塔板负荷性能图
- 格式:xls
- 大小:13.50 KB
- 文档页数:22
对于每个塔板结构参数已设计好的塔,处理固定的物系时,要维持其正常操作,必须把气、液负荷限制在一定范围内。
通常在直角坐标系中,标绘各种极限条件下的V-L关系曲线,从而得到塔板适宜的气、液流量范围图形,该图形称为塔板的负荷性能图,如图1-23所示,一般由下列五条曲线组成。
⑴ 漏液线线1为漏液线,又称为气相负荷下限线。
气相负荷低于此线将发生严重的漏液现象,气、液不能充分接触,使塔板效率下降。
筛板塔的漏液线由式(1-47)或式(1-48)作出,浮阀塔的漏液线由式(1-49)作出。
⑵ 雾沫夹带线线2为雾沫夹带线。
当气相负荷超过此线时,雾沫夹带量过大,使塔板效率大为降低。
对于精馏,一般控制eV≤0.1kg液/kg气。
筛板的雾沫夹带线按式(1-50)作出。
浮阀塔的雾沫夹带线按式(1-51)或式(1-52)作出。
⑶ 液相负荷下限线线3为液相负荷下限线。
液相负荷低于此线,就不能保证塔板上液流的均匀分布,将导致塔板效率下降。
一般取how=6mm作为下限,按式(1-33)~式(1-37)中一式作出液相负荷下限线。
⑷ 液相负荷上限线线4为液相负荷上限线,该线又称降液管超负荷线。
液体流量超过此线,表明液体流量过大,液体在降液管内停留时间过短,进入降液管的气泡来不及与液相分离而被带入下层塔板,造成气相返混,降低塔板效率。
通常根据液相在降液管内的停留时间应大于3s,按式(1-24)作出此线。
⑸ 液泛线线5为液泛线。
操作线若在此线上方,将会引起液泛。
根据降液管内的液层高度,按式(1-46)作出此线。
由上述各条曲线所包围的区域,就是塔的稳定操作区。
操作点必须落在稳定操作区内,否则塔就无法正常操作。
必须指出,物系一定,塔板负荷性能图的形状因塔板结构尺寸的不同而异。
在设计塔板时,可根据操作点在负荷性能图中的位置,适当调整塔板结构参数来满足所需的弹性范围。
操作时的气相流量与液相流量在负荷性能图上的坐标点称为操作点。
在连续精馏塔中,回流比一定,板上的气液比V/L也为定值。
塔板负荷性能图精馏段塔板负荷性能图(一)雾沫夹带线(I ) 由e v =σ6107.5-⨯(fT ah H u -)2.3式中a u =f T s A A V -==-1677.00106.2sV 0.543 s V (a )f h =2.5(h W ⨯h OW )=2.5[h W +2.84310-⨯E(Ws l L 3600)3/2] 近似取E=1.0 h W =0.044m W l =1.12m 故f h =2.5[0.044+2.84310-⨯(12.13600s L )3/2]=0.110+1.546sL 3/2 (b )取雾沫夹带极限值e v 为0.1kg 液/kg 气,已知31062.20-⨯=σN/m T H =0.4m将(a )、(b )式代入式4-410.1=361062.20107.5--⨯⨯()1.546L (0.110-0.4 0.543V 2/3ss +)2.3 整理得: s V =3.37-17.942/3sL (1)在操作范围内,任取几个s L 值,依(1)式算出相应得s V 值列于附表1中。
以表中数据作出雾沫夹带线(1),如附图2中线(1)所示。
附表1(二)液泛线(2)Φ(H T +h w )=h p +h w +h ow +h d 取E=1.0 l w =1.12m h ow =3/2w s )l 3600L (E 100084.2= 3/2s )1.123600L (E 100084.2=0.6185L 3/2S (C)因为 h p =h c +h l +h σh c = 0.051(o O c u )2(L V ρρ)= 0.051(0o S A c V )2LV ρρ = 0.051(1445.00.84V S ⨯)276.80594.2=0.0126V 2Sh l =0ε(h w +h ow )=(0.044+0.6185L 3/2S )×0.6=0.0264+0.3711L 3/2Sh σ =0.00209m所以 h p =h c +h l +h σ=0.0126V 2S +0.0264+0.3711L 3/2S +0.00209 =0.0285+0.0126V 2S +0.37L 3/2S (d )h d =0.153(OW h l Ls ⋅)2=0.153(045.012.1L s ⨯)2=60.23L 2S (e)将H T =0.4m ,h w 为0.044,Φ=0.5及(c )(d )(e )代入Φ(H T +h w )=h p +h w +h ow +h d0.5(0.4+0.044)=0.0285+0.0126V 2S +0.37L 3/2S +0.044+0.6185L 3/2S +60.23L 2S 所以 V 2S =11.87-78.45L 3/2S -4780.2L 2S (2)在操作范围内取若干L S 值,以式(2)计算V S 值,列于附表2中,以表中数据作出液泛线(2),如附图2中线(2)所示。
