高中数学会考复习资料打印
- 格式:doc
- 大小:1.41 MB
- 文档页数:24
07高中数学会考复习提纲(2)(三角函数)第四章 三角函数1、角:(1)、正角、负角、零角:逆时针方向旋转正角,顺时针方向旋转负角,不做任何旋转零角; (2)、与α终边相同的角,连同角α在内,都可以表示为集合{Z k k ∈⋅+=,360|αββ}(3)、象限的角:在直角坐标系内,顶点与原点重合,始边与x 轴的非负半轴重合,角的终边落在第几象限,就是第几象限的角;角的终边落在坐标轴上,这个角不属于任何象限。
2、弧度制:(1)、定义:等于半径的弧所对的圆心角叫做1(2)、度数与弧度数的换算:π= 180弧度,1弧度)180( =π(3)、弧长公式:r l ||α= (α是角的弧度数) 扇形面积:2||2121r lr S α===3、三角函数 (1)、定义:(如图) (2)、各象限的符号: yry x r x xrx y r y ======ααααααcsc cot cos sec tan sin (3)、 特殊角的三角函数值4、同角三角函数基本关系式(1)平方关系: (2)商数关系: (3)倒数关系:1cos sin 22=+αα αααcos sin tan = 1cot tan =αα αα22sec tan 1=+ αααsin cos cot =1csc sin =αα αα22csc cot 1=+ 1sec cos =αα(4)同角三角函数的常见变形:(活用“1”)αsinx y++ _ _ O xy++__ αcosOαtanxy+ +__O=r αsec αsinαtan αcotcsc①、αα22cos 1sin -=, αα2cos 1sin -±=;αα22sin 1cos -=, αα2sin 1cos -±=;②θθθθθθθ2sin 2cos sin sin cos cot tan 22=+=+,αααααααθθ2cot 22sin 2cos 2cos sin sin cos tan cot 22==-=-③ααααα2sin 1cos sin 21)cos (sin 2±=±=±, |cos sin |2sin 1ααα±=± 5、诱导公式:(奇变偶不变,符号看象限)公式一: ααααααtan )360tan(cos )360cos(sin )360sin(=︒⋅+=︒⋅+=︒⋅+k k k 公式二: 公式三: 公式四: 公式五:ααααααtan )180tan(cos )180cos(sin )180sin(-=-︒-=-︒=-︒ ααααααtan )180tan(cos )180cos(sin )180sin(=+︒-=+︒-=+︒ ααααααtan )tan(cos )cos(sin )sin(-=-=--=- ααααααtan )360tan(cos )360cos(sin )360sin(-=-︒=-︒-=-︒ 补充:ααπααπααπcot )2tan(sin )2cos(cos )2sin(=-=-=- ααπααπααπcot )2tan(sin )2cos(cos )2sin(-=+-=+=+ ααπααπααπcot )23tan(sin )23cos(cos )23sin(=--=--=- ααπααπααπcot )23tan(sin )23cos(cos )23sin(-=+=+-=+6、两角和与差的正弦、余弦、正切)(βα+S :βαβαβαsin cos cos sin )sin(+=+ )(βα-S :βαβαβαsin cos cos sin )sin(-=- )(βα+C :βαβαβsin sin cos cos )cos(-=+a )(βα-C :βαβαβsin sin cos cos )cos(+=-a )(βα+T : βαβαβαtan tan 1tan tan )tan(-+=+ )(βα-T : βαβαβαtan tan 1tan tan )tan(+-=-)(βα+T 的整式形式为:)tan tan 1()tan(tan tan βαβαβα-⋅+=+例:若︒=+45B A ,则2)tan 1)(tan 1(=++B A .(反之不一定成立) 7、辅助角公式:⎪⎪⎭⎫⎝⎛++++=+x b a b x b a a b a x b x a cos sin cos sin 222222 )sin()sin cos cos (sin 2222ϕϕϕ+⋅+=⋅+⋅+=x b a x x b a(其中ϕ称为辅助角,ϕ的终边过点),(b a ,ab =ϕtan ) (多用于研究性质) 8、二倍角公式:(1)、α2S : αααcos sin 22sin = (2)、降次公式:(多用于研究性质) α2C : ααα22sin cos2cos -= ααα2sin 21cos sin =1cos 2sin2122-=-=αα 212cos 2122cos 1sin 2+-=-=ααα α2T : ααα2tan 1tan 22tan -= 212cos 2122cos 1cos 2+=+=ααα (3)、二倍角公式的常用变形:①、|sin |22cos 1αα=-, |cos |22cos 1αα=+;②、|sin |2cos 2121αα=-, |cos |2cos 2121αα=+③、22sin 1cos sin 21cos sin 22244ααααα-=-=+; ααα2cos sin cos 44=-;④半角:2cos 12sinαα-±=,2cos 12cos αα+±=,αααcos 1cos 12tan +-±=ααααcos 1sin sin cos 1+=-= 9、三角函数的图象性质(1)、函数的周期性:①、定义:对于函数f (x ),若存在一个非零常数T ,当x 取定义域内的每一个值时,都有:f (x +T )= f (x ),那么函数f (x )叫周期函数,非零常数T 叫这个函数的周期;②、如果函数f (x )的所有周期中存在一个最小的正数,这个最小的正数叫f (x )的最小正周期。
06年高中数学会考复习提纲4(第二册下B )第九章 直线 平面 简单的几何体 1、2、 平面的性质:公理1:如果有一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是一条直线。
(两平面相交,只有一条交线)l P =⋂⇒⋂∈βαβα且l P ∈公理3:不在同一直线上的三点确定一个平面。
(强调“不共线”)(三个推论:1、直线和直线外一点,2、两条相交直线,3、两条平行直线,确定一个平面)空间图形的平面表示方法:斜二测画法(水平长不变,竖直长减半) 3、4、 两条直线的位置关系:平行,相交,异面:不同在任何一个平面内的两条直线叫异面直线(1)、异面直线判断方法:①定义,②判定:连结平面内一点与平面外一点的直线,和这个平面不经过此点的直线是异面直线.(两在两不在)(2)垂直相交(共面)、异面垂直,都叫两条直线互相垂直.(3)、空间平行直线:公理4:平行于同一直线的两条直线互相平行。
