小学三年级奥数 第22讲 用对应法解
- 格式:docx
- 大小:22.60 KB
- 文档页数:3
第22讲简单推理学习目标学会对一个问题进行分析、推理;利用我们的推理来解决一些较简单的问题;通过学生解决问题的过程,激发学生的创新思维,培养学生学习的主动性和坚韧不拔、勇于探索的意志品质。
知识梳理一、分析推理数学课上,老师布置了一道题:□+△=28 □=△+△+△□=()△=()要得出正确的结论,就要进行分析、推理。
学会了推理,能使你变得更聪明,头脑更灵活。
数学上有许多重大的发现和疑难问题的解决都离不开推理。
解答这类推理题时,要求同学们仔细观察,认真分析等式中几个图形之间的关系,寻找解题的突破口,然后再利用等量代换、消去等方法来进行解答。
二、解题策略解答推理问题,要从许多条件中找出关键条件作为推理的突破口。
推理要有条理地进行,要充分利用已经得出的结论,作为进一步推理的依据。
典例分析考点一:图形推理例1、下式中,□和△各代表几?□+△=28 □=△+△+△□=( ) △=( )例2、下式中,各种图形各代表几?☆+○=18 ☆=○+○ ☆=( ) ○=( )例3、下式中,□和△各代表几?□×△=36 □÷△=4 □=( ) △=( )例4、○和□各表示几?○×□=16 □÷○=4 ○=( ) □=( )例5、下式中,□和△各代表几?□+□+△=16 □+△+△=14 □=( ) △=( )例6、□+□+○+○=38 □+□+○=22 □=( ) ○=( )例7、下式中,□和○各代表几?□+□+○+○+○=34 ○+○+○+○+□+□+□=48□=( ) ○=( )例8、☆+☆+△+△+△=24 △+△+△+△+☆+☆+☆=36☆=( ) △=( )例9、下式中,□、☆和△各代表几?☆+☆=□+□+□ □+□+□=△+△+△+△☆+□+△+△=80☆=( ) □=( ) △=( )例10、△+△=○+○+○ ○+○+○=□+□+□ ○+□+△+△=100○=( ) □=( ) △=( )考点二:简单逻辑推理例1、一包巧克力的重量等于两袋饼干的重量,4袋牛肉干的重等于一包巧克力的重量,一袋饼干等于几袋牛肉干的重量?例2、一只菠萝的重量等于4根香蕉的重量,两只梨子的重量等于一只菠萝的重量,一只梨子的重量等于几根香蕉的重量?例3、一头象的重量等于4头牛的重量,一头牛的重量等于3匹小马的重量,一匹小马的重量等于3头小猪的重量。
第22讲用对应法解专题简析:小朋友在解答应用题时,经常会碰到这样一类题,给定的数量和所对应的数量关系是在变化的。
为了使变化的数量看得更清楚,可以把已知条件按照它们之间的对应关系排列出来,进行观察和分析,从而找到答案。
这种解题的思维方法叫对应法。
在用对应法解题时,通常先把题目中的数量关系转化为等式,并把这些等式按顺序编号,然后认真观察,比较对应关系的变化,以便寻找解题的突破口。
例题1奶奶去买水果,如果她买4千克梨和5千克荔枝,需花58元;如果她买6千克梨和5千克荔枝,那么需花62元。
问1千克梨和1千克荔枝各多少元?思路导航:我们可以把两次买的情况摘录下来进行比较:4千克梨+5千克荔枝=58元(1)6千克梨+5千克荔枝=62元(2)比较(1)和(2)式,发现两式中荔枝的千克数相等,(2)式比(1)式多了6-4=2千克梨,也就是多了62-58=4元,说明1千克梨的价钱为4÷2=2元,那么1千克荔枝的价钱就是(58-2×4)÷5=10元。