实验八、板式塔流体力学性能测定一、实验目的1.观察塔板上气、液两相流动状况。
2.测定气体通过塔板的压力降与空塔气速的关系、雾沫夹带率与空塔气速的关系、泄漏率和空塔气速的关系。
3.研究板式塔负荷性能图的影响因素并做出筛板塔的负荷性能图。
二、实验原理板式塔为逐级接触的气~液传质设备,当液体从上层塔板经溢流管流经塔板与气体形成错流通过塔板,由于塔板上装有一定高度的堰,使塔板上保持一定的液层,然后越过堰从降液管流到下层塔板。
气体从下层塔板经筛孔或浮阀、泡罩齿缝等,上升穿过液层进行气液两相接触,然后与液体分开继续上升到上一层塔板。
塔板传质的好坏很大程度取决于塔板上的流体力学状况。
1.塔板上的气液两相接触状况及不正常的流动现象。
(1)气液两相在塔板上接触的三种状态:1)当气体的速度较低时,气液两相呈鼓泡接触状态。
塔板上存在明显的清液层,气体以气泡形态分散在清液层中间,气液两相在气泡表面进行传质。
2)当气体速度较高时,气液两相呈泡沫接触状态,此时塔板上清液层明显变薄,只有在塔板表面处才能看到清液,清液层随气速增加而减少,塔板上存在大量泡沫,液体主要以不断更新的液膜形态存在于十分密集的泡沫之间,气液两相以液膜表面进行传质。
3)当气体速度很高时,气液两相呈喷射接触状态,液体以不断更新的液滴形态分散在气相中间,气液两相以液滴表面进行传质。
(2)塔板上不正常的流动现象1)漏液当上升的气体速度很低时,气体通过塔板升气孔的动压不足阻止塔板上液层的重力,液体将从塔板的开孔处往下漏而出现漏液现象。
2)雾沫夹带当上升的气体穿过塔板液层时,将板上的液滴挟裹到上一层塔板引起浓度返混的现象称为雾沫夹带。
3)液泛当塔板上液体量很大,上升气体速度很高,塔板压降很大时,液体不能顺利地从降液管流下,于是液体在塔板上不断积累,液层不断上升,使塔内整个塔板间都充满积液的现象称为液泛。
2.流体力学性能测定(1)压降在塔板的上面和下面气液分离空间中各设置一个测压口,分别连在U型压差计的两端,可以测定气体通过塔板的压降。
1.1 稳定塔(T101)设计 1.1.1 流体力学数据由Aspen plus 模拟的T101塔的各塔板上的物性参数可知,选取塔板上气液相负荷最大的第28块塔板进行手工计算和校核;第28块板的流体力学数据如下:表4-3-1-1 稳定塔(T101)第10块塔板流体力学数据液相流量 m 3/s 气相流量 m 3/s 液相密度 kg/ m 3 气相密度 kg/ m 3 液相黏度 mPa•s 液相表面张力mN/m 0.1130.326593.99518.3060.1479.2281.1.2 塔体工艺尺寸设计塔径:根据流量公式可算塔径,即πu V 4S=D V V L C u ρρρ-=max,其中的C 由2.02020⎪⎪⎭⎫⎝⎛=σC C 计算,C 20可由史密斯关联图查得,图的横坐标为97.118.306593.995326.0113.02/12/1=⎪⎪⎭⎫⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛VLhhV Lρρ图1-1-2-1 史密斯关联图取板间距H T =0.8m ,取板上液层高度h L =0.1m ,则m h H L T 7.01.08.0=-=-查图得C 20=0.081,则066.020267.7081.0202.02.020=⎪⎪⎭⎫⎝⎛⨯=⎪⎪⎭⎫⎝⎛=L C C σs m U /348.0462.1919.462-561.758066.0max ==,取安全系数0.7,则空塔气速s m u u /2436.0348.07.07.0max =⨯==所以m D 21.32436.014.3965.14=⨯⨯=,按标准塔径圆整后m D 4.3=塔截面积为:2220746.94.3785.04m D A T =⨯==π实际空塔气速为s m u /217.00746.9965.1==1.1.3 塔板工艺尺寸设计 (1)溢流装置计算本设计采用双溢流弓形降液管,不设进口堰; ① 堰长l w取堰长m D l W 244.24.366.066.0=⨯== ② 溢流堰高度W h 由 W O L W h h h -=计算选用平直堰,堰上液层高度h ow 由下式计算,即 mm m l L E h Wh OW121121.0244.23600174.01100084.2100084.23/23/2==⎪⎪⎭⎫ ⎝⎛⨯⨯⨯=⎪⎪⎭⎫⎝⎛=由前面已知板上清液层高度 mm h L 100=,故:mm h h h OW L W 51051.0019.007.0==-=-=② 弓形降液管宽度d W 和截面积f A 