3、直线与平面的位置关系: 直线在平面内 直线在平面外 直线与平面相交,记作a ∩α=A直线与平面作αa//αOC z OB y OA x OP ++=++z y x },,,|{R z y x c z b y a x p p ∈++=><=⋅e a a e a ,cos ||a ⊥b ⋅⇔b a 321321⎪⎩⎨=⋅0n b =i =j =k 12=i 12=j 12=k 0=⋅j i 0=⋅k i 0=⋅k j ),,(321a a a a =),,(321b b b b =),,(332211b a b a b a b a +++=+),,((332211b a b a b a b a ---=-),,(),,(321321a a a a a a a λλλλλ=⋅=R ∈λa 332211,,b a b a b a b λλλ===⇔λ===332211b a b a b a 00332211=++⇔=⋅⇔⊥b a b a b a b a b a 332211b a b a b a b a ++=⋅a b ababab332211b a b a b a ++232221a a a ++232221b b b ++a b a b232221232221332211bb b aa ab a b a b a ++++++),,(111z y x A ),,(222z y x B ),,(121212z z y y x x AB ---=221221212)()()(z z y y x x d B A -+-+-=、)(21OB OA OM +=)2,2,2(212121z z y y x x +++21cos cos cos θθθ⋅=20πθ≤<20πθ≤≤πθ≤≤020πθ≤<20πθ≤≤πθ≤≤0a b O 'a a 'b b 'a 'b a b ]2,0(πα∈21cos cos cos θθθ⋅=用三垂线定理及其逆定理作二面角的平面角,再解直角三角形;求法一:向量法:二面角的两个半平面的法向量所成的角(或其补角)n 1和n 2分别为平面?和?的法向量,记二面角βα--l 的大小为?, 则>=<21,n n θ或><-=21,n n πθ(依据两平面法向量的方向而定)总有|,cos ||cos |21><=n n θ||||2121n n ,若该二面角为锐二面角 则||||arccos 2121n n =θ若二面角βα--l 为钝二面角则|||||arccos 2121n n n n -=πθ11、距离(满足最小值原理)(1)、点到平面的距离:一点到它在平面内的正射影的距离;求法一:解直角三角形;求法二:等积法,利用体积相等;求法三:向量法:如图点P 为平面外一点,点A 为平面内的任一点,平面的法向量为n,过点P 作平面?的垂线PO ,记PA 和平面?所成的角为?,则点P 到平面的距离||||||||sin ||||n PA n PA n PA n PA PA PO d ====θ(2)、直线到平行平面的距离:直线上任一点到与它平行的平面的距离;求法:转化为点到平面的距离求。
高中数学会考专题复习直线与圆的方程篇基础知识:1、直线的斜率与倾斜角(1)tan k α=,[)0απ∈,,2πα=时,直线不存在斜率;(2)斜率公式 2121y y k x x -=-(()111P x y ,、()222P x y ,) 2、直线的五种方程(1)点斜式 ()11y y k x x -=- (直线l 过点()111P x y ,,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(()111P x y ,、()222P x y , (12x x ≠))。
(4)截距式 1x y a b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 说明:点到直线的距离公式里面用的直线的一般式。
3、两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+①121212//l l k k b b ⇔=≠,②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222//A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=; 4、点到直线的距离d =(点()00P x y ,,直线l :0Ax By C ++=)。
5、中点公式:A (1x ,1y ),B (2x ,2y ),中点坐标是(122x x +,122y y +) 6、圆的方程(1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).特别提醒:只有当2240D E F +->时,方程220x y Dx Ey F ++++=才表示圆心为22D E ⎛⎫-- ⎪⎝⎭, ,7、点与圆的位置关系 点()00P x y ,与圆()()222x a y b r -+-=的位置关系有三种若d =(说明:这里d 表示点到圆心的距离) 则d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内。
2020年高中毕业会考数学知识点总结(打印版)第一篇:集合与简易逻辑(选择填空题)1、 集合(1)、集合的分类:有限集、无限集和空集(记作φ,φ是任何集合的子集,是任何非空集合的真子集);(2)、元素a 和集合A 之间的关系:a ∈A ,或a ∉A ;(3)、常用数集:自然数集:N ;正整数集:N ;整数集:Z ;整数:Z ;有理数集:Q ;实数集:R 。
2、子集(1)、定义:A 中的任何元素都属于B ,则A 叫B 的子集 ;记作:A ⊆B , 注意:A ⊆B 时,A 有两种情况:A =φ与A ≠φ(2)、性质:①、A A A ⊆⊆φ,;②、若C B B A ⊆⊆,,则C A ⊆;③、若A B B A ⊆⊆,则A =B ; 3、真子集(1)、定义:A 是B 的子集 ,且B 中至少有一个元素不属于A ;记作:B A ⊂; (2)、性质:①、A A ⊆≠φφ,;②、若C B B A ⊆⊆,,则C A ⊆; 4、补集①、定义:记作:},|{A x U x x A C U ∉∈=且;②、性质:A A C C U A C A A C A U UU U ===)(,, φ; 5、交集与并集(1)、交集:}|{B x A x x B A ∈∈=且性质:①、φφ== A A A A , ②、若B B A = ,则A B ⊆ (2)、并集:}|{B x A x x B A ∈∈=或性质:①、A A A A A ==φ , ②、若B B A = ,则B A ⊆AABBA6、一元二次不等式的解法:(二次函数、二次方程、二次不等式三者之间的关系)判别式:△=b 2-4ac0>∆0=∆0<∆二次函数)0()(2>++=a c bx ax x f的图象一元二次方程)0(02>=++a c bx ax 的根有两相异实数根 )(,2121x x x x < 有两相等实数根 a bx x 221-== 没有实数根一元二次不等式)0(02>>++a c bx ax 的解集},|{21x x x x x ><“>”取两边}2|{abx x -≠R一元二次不等式)0(02><++a c bx ax 的解集}|{21x x x x <<“<”取中间φ φ不等式解集的边界值是相应方程的解含参数的不等式ax 2+b x +c>0恒成立问题⇔含参不等式ax 2+b x +c>0的解集是R ; 其解答分a =0(验证bx +c>0是否恒成立)、a ≠0(a<0且△<0)两种情况。
高中数学会考复习资料高中数学会考复习资料高中数学是一门重要的学科,对于学生的综合素质培养起着重要的作用。
在高中数学的学习过程中,会考是一个重要的环节,它不仅对学生的数学水平进行考察,还对学生的思维能力和解决问题的能力进行评估。
为了帮助同学们顺利备考,本文将介绍一些高中数学会考复习资料。
首先,数学教材是复习的基础。
高中数学教材是学生学习数学的主要教材,其中包含了各个章节的知识点和解题方法。
同学们可以通过仔细阅读教材,理解每个知识点的概念和原理,并掌握解题的方法和技巧。
在复习过程中,可以结合教材中的例题和习题进行练习,加深对知识点的理解和掌握。
其次,习题集是复习的重要辅助资料。
高中数学的习题集中包含了大量的练习题,可以帮助同学们巩固知识和提高解题能力。
在选择习题集时,同学们可以根据自己的实际情况选择适合自己的习题集。
一般来说,习题集分为基础习题和提高习题两种类型,同学们可以根据自己的水平选择适合的习题集。
在做习题时,可以按照章节顺序进行刷题,逐步提高解题能力。
除了教材和习题集,同学们还可以参考一些辅助资料。
辅助资料包括数学参考书、数学辅导书和数学学习网站等。