练习一1,3筐苹果和5筐橘子共重270千克,3筐苹果和7筐橘子共重342千克。
一筐苹果和一筐橘子各重多少千克?2,张老师为图书室买书,如果他买6本童话书和7本故事书需要144元;如果买9本童话书和7本故事书,需要174元。
现在张老师买7本童话书和6本故事书,共需多少元?3,粮店运来一批粮食,4袋大米和5袋面粉共重600千克,2袋大米和3袋面粉共重340千克。
一袋大米和一袋面粉各重多少千克?例题 2 学校买足球和排球,买3个足球和4个排球共需要190元,如果买6个足球和2个排球需要230元。
一个足球和一个排球各多少元?思路导航:我们可以把两次买的情况摘录下来进行比较:3个足球+4个排球=190元(1)6个足球+2个排球=230元(2)我们把(1)、(2)两式进行比较,发现两组条件相加还是相减,都不可能求出足球和排球的单价,因为这里没有一个相同的条件可减去。
第二十二周用对应法解题专题简析:小朋友在解答应用题时,经常会碰到这样一类题,给定的数量和所对应的数量关系是在变化的。
为了使变化的数量看得更清楚,可以把已知条件按照它们之间的对应关系排列出来,进行观察和分析,从而找到答案。
这种解题的思维方法叫对应法。
在用对应法解题时,通常先把题目中的数量关系转化为等式,并把这些等式按顺序编号,然后认真观察,比较对应关系的变化,以便寻找解题的突破口。
例题1 奶奶去买水果,如果她买4千克梨和5千克荔枝,需花58元;如果她买6千克梨和5千克荔枝,那么需花62元。
问1千克梨和1千克荔枝各多少元?思路导航:我们可以把两次买的情况摘录下来进行比较:4千克梨+5千克荔枝=58元(1)6千克梨+5千克荔枝=62元(2)比较(1)和(2)式,发现两式中荔枝的千克数相等,(2)式比(1)式多了6-4=2千克梨,也就是多了62-58=4元,说明1千克梨的价钱为4÷2=2元,那么1千克荔枝的价钱就是(58-2×4)÷5=10元。
练习一1,3筐苹果和5筐橘子共重270千克,3筐苹果和7筐橘子共重342千克。
一筐苹果和一筐橘子各重多少千克?2,张老师为图书室买书,如果他买6本童话书和7本故事书需要144元;如果买9本童话书和7本故事书,需要174元。
现在张老师买7本童话书和6本故事书,共需多少元?3,粮店运来一批粮食,4袋大米和5袋面粉共重600千克,2袋大米和3袋面粉共重340千克。
一袋大米和一袋面粉各重多少千克?例题2 学校买足球和排球,买3个足球和4个排球共需要190元,如果买6个足球和2个排球需要230元。
一个足球和一个排球各多少元?思路导航:我们可以把两次买的情况摘录下来进行比较:3个足球+4个排球=190元(1)6个足球+2个排球=230元(2)我们把(1)、(2)两式进行比较,发现两组条件相加还是相减,都不可能求出足球和排球的单价,因为这里没有一个相同的条件可减去。
第22讲:“对应”解题专题简析:小朋友在解答应用题时,经常会碰到这样一类题,给定的数量和所对应的数量关系是在变化的,为了使变化的数量看的更清楚,可以把已知条件按照它们之间的对应关系排列出来,进行观察和分析,从而找到答案,这种解题的方法叫对应法。
在用对应法解题时,通常先把题目中的数量关系转化为算式,并把这些算式按顺序编号,然后认真观察,比较对应关系的变化,以便寻找解题的突破口。
【例题1】奶奶去买水果,如果她买4千克梨和5千克荔枝,则需花99元;如果她买6千克梨和5千克荔枝,则需花111元。
1千克梨和1千克荔枝各多少钱?【习题一】1、3筐苹果和5筐橘子共重270千克,3筐苹果和7筐橘子共重342千克。
