不利于补偿器正常工作的因素。
2.3 补偿器应尽量安装在水平或近水平的位置上,以便于排除空气和排放冷凝水。
3. 安装前准备3.1 在进行补偿器安装之前,应对热力管道系统进行全面检查,并确保其符合设计要求。
3.2 检查并清理安装位置周围的环境,确保没有杂物、灰尘等影响安装质量的物质。
3.3 准备好所需的安装工具和材料,包括扳手、螺栓、垫片等。
4. 安装步骤4.1 在安装补偿器之前,应先进行管道的预伸缩。
根据设计要求和补偿器的伸缩量,采取适当措施进行管道的拉伸或压缩。
4.2 将补偿器的法兰与管道法兰连接,确保连接紧固牢固。
4.3 按照补偿器使用说明书中的要求,进行密封垫片的安装。
确保垫片符合规格要求,并正确放置在法兰之间。
4.4 根据补偿器类型和结构特点,进行相应部件(如支撑架、吊架等)的安装。
确保部件位置准确、稳固,并符合设计要求。
4.5 安装完毕后,检查所有连接处是否紧固牢固,并进行泄漏测试。
如有泄漏现象,应及时进行修复或更换。
5. 安全注意事项5.1 在安装过程中,应严格按照相关安全操作规程执行,确保人身安全和设备完整性。
5.2 安装人员应熟悉补偿器的安装要求和使用说明,遵循操作规范,防止错误操作导致事故发生。
5.3 在进行补偿器安装时,应注意防止热力管道系统内的介质泄漏和喷溅,避免对人员和设备造成伤害。
5.4 安装过程中应注意防止火源靠近补偿器及其附件,避免引发火灾事故。
6. 质量控制6.1 在安装过程中,应进行严格的质量控制。
供热管道是否需要安装补偿器评定标准
在供热管道系统中,由于管道的热膨胀和收缩会引起管道长度的变化,因此需要安装补偿器来减少管道长度变化带来的影响。
补偿器的作用是通过伸缩来吸收管道的热膨胀和收缩,从而保持管道的长度和位置不变,保证供热系统的稳定运行。
在中国,供热管道是否需要安装补偿器的评定标准主要包括以下几个方面:
1. 管道长度:一般来说,供热管道的长度越长,安装补偿器的必要性就越高。
2. 管道材质:不同材质的管道具有不同的热膨胀系数,因此需要根据管道材质来选择合适的补偿器。
3. 管道工作温度:供热管道的工作温度越高,安装补偿器的必要性就越高。
4. 管道安装方式:不同的管道安装方式对补偿器的选择也有一定的影响。
根据以上评定标准,一般来说,在供热管道系统中,如果管道长度较长、材质为金属或非金属、工作温度较高或管道安装方式特殊,都需要安装补偿器来减少管道长度变化的影响。
同时,在安装补偿器时,还需要根据实际情况选择合适的补偿器类型和规格,以保证补偿器的补偿效果和使用寿命。
供热管道热补偿器的选择及优缺点
管道的铺设在现代的每栋建筑中都是十分重要的,因此管道的安全就必需引起工作人员的高度注意,因此,就有必要了解关于管道补偿器的相关知识。
本文介绍了补偿器的由来及其作用,着重分析了几种常用补偿器的优缺点及使用条件。
一、补偿器的由来
补偿器的由来补偿的基本意思有弥补缺陷,抵消损失。
也有科技方面的补偿,当管道输送介质或管道所处环境有温度变化时,管道由温度引起的热胀冷缩是不可避免的,如果不采取一定的方式补偿该尺寸变化,将会在管壁内产生很高的应力,通过管道传至固定管架或设备,当温差过某一范围时,温差应力大于管子可承受的应力范围,这时就必须考虑补偿问题。
二、补偿器的作用
在管系补偿设计中,最为经济的是自然补偿,自然补偿是利用管道的自然弯曲形状所具有的柔性来补偿热位移,显然自然补偿的能力是有限的,当自然补偿不能满足要求时,通常应考虑设置金属波纹管膨胀节等补偿装置。
管系所受载荷主要是外力载荷(管道及流动介质自重,内压,风载,地震荷载等)和位移载荷,设置管道补偿器的目的在于消除外载作用在设备或管道上的作用力,且可把复杂管系分隔成形状比较简单,独立膨胀的管段,保证膨胀节的最佳使用效果。
管道补偿器可以补偿吸收管道轴向、横向、角向热变形,吸收设备振动,减少设备振。