数学参考书一般是对教材内容的进一步解释和拓展,可以帮助同学们更深入地理解和掌握知识点。
数学辅导书则是对解题方法和技巧进行详细讲解,可以帮助同学们提高解题能力。
此外,数学学习网站也是一个很好的资源,同学们可以在网站上找到大量的数学学习资料和习题,进行在线学习和练习。
在复习过程中,同学们还可以参加一些数学复习班或者数学辅导班。
这些班级一般由专业的数学老师授课,可以帮助同学们系统地复习数学知识,并提供解题技巧和答题技巧。
参加复习班或者辅导班可以让同学们在有限的时间内系统地进行复习,提高复习效率。
最后,同学们还可以参加一些模拟考试和真题训练。
模拟考试可以帮助同学们熟悉考试的形式和要求,提前感受考试的紧张氛围,从而有针对性地进行复习。
真题训练则是对学生数学水平的真实考察,通过做真题可以了解自己的薄弱环节,有针对性地进行复习和提高。
高中数学会考复习知识点汇总第一章集合与简易逻辑1子集:如果集合A 的任意一个元素都是集合 B 的元素若 合B 的子集记作AB 或B A真子集:若 A B ,且B A 则称A 是B 的真子集。
记作 A B 或B A空集:把不含任何元素的集合叫做空集 符号 或规定:空集是任何一个集合的子集,是任何非空集合的真子集 2、含n 个元素的集合的所有子集有 2n 个;真子集有 2 1个;非空子集有 2 2兀素与集合的关系 属于 不属于集合与集合的关系包含于 包含集合与集合的运算并 交补集Cu第二章函数 1、求yf (x)的反函数:解出x1f (y) , x, y 互换,写出yf 1(x)的定义域;2、对数:①:负数和零没有对数,②、1的对数等于0: log a 1 0,③、底的对数等于 1:log a a 1,A 则B 则称集合A 为集④、积的对数:log a (MN)log a M log a幕的对数:log a M nnlog a M ; log am bmlog a b,换底公式:log .N log a b logam幕的运算:a nna m第三章数列1、数列的前 n 项和:S n a-t a 2 a 3a n ; 数列前 n 项和与通项的关系:2、等差数列:(1)、定义:等差数列从第2项起,每一项与它的前一项的差等于同一个 常数; (2)、通项公式:a n a 1 (n 1)d (其中首项是a 1,公差是d ;) (3)、前n 项和: 1 - S n na 1 d (整理后是关于 n 的没有常数项的2 2二次函数) (4)、等差中项:a bA 是a 与 b 的等差中项:A 或2A a b ,三个数成等差常设:a-d ,a ,a+d中项有两个) 第四章三角函数1、弧度制:(1)、180弧度,1弧度180()57 18';角 弧: 面~弧角:180弧长公式: 1 |21 r n R180扇形面积公式:2S3602、三角函数(1)、定义:ysin—c osr x rtan_y xa na -3 (n 1)SnSn 1 (n 2)3、等比数列:(1)、(2 )、定义:等比数列从第2项起,每一项与它的前一项的比等于同一个常数, 通项公式: (q 0)。
高中数学会考练习题集练习一 集合与函数(一) 1. 已知S ={1,2,3,4,5},A ={1,2},B ={2,3,6},则______=B A I ,______=B A Y ,______)(=B A C S Y .2. 已知},31|{},21|{<<=<<-=x x B x x A则______=B A I ,______=B A Y .3. 集合},,,{d c b a 的所有子集个数是_____,含有2个元素子集个数是_____.4. 图中阴影部分的集合表示正确的有________.(1))(B A C U Y (2))(B A C U I(3))()(B C A C U U Y (4))()(B C A C U U I5. 已知},6|),{(},4|),{(=+==-=y x y x B y x y x A ________B A =则I .6. 下列表达式正确的有__________.(1)A B A B A =⇒⊆I (2)B A A B A ⊆⇒=Y(3)A A C A U =)(I (4)U A C A U =)(Y7. 若}2,1{≠⊂}4,3,2,1{⊆A ,则满足A 集合的个数为____.8. 下列函数可以表示同一函数的有________.(1)2)()(,)(x x g x x f == (2)2)(,)(x x g x x f ==(3)x x x g x x f 0)(,1)(== (4))1()(,1)(+=+⋅=x x x g x x x f 9. 函数x x x f -+-=32)(的定义域为________.10. 函数291)(x x f -=的定义域为________.11. 若函数_____)1(,)(2=+=x f x x f 则.12. 已知_______)(,12)1(=-=+x f x x f 则.13. 已知1)(-=x x f ,则______)2(=f .14. 已知⎩⎨⎧≥<=0,20,)(2x x x x f ,则_____)0(=f _____)]1([=-f f .15. 函数xy 2-=的值域为________. 16. 函数R x x y ∈+=,12的值域为________.17. 函数)3,0(,22∈-=x x x y 的值域为________.18. 下列函数在),0(+∞上是减函数的有__________.(1)12+=x y (2)xy 2=(3)x x y 22+-= (4)12+--=x x y 19. 下列函数为奇函数的有________.(1)1+=x y (2)x x y -=2 (3)1=y (4)x y 1-= 20. 若映射B A f →:把集合A 中的元素(x,y )映射到B 中为),(y x y x +-,则(2, 6)的象是______,则(2, 6)的原象是________.21. 将函数xy 1=的图象向左平移2个单位,再向下平移1个单位,则对应 图象的解析式为 .22. 某厂从1998年起年产值平均每年比上一年增长12.4%,设该厂1998年的产值为a , 则该厂的年产值y 与经过年数x 的函数关系式为________.集合与函数(二)1. 已知全集I ={1,2,3,4,5,6},A ={1,2,3,4},B ={3,4,5,6}, 那么C I (A ∩B )=( ).A.{3,4}B.{1,2,5,6}C.{1,2,3,4,5,6}D.Ф2. 设集合M ={1,2,3,4,5},集合N ={9|2≤x x },M ∩N =( ).A.{33|≤≤-x x }B.{1,2}C.{1,2,3}D.{31|≤≤x x }3. 设集合M ={-2,0,2},N ={0},则( ).A .N 为空集 B. N ∈M C. N ⊂M D. M ⊂N4. 命题“b a >”是命题“22bc ac >”的____________条件.5. 函数y =)1lg(2-x 的定义域是__________________.6. 已知函数f (x )=log 3(8x +7),那么f (21)等于_______________. 7. 若f (x )=x + 1x ,则对任意不为零的实数x 恒成立的是( ). A. f (x )=f (-x ) B. f (x )=f (x 1) C. f (x )=-f (x 1) D. f (x ) f (x1)=0 8. 与函数y = x 有相同图象的一个函数是( ).A .y =x 2B. y =x 2xC. y =a log a x (a >0, a ≠1)D. y = log a a x (a>0, a≠1) 9. 在同一坐标系中,函数y =x 5.0log 与y =x 2log 的图象之间的关系是( ).A.关于原点对称B.关于x 轴对称C.关于直线y =1对称.D.关于y 轴对称10. 下列函数中,在区间(0,+∞)上是增函数的是( ).A.y =-x 2B.y = x 2-x +2C.y =(21)xD.y =x 1log 3.011. 