1筐苹果和1筐橘子各重多少千克?2、张老师为图书馆买书。
如果他买6本童话书和7本故事书需144元;如果买9本童话书和7本故事书需174元。
那么张老师买7本童话书和6本故事书共需多少钱?3、粮店运来一批粮食。
4袋大米和5袋面粉共重600千克,2袋大米和3袋面粉共重340千克。
1袋大米和1袋面粉各重多少千克?【例题2】某学校准备买一些足球和排球。
如果买了3个足球和4个排球需要190元;如果买了6个足球和2和排球需要230元。
那么1个足球和1个排球各需要多少钱?【习题二】1、5筐番茄和2筐黄瓜共重330千克;3筐番茄和4筐黄瓜共重310千克。
1筐番茄和1筐黄瓜各重多少千克?2、4本练习本和5支圆珠笔共14元;2本练习本和4支圆珠笔共10元。
1本练习本和1支圆珠笔各多少钱?3、2件上衣和3条裤子共480元,4件上衣和2条裤子共640元。
1件上衣和1条裤子各多少钱?【例题3】商店里有一些气球,其中红气球和黄气球共21个,蓝气球和黄气球共28个,黄气球和红气球共29个。
红气球、蓝气球个黄气球各有多少个?【习题3】1、小明和小红的年龄加起来12岁,小红和小丽的年龄加起来17岁,小丽和小明的年龄加起来13岁。
三人年龄各是多少岁?2、新华书店有批书,故事书和连环画共70本,连环画和科技书共82本,科技书和故事书共76本。
第二十二周用对应法解题专题简析:小朋友在解答应用题时,经常会碰到这样一类题,给定的数量和所对应的数量关系是在变化的。
为了使变化的数量看得更清楚,可以把已知条件按照它们之间的对应关系排列出来,进行观察和分析,从而找到答案。
这种解题的思维方法叫对应法。
在用对应法解题时,通常先把题目中的数量关系转化为等式,并把这些等式按顺序编号,然后认真观察,比较对应关系的变化,以便寻找解题的突破口。
例题1 奶奶去买水果,如果她买4千克梨和5千克荔枝,需花58元;如果她买6千克梨和5千克荔枝,那么需花62元。
问1千克梨和1千克荔枝各多少元?思路导航:我们可以把两次买的情况摘录下来进行比较:4千克梨+5千克荔枝=58元(1)6千克梨+5千克荔枝=62元(2)比较(1)和(2)式,发现两式中荔枝的千克数相等,(2)式比(1)式多了6-4=2千克梨,也就是多了62-58=4元,说明1千克梨的价钱为4÷2=2元,那么1千克荔枝的价钱就是(58-2×4)÷5=10元。
练习一1,3筐苹果和5筐橘子共重270千克,3筐苹果和7筐橘子共重342千克。
一筐苹果和一筐橘子各重多少千克?2,张老师为图书室买书,如果他买6本童话书和7本故事书需要144元;如果买9本童话书和7本故事书,需要174元。
现在张老师买7本童话书和6本故事书,共需多少元?3,粮店运来一批粮食,4袋大米和5袋面粉共重600千克,2袋大米和3袋面粉共重340千克。
一袋大米和一袋面粉各重多少千克?例题2 学校买足球和排球,买3个足球和4个排球共需要190元,如果买6个足球和2个排球需要230元。
一个足球和一个排球各多少元?思路导航:我们可以把两次买的情况摘录下来进行比较:3个足球+4个排球=190元(1)6个足球+2个排球=230元(2)我们把(1)、(2)两式进行比较,发现两组条件相加还是相减,都不可能求出足球和排球的单价,因为这里没有一个相同的条件可减去。
第22讲:“对应”解题专题简析:小朋友在解答应用题时,经常会碰到这样一类题,给定的数量和所对应的数量关系是在变化的,为了使变化的数量看的更清楚,可以把已知条件按照它们之间的对应关系排列出来,进行观察和分析,从而找到答案,这种解题的方法叫对应法。