由66.0=D l W ,查图得 072.0=Tf A A,124.0=D W d所以 20567.0785.0072.0m A f =⨯= mm m W d 124124.00.1124.0==⨯=根据hTf L H A 3600=θ验算降液管停留时间,即s s L H A hTf 523.836000031.045.00567.036003600>=⨯⨯⨯==θ,符合要求④ 降液管底隙高度h 0降液管底隙高度是指降液管下端与塔板间的距离,降液管高度应小于出口堰高度,才能保证降液管底端有良好的液封,一般按下式计算:OW hO u l L h '=3600,取s m u O/15.0='则 mm m u l L h O W h O 31031.015.066.0360036000031.03600==⨯⨯⨯='=m m h h O W 006.0020.0031.0051.0>=-=-故降液管底隙高度设计合理 (2)塔板布置① 塔板的分块因为D ≥800mm ,采用分块式塔板,查下表得,塔板分为3块表4-3-3-1 单溢流型塔板分块数塔径/mm 800~12001400~16001800~20002200~2400塔板分块3456② 边缘区宽度确定取破沫区宽度: m W W S S 065.0='=,取边缘区宽度: m W C 035.0= ③ 开孔区面积计算对于单溢流塔板,开孔区面积按下式计算,即⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-=r x r x r x Aa arcsin 1802222π 其中:()()m W W Dx d S 311.0124.0065.02.12=+-=+-=m W Dr C 465.0035.02.12=-=-=代入数据,得2222532.0465.0311.0arcsin 465.0180311.0465.0311.02m Aa =⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⨯+-⨯=π④ 阀孔计算及其排列取阀孔动能因子100=F ,用下式求孔速s m F u V/97.3344.61000===ρ所以,塔板上浮阀数为6097.3039.0785.0284.04220=⨯⨯==u d V N S π浮阀排列方式采用等腰三角形叉排,取同一横排的孔心距m mm t 075.075==,则可按下式估算排间距t ',即mm m Nt Aa t 12012.0075.060532.0==⨯==' 考虑到塔的直径比较大,必须采用分块式塔板,而分块式板的支撑与衔接也要占去一部分鼓泡区面积,因此排间距不宜采用120mm ,因小于此值,取mm t 100='按mm t 75=,mm t 100=',等腰叉排重新排得阀数为64个。
全面讲解板式塔,不信你看不懂!板式塔为逐级接触式气液传质设备,它主要由圆柱形壳体、塔板、溢流堰、降液管及受液盘等部件构成。
操作时,塔内液体依靠重力作用,由上层塔板的降液管流到下层塔板的受液盘,然后横向流过塔板,从另一侧的降液管流至下一层塔板。
溢流堰的作用是使塔板上保持一定厚度的液层。
气体则在压力差的推动下,自下而上穿过各层塔板的气体通道(泡罩)、筛孔或浮阀等,分散成小股气流,鼓泡通过各层塔板的液层。
在塔板上,气液两相密切接触,进行热量和质量的交换。
在板式塔中,气液两相逐级接触,两相的组成沿塔高呈阶梯式变化,在正常操作下,液相为连续相,气相为分散相。
一般而论,板式塔的空塔速度较高,因而生产能力较大,塔板效率稳定,操作弹性大,且造价低,检修、清洗方便,故工业上应用较为广泛。
塔板可分为有降液管式塔板(也称溢流式塔板或错流式塔板)及无降液管式塔板(也称穿流式塔板或逆流式塔板)两类,在工业生产中,以有降液管式塔板应用最为广泛,在此只讨论有降液管式塔板。
泡罩塔板泡罩塔板是工业上应用最早的塔板,其结构如图所示,它主要由升气管及泡罩构成。
泡罩安装在升气管的顶部,分圆形和条形两种,以前者使用较广。
泡罩有f80、f100、f150mm三种尺寸,可根据塔径的大小选择。
泡罩的下部周边开有很多齿缝,齿缝一般为三角形、矩形或梯形。
泡罩在塔板上为正三角形排列。
泡罩塔板的单个泡罩大型泡罩塔盘操作时,液体横向流过塔板,靠溢流堰保持板上有一定厚度的液层,齿缝浸没于液层之中而形成液封。
升气管的顶部应高于泡罩齿缝的上沿,以防止液体从中漏下。
上升气体通过齿缝进入液层时,被分散成许多细小的气泡或流股,在板上形成鼓泡层,为气液两相的传热和传质提供大量的界面。
泡罩塔板的优点是操作弹性较大,塔板不易堵塞;缺点是结构复杂、造价高,板上液层厚,塔板压降大,生产能力及板效率较低。
泡罩塔板已逐渐被筛板、浮阀塔板所取代,在新建塔设备中已很少采用。
筛孔塔板筛孔塔板简称筛板,其结构如图片3-3所示。