函数y =)(log 2x -是( ).A. 在区间(-∞,0)上的增函数B. 在区间(-∞,0)上的减函数C. 在区间(0,+∞)上的增函数D. 在区间(0,+∞)上的减函数12. 函数f (x )=3x -13x +1 ( ).A. 是偶函数,但不是奇函数B. 是奇函数,但不是偶函数C. 既是奇函数,又是偶函数D.不是奇函数,也不是偶函数13. 下列函数中为奇函数的是( ).A. f (x )=x 2+x -1B. f (x )=|x |C. f (x )=23x x +D. f (x )=522xx --14. 设函数f (x )=(m -1)x 2+(m +1)x +3是偶函数,则m=________.15. 已知函数f (x )=||2x ,那么函数f (x )( ).A. 是奇函数,且在(-∞,0)上是增函数B. 是偶函数,且在(-∞,0)上是减函数C. 是奇函数,且在(0,+∞)上是增函数D. 是偶函数,且在(0,+∞)上是减函数16. 函数y =||log 3x (x ∈R 且x ≠0)( ) .A. 为奇函数且在(-∞,0)上是减函数B. 为奇函数且在(-∞,0)上是增函数C. 是偶函数且在(0,+∞)上是减函数D. 是偶函数且在(0,+∞)上是增函数17. 若f (x )是以4为周期的奇函数,且f (-1)=a (a ≠0),则f (5)的值等于(). A. 5a B. -a C. a D. 1-a18. 如果函数y =x a log 的图象过点(91,2),则a =___________.19. 实数2732–3log 22·log 218 +lg4+2lg5的值为_____________.20. 设a =log 26.7, b =log 0.24.3, c =log 0.25.6,则a, b, c 的大小关系为( )A. b <c <aB. a <c <bC. a <b <cD. c <b <a21. 若1log 21>x ,则x 的取值范围是( ).A. 21<xB.210<<x C.21>x D.0<x数列(一)1. 已知数列{n a }中,12=a ,121+=+n n a a ,则=1a ______.2. – 81是等差数列 – 5 , – 9 , – 13 , … 的第( )项.3. 若某一数列的通项公式为n a n 41-=,则它的前50项的和为______.4. 等比数列,271,91,31,1…的通项公式为________. 5. 等比数列,54,18,6,2…的前n 项和公式n S =__________.6. 12-与12+的等比中项为__________.7. 若a ,b ,c 成等差数列,且8=++c b a ,则b = .8. 等差数列{a n }中,a 3+ a 4+ a 5+ a 6+ a 7=150,则a 2+a 8= .9. 在等差数列{a n }中,若a 5=2,a 10=10,则a 15=________.10. 在等差数列{a n }中,,56=a 583=+a a , 则=9S _____.10. 数列1781,1327,99,53,11,…的一个通项公式为________. 11. 在等比数列中,各项均为正数,且962=a a ,则)(log 54331a a a = .12. 等差数列中,2,241-==d a , 则n S =___________.13. 已知数列{ a n }的前项和为S n = 2n 2 – n ,则该数列的通项公式为_______.14. 已知三个数成等比数列,它们的和为14,它们的积为64,则这三个数为 .数列(二)1. 在等差数列}{n a 中,85=a ,前5项的和105=S ,它的首项是__________,公差是__________.2. 在公比为2的等比数列中,前4项的和为45,则首项为_____.3. 在等差数列}{n a 中,已知1554321=++++a a a a a ,则42a a +=_______.4. 在等差数列}{n a 中,已知前n 项的和n n S n -=24, 则=20a _____.5. 在等差数列}{n a 公差为2,前20项和等于100,那么20642...a a a a ++++等于________.6. 已知数列}{n a 中的3231+=+n n a a ,且2053=+a a ,则=8a _______. 7. 已知数列}{n a 满足n n a a =-+21,且11=a ,则通项公式=n a ______.8. 数列}{n a 中,如果)1(21≥=+n a a n n ,且21=a ,那么数列的前5项和=5S _.9. 两数15-和15+的等比中项是__________________.10. 等差数列}{n a 通项公式为72-=n a n ,那么从第10项到第15项的和为___.11. 已知a, b, c, d 是公比为3 的等比数列,则dc b a ++22=___________. 12. 在各项均为正数的等比数列中,若551=a a ,则=)(log 4325a a a ________.三角函数(一)1. 下列说法正确的有____________.(1)终边相同的角一定相等(2)锐角是第一象限角(3)第二象限角为钝角(4)小于︒90的角一定为锐角 (5)第二象限的角一定大于第一象限的角2. 已知角x 的终边与角︒30的终边关于y 轴对称,则角x 的集合可以表示为__________________________.3. 终边在y 轴上角的集合可以表示为________________________.4. 终边在第三象限的角可以表示为________________________.5. 在︒︒-720~360之间,与角︒175终边相同的角有__________________.6. 在半径为2的圆中,弧度数为3π的圆心角所对的弧长为________,扇形面积为__________.7. 已知角α的终边经过点(3,-4),则sin α=______ , cos α=______, tan α=_______ .8. 已知0cos 0sin ><θθ且,则角θ一定在第______象限.9. “0sin >θ”是“θ是第一或第二象限角”的________条件.10. 计算:πππ2cos cos 0tan 20sin 1223cos 7-+++=________. 11. 化简:tan cos ____θθ=.12. 已知,54cos -=α 且α为第三象限角,则_____tan _____,sin ==αα . 13. 已知31tan =α,且23παπ<<,则_____cos _____,sin ==αα . 14. 已知2tan =α,则____sin cos cos 2sin =+-αααα. 15. 计算:_____)317sin(=-π, _____)417cos(=-π. 16. 化简:____)cos()sin()2sin()cos(=----++αππαπααπ.三角函数(二)1. 求值: ︒165cos =________,=︒-)15tan(________.2. 已知21cos -=θ,θ为第三象限角,则=+)3sin(θπ________, =+)3cos(θπ________,=+)3tan(θπ________. 3. 已知x tan ,y tan 是方程0762=++x x 的两个根,则=+)tan(y x ______. 4. 已知31sin =α,α为第二象限角,则=α2sin ______, =α2cos ______,=α2tan ______.5. 已知21tan =α,则=α2tan ______.6. 