在用对应法解题时,通常先把题目中的数量关系转化为算式,并把这些算式按顺序编号,然后认真观察,比较对应关系的变化,以便寻找解题的突破口。
【例题1】奶奶去买水果,如果她买4千克梨和5千克荔枝,则需花99元;如果她买6千克梨和5千克荔枝,则需花111元。
1千克梨和1千克荔枝各多少钱?【习题一】1、3筐苹果和5筐橘子共重270千克,3筐苹果和7筐橘子共重342千克。
1筐苹果和1筐橘子各重多少千克?2、张老师为图书馆买书。
如果他买6本童话书和7本故事书需144元;如果买9本童话书和7本故事书需174元。
那么张老师买7本童话书和6本故事书共需多少钱?3、粮店运来一批粮食。
4袋大米和5袋面粉共重600千克,2袋大米和3袋面粉共重340千克。
1袋大米和1袋面粉各重多少千克?【例题2】某学校准备买一些足球和排球。
如果买了3个足球和4个排球需要190元;如果买了6个足球和2和排球需要230元。
那么1个足球和1个排球各需要多少钱?【习题二】1、5筐番茄和2筐黄瓜共重330千克;3筐番茄和4筐黄瓜共重310千克。
1筐番茄和1筐黄瓜各重多少千克?2、4本练习本和5支圆珠笔共14元;2本练习本和4支圆珠笔共10元。
1本练习本和1支圆珠笔各多少钱?3、2件上衣和3条裤子共480元,4件上衣和2条裤子共640元。
1件上衣和1条裤子各多少钱?【例题3】商店里有一些气球,其中红气球和黄气球共21个,蓝气球和黄气球共28个,黄气球和红气球共29个。
红气球、蓝气球个黄气球各有多少个?【习题3】1、小明和小红的年龄加起来12岁,小红和小丽的年龄加起来17岁,小丽和小明的年龄加起来13岁。
三人年龄各是多少岁?2、新华书店有批书,故事书和连环画共70本,连环画和科技书共82本,科技书和故事书共76本。
第二十二周用对应法解题专题简析:小朋友在解答应用题时,经常会碰到这样一类题,给定的数量和所对应的数量关系是在变化的。
为了使变化的数量看得更清楚,可以把已知条件按照它们之间的对应关系排列出来,进行观察和分析,从而找到答案。
这种解题的思维方法叫对应法。
在用对应法解题时,通常先把题目中的数量关系转化为等式,并把这些等式按顺序编号,然后认真观察,比较对应关系的变化,以便寻找解题的突破口。
例题1 奶奶去买水果,如果她买4千克梨和5千克荔枝,需花58元;如果她买6千克梨和5千克荔枝,那么需花62元。
问1千克梨和1千克荔枝各多少元?思路导航:我们可以把两次买的情况摘录下来进行比较:4千克梨+5千克荔枝=58元(1)6千克梨+5千克荔枝=62元(2)比较(1)和(2)式,发现两式中荔枝的千克数相等,(2)式比(1)式多了6-4=2千克梨,也就是多了62-58=4元,说明1千克梨的价钱为4÷2=2元,那么1千克荔枝的价钱就是(58-2×4)÷5=10元。
练习一1,3筐苹果和5筐橘子共重270千克,3筐苹果和7筐橘子共重342千克。
一筐苹果和一筐橘子各重多少千克?2,张老师为图书室买书,如果他买6本童话书和7本故事书需要144元;如果买9本童话书和7本故事书,需要174元。
现在张老师买7本童话书和6本故事书,共需多少元?3,粮店运来一批粮食,4袋大米和5袋面粉共重600千克,2袋大米和3袋面粉共重340千克。
一袋大米和一袋面粉各重多少千克?例题2 学校买足球和排球,买3个足球和4个排球共需要190元,如果买6个足球和2个排球需要230元。