化简或求值:=---y y x y y x cos )cos(sin )sin(______,=︒︒-︒︒170sin 20sin 10cos 70sin ______,=-ααsin 3cos ______,____15tan 115tan 1=︒-︒+, _____5tan 65tan 35tan 65tan =︒︒-︒-︒, =︒︒15cos 15sin ____, =-2cos 2sin 22θθ______15.22cos 22-︒=______, ︒-︒150tan 1150tan 22=______. 7. 已知,3tan ,2tan ==ϕθ且ϕθ,都为锐角,则=+ϕθ______.8. 已知21cos sin =+θθ,则=θ2sin ______. 9. 已知41sin =θ,则=-θθ44cos sin ______. 10. 在ABC ∆中,若,53sin ,135cos =-=B A 则=C sin ________.三角函数(三)1. 函数)4sin(π+=x y 的图象的一个对称中心是( ).A. )0,0(B. )1,4(πC. )1,43(πD. )0,43(π 2. 函数)3cos(π-=x y 的图象的一条对称轴是( ).A. y 轴B. 3π-=x C. 65π=x D. 3π=x 3. 函数x x y cos sin =的值域是________,周期是______,此函数的为____函数(填奇偶性).4. 函数x x y cos sin -=的值域是________,周期是______,此函数的为____函数(填奇偶性).5. 函数x x y cos 3sin +=的值域是________,周期是______,此函数的为____函数(填奇偶性).8. 函数)42tan(3π-=x y 的定义域是__________________,值域是________,周期是______,此函数为______函数(填奇偶性).9. 比较大小:︒︒530cos ___515cos , )914sin(____)815sin(ππ-- ︒︒143tan ____138tan , ︒︒91tan ___89tan10. 要得到函数)42sin(2π+=x y 的图象,只需将x y 2sin 2=的图象上各点____11. 将函数x y 2cos =的图象向左平移6π个单位,得到图象对应的函数解析式为________________.12. 已知22cos -=θ,)20(πθ<<,则θ可能的值有_________.三角函数(四)1. 在︒︒360~0范围内,与-1050o 的角终边相同的角是___________.2. 在π2~0范围内,与π310终边相同的角是___________. 3. 若sinα<0且cosα<0 ,则α为第____象限角.4. 在︒︒-360~360之间,与角︒175终边相同的角有_______________.5. 在半径为2的圆中,弧度数为3π的圆心角所对的弧长为______________. 6. 已知角α的终边经过点(3,-4),则cos α=______. 7. 命题 “x = π2 ” 是命题 “sin x =1” 的_____________条件.8. sin(π617-)的值等于___________. 9. 设π4 <α<π2 ,角α的正弦. 余弦和正切的值分别为a ,b ,c ,则( ). A. a <b <c B. b <a <c C. a <c <b D. c <b <a10. 已知,54cos -=α 且α为第三象限角,则_____tan =α. 11. 若 tan α=2且sin α<0,则cos α的值等于_____________.12. 要得到函数y =sin(2x -π3)的图象,只要把函数y =sin2x 的图象( ). A.向左平移π3 个单位 B. 向右平移π3 个单位C.向左平移π6 个单位D. 向右平移π6 个单位13. 已知tan α=-3 (0<α<2π),那么角α所有可能的值是___________14. 化简cos x sin(y -x )+cos(y -x )sin x 等于_____________15. cos25o cos35o –sin25o sin35o 的值等于_____________(写具体值).16. 函数y =sin x +cos x 的值域是( )A.[-1,1]B.[-2,2]C.[-1, 2 ]D.[- 2 , 2 ]17. 函数y =cos x - 3 sin x 的最小正周期是( )A.2π B. 4π C. π D.2π 18. 已知sin α=53,90o <α<180o ,那么sin2α的值__________. 19. 函数y=cos 2 x -sin 2x 的最小正周期是( )A. 4πB. 2πC. πD. π220. 函数y =sin x cos x 是( )A.周期为2π的奇函数B. 周期为2π的偶函数C. 周期为π的奇函数D. 周期为π的偶函数21. 已知2tan =α,则=α2tan ________.练习九 平面向量(一)1. 下列说法正确的有______________.(1)零向量没有方向 (2)零向量和任意向量平行(3)单位向量都相等 (4)(a ·b )·c =a ·(b ·c )(5)若a ·c = b ·c ,且c 为非零向量,则a =b(6)若a ·b =0,则a,b 中至少有一个为零向量.2. “b a =”是“a ∥b ”的________________条件.3. 下列各式的运算结果为向量的有________________.(1)a +b (2)a -b (3)a ·b (4)λa (5)||b a + (6)a ·0 4. 计算:=-++MP MN NQ QP ______.5. 如图,在ABC ∆中,BC 边上的中点为M , 设=AB a, =AC b ,用a , b 表示下列向量: =BC ________,=AM ________,=MB ________.6. 在□ABCD 中,对角线AC ,BD 交于O 点,设=AB a, =AD b ,用a , b 表示下列向量:=AC ________,. =BD ________,=CO ________,=OB ________.7. 已知21,e e 不共线,则下列每组中a , b 共线的有______________.(1)113,2e b e a -== (2)213,2e b e a -==(3)212121,2e e b e e a +-=-= (4)2121,e e b e e a +=-= 8. 已知,4||,3||==b a 且向量b a,的夹角为︒120,则=b a ·________, =-||b a __________.9. 已知)1,1(),3,2(-==b a ,则=-b a 2______,=b a ·________, =||a ______,向量b a,的夹角的余弦值为_______.12. 已知)1,2(),2,1(-==b a k ,当b a,共线时,k =____;当b a,垂直时,k =____.13. 已知)4,2(),2,1(B A -,)3,(x C ,且A,B,C 三点共线,则x =______.14. 把点)5,3(P 按向量a =(4,5)平移至点P ’,则P ’的坐标为_______.15. 将函数22x y =的图象F 按a =(1,-1)平移至F ’, 则F ’的函数解析式为____.16. 将一函数图象按a =(1,2)平移后,所得函数图象所对应的函数解析式为x y lg =,则原图象的对应的函数解析式为_______.17. 将函数x x y 22+=的图象按某一向量平移后得到的图象对应的函数解析式为2x y =,则这个平移向量的坐标为________.18. 已知)3,2(),5,1(B A ,点M 分有向线段的比2-=λ,则M 的坐标为____.19. 已知P 点在线段21P P 上,21P P =5,P P 1=1,点P 分有向线段21P P 的比为__.20. 已知P 点在线段21P P 的延长线上,21P P =5,P P 2=10,点P 分有向线段21P P 的比为_____.21. 在ABC ∆中,︒=45A ,︒=105C ,5=a ,则b =_______.22. 在ABC ∆中,2=b ,1=c ,︒=45B ,则C =_______.23. 在ABC ∆中,32=a ,6=b ,︒=30A ,则B =_______.24. 在ABC ∆中,3=a ,4=b ,37=c ,则这个三角形中最大的内角为______.25. 在ABC ∆中,1=a ,2=b ,︒=60C ,则c =_______.26. 在ABC ∆中,7=a ,3=c ,︒=120A ,则b =_______.平面向量(二)1. 小船以10 3 km/h 的速度向垂直于对岸的方向行驶,同时河水的流速为10km/h ,则小船实际航行速度的大小为( ).A.20 2 km/hB.20km/hC. 10 2 km/hD. 10km/h2. 若向量→a =(1,1),→b =(1,-1),→c =(-1,2),则→c =( ).A. -12 →a +32 →bB. 12 →a -32 →bC. 32 →a -12 →bD.- 32 →a +12 →b3. 有以下四个命题:① 若→a ·→b =→a ·→c 且→a ≠→0,则→b =→c ;② 若→a ·→b =0,则→a =→0或→b =→0;③ ⊿ABC 中,若→AB ·→AC >0,则⊿ABC 是锐角三角形;④ ⊿ABC 中,若→AB ·→BC =0,则⊿ABC 是直角三角形.其中正确命题的个数是( ). A.0 B.1 C.2 D.34. 若|→a |=1,|→b |=2,→c =→a +→b ,且→c ⊥→a ,则向量→a 与→b 的夹角为( ).A.30oB.60oC.120o D150o5. 已知→a . →b 是两个单位向量,那么下列命题中真命题是( ).A. →a =→bB. →a ·→b =0C. |→a ·→b |<1D. →a 2=→b 26. 在⊿ABC 中,AB =4,BC =6,∠ABC =60o ,则AC 等于( ).A. 28B. 76C. 27D. 2197. 在⊿ABC 中,已知a = 3 +1, b =2, c = 2 ,那么角C 等于( ).A. 30oB. 45oC. 60oD. 120o8. 在⊿ABC 中,已知三个内角之比A :B :C =1:2:3,那么三边之比a :b :c =( ).A. 1: 3 :2B. 1:2:3C. 2: 3 :1D. 3:2:1不等式1. 不等式3|21|>-x 的解集是__________.2. 不等式2|1|≤-x 的解集是__________.3. 不等式42>x 的解集是__________.4. 不等式022>--x x 的解集是__________.5. 不等式012<++x x 的解集是__________.6. 不等式032≥--xx 的解集是__________. 7. 已知不等式02>++n mx x 的解集是}2,1|{>-<x x x 或,则m 和n 的值分别为__________.8. 不等式042>++mx x 对于任意x 值恒成立,则m 的取值范围为________.9. 已知d c b a >>,,下列命题是真命题的有_______________.(1)d b c a +>+ (2)d b c a ->- (3)x b x a ->- (4)bd ac >(5)c b d a > (6)22b a > (7)33b a > (8)33b a > (9)ba 11< (11) 22bx ax > 10. 已知64,52<<<<b a ,则b a +的取值范围是______________,则a b -的取值范围是______________,ab 的取值范围是___________. 11. 已知0,>b a 且,2=ab 则b a +的最___值为_______.12. 已知0,>b a 且,2=+b a 则ab 的最___值为_______.13. 已知,0>m 则函数mm y 82+=的最___值为_______, 此时m =_______.14. a >0,b >0是ab >0的( ).A. 充分条件但不是必要条件B. 必要条件但不是充分条件C. 充分必要条件D. 既非充分条件也非必要条件15. 若0<<b a ,则下列不等关系不能成立的是( ).A. b a 11>B. ab a 11>- C. ||||b a > D. 22b a > 16. 若0>>b a ,0>m ,则下列不等式中一定成立的是( ).A. m a m b a b ++>B. m b m a b a -->C. m a m b a b ++<D. mb m a b a --< 17. 若0>x ,则函数xx y 1+=的取值范围是( ). A.]2,(--∞ B. ),2[+∞ C. ),2[]2,(+∞--∞Y D. ]2,2[-18. 若0≠x ,则函数22364x xy --=有( ). A. 最大值264- B. 最小值264-C. 最大值264+D. 最小值264+19. 解下列不等式:(1) 5|32|1<-≤x (2) 6|5|2>-x x(3) 10|83|2<-+x x解析几何(一)1. 已知直线l 的倾斜角为︒135,且过点)3,(),1,4(--m B A ,则m 的值为______.2. 已知直线l 的倾斜角为︒135,且过点)2,1(,则直线的方程为____________.3. 已知直线的斜率为4,且在x .轴.上的截距为2,此直线方程为____________. 4. 直线023=+-y x 倾斜角为____________.5. 直线042=+-y x 与两坐标轴围成的三角形面积为__________.6. 直线042=+-y x 关于y 轴对称的直线方程为________________.7. 过点)3,2(P 且在两坐标轴上截距互为相反数的直线方程为_____________.8. 下列各组直线中,互相平行的有____________;互相垂直的有__________.(1)022121=+-+=y x x y 与 (2)0322=-+-=y x x y 与 (3)0322=--=y x x y 与 (4)023=++y x 与33+=x y(5)052052=+=+y x 与 (6)052052=-=+x x 与9. 过点(2,3)且平行于直线052=-+y x 的方程为________________. 过点(2,3)且垂直于直线052=-+y x 的方程为________________.10. 已知直线01:,022:21=--+=--+a y ax l a ay x l ,当两直线平行时, a =______;当两直线垂直时,a =______.11. 直线53=-y x 到直线032=-+y x 的角的大小为__________.12. 设直线0243:,022:,0243:321=+-=++=-+y x l y x l y x l ,则直线 21l l 与的交点到3l 的距离为____________.13. 平行于直线0243=-+y x 且到它的距离为1的直线方程为____________.解析几何(二)1. 圆心在)2,1(-,半径为2的圆的标准方程为____________,一般方程为__________,参数方程为______________.2. 圆心在点)2,1(-,与y 轴相切的圆的方程为________________,与x 轴相切的圆的方程为________________,过原点的圆的方程为________________3. 半径为5,圆心在x 轴上且与x =3相切的圆的方程为______________.4. 已知一个圆的圆心在点)1,1(-,并与直线0334=+-y x 相切,则圆的方程为______.5. 点)1,1(-P 和圆024222=--++y x y x 的位置关系为________________.6. 已知4:22=+y x C 圆,(1)过点)3,1(-的圆的切线方程为________________.