一个足球和一个排球各多少元?思路导航:我们可以把两次买的情况摘录下来进行比较:3个足球+4个排球=190元(1)6个足球+2个排球=230元(2)我们把(1)、(2)两式进行比较,发现两组条件相加还是相减,都不可能求出足球和排球的单价,因为这里没有一个相同的条件可减去。
第二十二周用对应法解题专题简析:小朋友在解答应用题时,经常会碰到这样一类题,给定的数量和所对应的数量关系是在变化的。
为了使变化的数量看得更清楚,可以把已知条件按照它们之间的对应关系排列出来,进行观察和分析,从而找到答案。
这种解题的思维方法叫对应法。
在用对应法解题时,通常先把题目中的数量关系转化为等式,并把这些等式按顺序编号,然后认真观察,比较对应关系的变化,以便寻找解题的突破口。
例题1 奶奶去买水果,如果她买4千克梨和5千克荔枝,需花58元;如果她买6千克梨和5千克荔枝,那么需花62元。
问1千克梨和1千克荔枝各多少元?思路导航:我们可以把两次买的情况摘录下来进行比较:4千克梨+5千克荔枝=58元(1)6千克梨+5千克荔枝=62元(2)比较(1)和(2)式,发现两式中荔枝的千克数相等,(2)式比(1)式多了6-4=2千克梨,也就是多了62-58=4元,说明1千克梨的价钱为4÷2=2元,那么1千克荔枝的价钱就是(58-2×4)÷5=10元。
练习一1,3筐苹果和5筐橘子共重270千克,3筐苹果和7筐橘子共重342千克。
一筐苹果和一筐橘子各重多少千克?2,张老师为图书室买书,如果他买6本童话书和7本故事书需要144元;如果买9本童话书和7本故事书,需要174元。
现在张老师买7本童话书和6本故事书,共需多少元?3,粮店运来一批粮食,4袋大米和5袋面粉共重600千克,2袋大米和3袋面粉共重340千克。
一袋大米和一袋面粉各重多少千克?例题2 学校买足球和排球,买3个足球和4个排球共需要190元,如果买6个足球和2个排球需要230元。
一个足球和一个排球各多少元?思路导航:我们可以把两次买的情况摘录下来进行比较:3个足球+4个排球=190元(1)6个足球+2个排球=230元(2)我们把(1)、(2)两式进行比较,发现两组条件相加还是相减,都不可能求出足球和排球的单价,因为这里没有一个相同的条件可减去。
第二十二周用对应法解题专题简析:小朋友在解答应用题时,经常会碰到这样一类题,给定的数量和所对应的数量关系是在变化的。
为了使变化的数量看得更清楚,可以把已知条件按照它们之间的对应关系排列出来,进行观察和分析,从而找到答案。
这种解题的思维方法叫对应法。
在用对应法解题时,通常先把题目中的数量关系转化为等式,并把这些等式按顺序编号,然后认真观察,比较对应关系的变化,以便寻找解题的突破口。
例题1 奶奶去买水果,如果她买4千克梨和5千克荔枝,需花58元;如果她买6千克梨和5千克荔枝,那么需花62元。
问1千克梨和1千克荔枝各多少元?思路导航:我们可以把两次买的情况摘录下来进行比较:4千克梨+5千克荔枝=58元(1)6千克梨+5千克荔枝=62元(2)比较(1)和(2)式,发现两式中荔枝的千克数相等,(2)式比(1)式多了6-4=2千克梨,也就是多了62-58=4元,说明1千克梨的价钱为4÷2=2元,那么1千克荔枝的价钱就是(58-2×4)÷5=10元。
练习一1,3筐苹果和5筐橘子共重270千克,3筐苹果和7筐橘子共重342千克。
一筐苹果和一筐橘子各重多少千克?2,张老师为图书室买书,如果他买6本童话书和7本故事书需要144元;如果买9本童话书和7本故事书,需要174元。