(2)过点)0,3(的圆的切线方程为________________.(3)过点)1,2(-的圆的切线方程为________________.(4)斜率为-1的圆的切线方程为__________________.7. 已知直线方程为043=++k y x ,圆的方程为05622=+-+x y x(1)若直线过圆心,则k =_________.(2)若直线和圆相切,则k =_________.(3)若直线和圆相交,则k 的取值范围是____________. (4)若直线和圆相离,则k 的取值范围是____________.8. 在圆822=+y x 内有一点)2,1(-P ,AB 为过点P 的弦.(1)过P 点的弦的最大弦长为__________.(2)过P 点的弦的最小弦长为__________.解析几何(三)1. 已知椭圆的方程为116922=+x y ,则它的长轴长为______,短轴长为______, 焦点坐标为________,离心率为________,准线方程为____________. 在坐标系中画出图形.2. 已知双曲线的方程为116922=-x y ,则它的实轴长为______,虚轴长为______,焦点坐标为________,离心率为________,准线方程为____________,渐近线方程为__________. 在坐标系中画出图形.3. 经过点)2,0(),0,3(--Q P 的椭圆的标准方程是_____________.4. 长轴长为20,离心率为53,焦点在y 轴上的椭圆方程为__________. 5. 焦距为10,离心率为35,焦点在x 轴上的双曲线的方程为__________. 6. 与椭圆1492422=+y x 有公共焦点,且离心率为45的双曲线方程为________. 7. 已知椭圆的方程为16422=+y x ,若P 是椭圆上一点,且,7||1=PF则________||2=PF .8. 已知双曲线方程为14491622-=-y x ,若P 是双曲线上一点,且,7||1=PF 则________||2=PF .9. 已知双曲线经过)5,2(-P ,且焦点为)6,0(±,则双曲线的标准方程为______10. 已知椭圆12516922=+y x 上一点P 到左焦点的距离为12,则P 点到左准线的距离为__________.11. 已知双曲线1366422=-y x 上点P 到右准线的距离为532,则P 点到右焦点的距离为__________.12. 已知一等轴双曲线的焦距为4,则它的标准方程为____________________.13. 已知曲线方程为14922=-+-k y k x , (1) 当曲线为椭圆时,k 的取值范围是______________.(2) 当曲线为双曲线时,k 的取值范围是______________.14. 方程y 2 = 2px (p >0)中的字母p 表示( ).A .顶点、准线间的距离B .焦点、准线间的距离C .原点、焦点间距离D .两准线间的距离15. 抛物线x y 22=的焦点坐标为__________,准线方程为____________.16. 抛物线y x 212-=的焦点坐标为__________,准线方程为____________. 17. 顶点在原点,对称轴为坐标轴,焦点为)0,2(-的抛物线方程为________.18. 顶点在原点,对称轴为坐标轴,准线方程为81-=y 的抛物线方程为____. 19. 经过点)8,4(-P ,顶点在原点,对称轴为x 轴的抛物线方程为__________.解析几何(四) 1. 如果直线l 与直线3x -4y +5=0关于y 轴对称,那么直线l 的方程为_____.2. 直线3x + y +1=0的倾斜角的大小是__________.3. 过点(1,-2)且倾斜角的余弦是-35的直线方程是______________.4. 若两条直线l 1: ax+2y+6=0与l 2: x+(a-1)y+3=0平行,则a等于_________.5. 过点(1,3)且垂直于直线052=-+yx的方程为________________.6. 图中的阴影区域可以用不等式组表示为().A.⎪⎩⎪⎨⎧≤+-≤≥11yxyxB.⎪⎩⎪⎨⎧≤+-≥≤11yxyxC.⎪⎩⎪⎨⎧≥+-≥≤11yxyxD.⎪⎩⎪⎨⎧≥+-≥≥11yxyx7. 已知圆的直径两端点为)4,3(),2,1(-,则圆的方程为_____________.8. 圆心在点)2,1(-且与x轴相切的圆的方程为________________.9. 已知02024:22=---+yxyxC圆,它的参数方程为_________________.10. 已知圆的参数方程是θθsin2cos2{==yx(θ为参数),那么该圆的普通方程是______11. 圆x2+y2-10x=0的圆心到直线3x+4y-5=0的距离等于___________.12. 过圆x2+y2=25上一点P(4, 3),并与该圆相切的直线方程是____________.13. 已知椭圆的两个焦点是F1(-2, 0)、F2(2, 0),且点A(0, 2)在椭圆上,那么这个椭圆的标准方程是_________.14. 已知椭圆的方程为x29+y225=1,那么它的离心率是__________.15. 已知点P在椭圆x236+y2100=1上,且它到左准线的距离等于10,那么点P 到左焦点的距离等于______.16. 与椭圆x29+y24=1有公共焦点,且离心率e=52的双曲线方程是()A. x2-y24=1 B. y2-x24=1 C.x24-y2=1 D.y24-x2=117. 双曲线x24-y29=1的渐近线方程是___________.18. 如果双曲线x 264 -y 236 =1上一点P 到它的右焦点的距离是5,那么点P 到它的右准线的距离是___________.19. 抛物线x y 22=的焦点坐标为__________.20. 抛物线y x 212-=的准线方程为__________. 21. 若抛物线y 2=2px 上一点横坐标为6,这个点与焦点的距离为10,那么此 抛物线的焦点到准线的距离是_______.立体几何(一)判断下列说法是否正确:1. 下列条件,是否可以确定一个平面:[ ](1)不共线的三个点[ ](2)不共线的四个点[ ](3)一条直线和一个点[ ](4)两条相交或平行直线2. 关于空间中的直线,判断下列说法是否正确:[ ](1)如果两直线没有公共点,则它们平行[ ](2)如果两条直线分别和第三条直线异面,则这两条直线也异面[ ](3)分别位于两个平面内的两条直线是异面直线[ ](4)若βαβα//,,⊂⊂b a ,则a,b 异面[ ](5)不在任何一个平面的两条直线异面[ ](6)两条直线垂直一定有垂足[ ](7)垂直于同一条直线的两条直线平行[ ](8)若c a b a //,⊥,则b c ⊥[ ](9)过空间中一点有且只有一条直线和已知直线垂直[ ](10)过空间中一点有且只有一条直线和已知直线平行3. 关于空间中的直线和平面,判断下列说法是否正确:[ ](1)直线和平面的公共点个数可以是0个,1个或无数[ ](2)若,,//α⊂b b a 则α//a[ ](3)如果一直线和一平面平行,则这条直线和平面的任意直线平行[ ](4)如果一条直线和一个平面平行,则这条直线和这个平面内的无数条直线平行[ ](5)若两条直线同时和一个平面平行,则这两条直线平行[ ](6)过平面外一点,有且只有一条直线和已知平面平行[ ](7)过直线外一点,有无数个平面和已知直线平行[ ](8)若共面且b a b a ,,,//αα⊂,则b a //4. 关于空间中的平面,判断下列说法是否正确:[ ](1)两个平面的公共点的个数可以是0个,1个或无数[ ](2)若b a b a //,,βα⊂⊂,则βα//[ ](3)若βαβα//,,⊂⊂b a ,则a //b[ ](4)若βαα//,⊂a ,则β//a[ ](5)若αα//,//b a ,则b a //[ ](6)若βα//,//a a ,则βα//[ ](7)若一个平面内的无数条直线和另一个平面平行,则这两个平面平行[ ](8)若αβα⊂a ,//,则β//a[ ](9)若两个平面同时和第三个平面平行,则这两个平面平行[ ](10)若一个平面同两个平面相交且它们的交线平行,则两平面平行[ ](11)过平面外一点,有且只有一个平面和已知平面平行5. 关于直线与平面的垂直,判断下列说法是否正确:[ ](1)如果一直线垂直于一个平面内的所有直线,则这条直线垂直于这个平面[ ](2)若αα⊂⊥a l ,,则a l ⊥[ ](3)若m l m ⊥⊂,α,则α⊥l[ ](4)若n l m l n m ⊥⊥⊂,,,α,则α⊥l[ ](5)过一点有且只有一条直线和已知平面垂直[ ](6)过一点有无数个平面和已知直线垂直6. 关于平面和平面垂直,判断下列说法是否正确:[ ] (1)若,,βα⊥⊂a a 则βα⊥[ ] (2)若b a b a ⊥⊂⊂,,βα,则βα⊥[ ] (3)若,,,βαβα⊂⊂⊥b a ,则b a ⊥[ ] (4)若,,βαα⊥⊂a 则β⊥a[ ] (6)若γαβα//,⊥,则γβ⊥[ ] (7)垂直于同一个平面的两个平面平行[ ] (8)垂直于同一条直线的两个平面平行[ ] (9)过平面外一点有且只有一个平面与已知平面垂直7. 判断下列说法是否正确:[ ] (1)两条平行线和同一平面所成的角相等[ ] (2)若两条直线和同一平面所的角相等,则这两条直线平行[ ] (3)平面的平行线上所有的点到平面的距离都相等[ ] (4)若一条直线上有两点到一个平面的距离相等,则这条直线和平面平行练习十九 立体几何(二)1. 若平面的一条斜线长为2,它在平面内的射影的长为3,则这条斜线和平面所成的角为________.2. 在一个锐二面角的一个面内有一点,它到棱的距离是到另一个平面距离的2倍,则这个二面角的大小为________.3. 已知AB 为平面α的一条斜线,B 为斜足,α⊥AO ,O 为垂足,BC 为平面内的一条直线,︒=∠︒=∠45,60OBC ABC ,则斜线AB 与平面所成的角的大小为________.4. 观察题中正方体ABCD-A 1B 1C 1D 1中, 用图中已有的直线和平面填空:(1) 和直线BC 垂直的直线有_________________.(2) 和直线BB 1垂直且异面的直线有__________.(3) 和直线CC 1平行的平面有________________.(4) 和直线BC 垂直的平面有________________.(5) 和平面BD 1垂直的直线有________________.5. 在边长为a 正方体!111D C B A ABCD -中(1)C B C A 111与所成的角为________.(2)1AC 与平面ABCD 所成的角的余弦值为________.(3)平面ABCD 与平面11B BDD 所成的角为________.(4)平面ABCD 与平面11B ADC 所成的角为________.(5)连结11,,DA BA BD ,则二面角1A BD A --的正切值为________.(6)BC AA 与1的距离为________.(7)11BC AA 与的距离为________.6. 在棱长均为a 的正三棱锥ABC S -中,(1) 棱锥的高为______.(2) 棱锥的斜高为________.(3) SA 与底面ABC 的夹角的余弦值为________.(4) 二面角A BC S --的余弦值为________.(5) 取BC 中点M ,连结SM ,则AC 与SM 所成的角的余弦值是_____.(6) 若一截面与底面平行,交SA 于A ’,且SA’:A’A =2:1,则截面的面积为______.7. 在棱长均为a 的正四棱锥ABCD S -中,(1) 棱锥的高为______.(2) 棱锥的斜高为________.(3) SA 与底面ABCD 的夹角为________.(4) 二面角A BC S --的大小为________.8. 已知正四棱锥的底面边长为24,侧面与底面所成的角为︒45,那么它的侧面积为_________.,. 9. 在正三棱柱111C B A ABC -中,底面边长和侧棱长均为a , 取AA 1的中点M ,连结CM ,BM ,则二面角A BC M --的大小为 _________.10.已知长方体的长、宽、高分别是2、3、4,那么它的一条对角线长为_____.11. 在正三棱锥中,已知侧面都是直角三角形,那么底面边长为a 时,它的全面积是______.12. 若球的一截面的面积是π36,且截面到球心的距离为8,则这个球的体积为______,表面积为_________.13. 半径为R 球的内接正方体的体积为__________.14. 已知两个球的大圆面积比为1:4,则它们的半径之比为________,表面积之比为_______,体积之比为______.练习二十 立体几何(三)解答题:1. 在四棱锥ABCD P -中,底面是边长为a 的正方形,侧棱a PD =,a PC PA 2==.(1) 求证:ABCD PD 平面⊥;(2) 求证:AC PB ⊥;(3) 求P A 与底面所成角的大小;(4) 求PB 与底面所成角的余弦值.2. 在正四棱柱1111D C B A ABCD -中,AB =1,21=AA .(1) 求1BC 与ABCD 平面所成角的余弦值;(2) 证明:BD AC ⊥1;(3) 求1AC 与ABCD 平面所成角的余弦值.,.3. 在直三棱柱ABC-A 1B 1C 1中,D 是AB 的中点, AC =BC=2,AA 1=32.(1) 求证:DC D A ⊥1;(2) 求二面角A CD A --1的正切值;(3) 求二面角A BC A --1的大小.4. 四棱锥P -ABCD 的底面是正方形,PD ⊥底面ABCD , 且BD =6, PB 与底面所成角的正切值为66(1) 求证:PB ⊥AC ;(2) 求P 点到AC 的距离.。
高一内容梳理一、集合1、集合的中元素的三个特性:确定性、互异性、无序性2、3、空集是任何集合的子集,空集是任何非空集合的真子集。
4、⑴C U (C U A)=A ⑵(C U A)∩A=Φ⑶(C U A)∪A=U(4)(C U A)∩(C U B)=C U (A ∪B)(5)(C U A)∪(C U B)=C U (A∩B)5、充要条件口诀:小充大必(范围小的是充分条件,范围大的是必要条件)6、复合命题的真假判断(利用真值表):非二、不等式1、若R b a ∈,,ab b a 222≥+,222b a ab +≤,2)2(222b a b a +≤+(当且仅当b a =时取“=”)2、若*,R b a ∈,则ab b a ≥+2,ab b a 2≥+,22⎪⎭⎫⎝⎛+≤b a ab (当且仅当b a =时取“=”)3、若0x >,12x x +≥(当且仅当1x =取“=”);0x <,则12x x+≤-(当且仅当1x =-取“=”)若0x ≠,则11122-2x x x xxx+≥+≥+≤即或(当且仅当b a =时取“=”)4、若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或(当且仅当b a =时取“=”)三、函数1、定义域:分母不等于零;偶次方根的被开方数不小于零;对数式的真数必须大于零;指数、对数式的底必须大于零且不等于1;2、抽象函数定义域:定义域是指x 的取值范围,对应法则的作用范围相同。
3、求函数值域:根式型(换元法);一次分式型(无限制:系数比,取不到;有限制;带端点,内外反);二次分式型(换元,转化为一次;判别式法;捺撇方程法)4、函数单调性:在定义域范围内,取21x x ,,比较()()21,x f x f :同增异减5、函数奇偶性:()()x f x f =-偶函数;()()x f x f -=-为奇函数,若奇函数定义域有0,则必有()00=f 。