现在张老师买7本童话书和6本故事书,共需多少元?3,粮店运来一批粮食,4袋大米和5袋面粉共重600千克,2袋大米和3袋面粉共重340千克。
一袋大米和一袋面粉各重多少千克?例题2 学校买足球和排球,买3个足球和4个排球共需要190元,如果买6个足球和2个排球需要230元。
一个足球和一个排球各多少元?思路导航:我们可以把两次买的情况摘录下来进行比较:3个足球+4个排球=190元(1)6个足球+2个排球=230元(2)我们把(1)、(2)两式进行比较,发现两组条件相加还是相减,都不可能求出足球和排球的单价,因为这里没有一个相同的条件可减去。
小学数学三年级第二十二课案例分析案例:小明的储蓄罐小明是一个三年级的小学生,他对数学非常感兴趣。
他的数学老师在上一堂课中给了他一个有趣的题目,让他思考储蓄的概念和方法。
小明在课后决定把零花钱存入储蓄罐,看看经过一段时间的积累,他会有多少储蓄。
小明每周从父母那里得到5元的零花钱,并决定每周都存入2元到他的储蓄罐中。
他很兴奋地开始了他的储蓄计划,并且每天都精心记录着他的储蓄金额。
第一周结束时,小明打开储蓄罐,发现里面已经有了2元。
他看到这个数字,感到非常高兴,因为他知道他已经迈出了储蓄的第一步。
第二周,小明又将2元存入储蓄罐中。
这一次,储蓄罐里的金额变为了4元。
小明很惊喜,他兴奋地计算着接下来几周的储蓄金额。
经过第三周的储蓄,小明的储蓄罐里的金额变为了6元。
小明认真地思考着,根据之前的规律,他想知道到第十周的时候他会有多少储蓄。
小明根据自己的经验,知道每周储蓄金额的规律是每周增加2元。
他开始计算,第四周的储蓄金额应该是8元,第五周是10元,以此类推。
小明发现他可以通过每周储蓄金额的增加规律,来预测未来的储蓄金额。
到了第十周,小明打开储蓄罐,发现里面的金额变为了20元。
他非常开心,知道自己的储蓄计划取得了成功。
通过这个案例,我们可以看到小明通过坚持每周存入2元的方式,成功地储蓄了一笔钱。
我们可以从中学到储蓄的重要性以及储蓄的增长规律。
在数学课上,老师可以通过类似的案例来教孩子们数学的实际运用。
这不仅帮助他们理解数学概念,还能培养他们的储蓄习惯和财务意识。
除了储蓄案例,老师还可以通过其他实际生活中的案例来讲解数学概念。
比如使用购物、饮食、旅行等场景,让学生们能够将数学知识应用到实际生活中去。
通过案例的分析与讨论,学生们能够更深入地理解数学知识,并能够将其应用到日常生活中。
这不仅有助于他们的数学学习,还能培养他们的问题解决能力和创新思维。
总结:通过小明的储蓄案例分析,我们了解到了在数学教育中应用实际生活案例的重要性。
三年级奥数第22讲简单推理(学生版)学习目标学会对一个问题进行分析、推理;利用我们的推理来解决一些较简单的问题;通过学生解决问题的过程,激发学生的创新思维,培养学生学习的主动性和坚韧不拔、勇于探索的意志品质。
知识梳理一、分析推理数学课上,老师布置了一道题:□+△=28 □=△+△+△□=()△=()要得出正确的结论,就要进行分析、推理。
学会了推理,能使你变得更聪明,头脑更灵活。
数学上有许多重大的发现和疑难问题的解决都离不开推理。
解答这类推理题时,要求同学们仔细观察,认真分析等式中几个图形之间的关系,寻找解题的突破口,然后再利用等量代换、消去等方法来进行解答。
二、解题策略解答推理问题,要从许多条件中找出关键条件作为推理的突破口。
推理要有条理地进行,要充分利用已经得出的结论,作为进一步推理的依据。
典例分析考点一:图形推理例1、下式中,□和△各代表几?□+△=28 □=△+△+△ □=()△=()例2、下式中,各种图形各代表几?☆+○=18 ☆=○+○ ☆=()○=()例3、下式中,□和△各代表几?□×△=36 □÷△=4 □=()△=()例4、○和□各表示几?○×□=16 □÷○=4 ○=()□=()例5、下式中,□和△各代表几?□+□+△=16 □+△+△=14 □=()△=()例6、□+□+○+○=38 □+□+○=22 □=()○=()例7、下式中,□和○各代表几?□+□+○+○+○=34 ○+○+○+○+□+□+□=48□=()○=()例8、☆+☆+△+△+△=24 △+△+△+△+☆+☆+☆=36☆=()△=()例9、下式中,□、☆和△各代表几?☆+☆=□+□+□ □+□+□=△+△+△+△☆+□+△+△=80☆=()□=()△=()例10、△+△=○+○+○ ○+○+○=□+□+□ ○+□+△+△=100 ○=()□=()△=()考点二:简单逻辑推理例1、一包巧克力的重量等于两袋饼干的重量,4袋牛肉干的重等于一包巧克力的重量,一袋饼干等于几袋牛肉干的重量?例2、一只菠萝的重量等于4根香蕉的重量,两只梨子的重量等于一只菠萝的重量,一只梨子的重量等于几根香蕉的重量?例3、一头象的重量等于4头牛的重量,一头牛的重量等于3匹小马的重量,一匹小马的重量等于3头小猪的重量。
第22讲用对应法解
专题简析:
小朋友在解答应用题时,经常会碰到这样一类题,给定的数量和所对应的数量关系是在变化的。
为了使变化的数量看得更清楚,可以把已知条件按照它们之间的对应关系排列出来,进行观察和分析,从而找到答案。
这种解题的思维方法叫对应法。
在用对应法解题时,通常先把题目中的数量关系转化为等式,并把这些等式按顺序编号,然后认真观察,比较对应关系的变化,以便寻找解题的突破口。
例题1奶奶去买水果,如果她买4千克梨和5千克荔枝,需花58元;如果她买6千克梨和5千克荔枝,那么需花62元。
问1千克梨和1千克荔枝各多少元?
思路导航:我们可以把两次买的情况摘录下来进行比较:
4千克梨+5千克荔枝=58元(1)
6千克梨+5千克荔枝=62元(2)
比较(1)和(2)式,发现两式中荔枝的千克数相等,(2)式比(1)式多了6-4=2千克梨,也就是多了62-58=4元,说明1千克梨的价钱为4÷2=2元,那么1千克荔枝的价钱就是(58-2×4)÷5=10元。
练习一
1,3筐苹果和5筐橘子共重270千克,3筐苹果和7筐橘子共重342千克。
一筐苹果和一筐橘子各重多少千克?
2,张老师为图书室买书,如果他买6本童话书和7本故事书需要144元;如果买9本童话书和7本故事书,需要174元。
现在张老师买7本童话书和6本故事书,共需多少元?
3,粮店运来一批粮食,4袋大米和5袋面粉共重600千克,2袋大米和3袋面粉共重340千克。
一袋大米和一袋面粉各重多少千克?
例题2 学校买足球和排球,买3个足球和4个排球共需要190元,如果买6个足球和2个排球需要230元。
一个足球和一个排球各多少元?
思路导航:我们可以把两次买的情况摘录下来进行比较:
3个足球+4个排球=190元(1)
6个足球+2个排球=230元(2)
我们把(1)、(2)两式进行比较,发现两组条件相加还是相减,都不可能求出足球和排球的单价,因为这里没有一个相同的条件可减去。
再观察我们可以发现:如果把(1)式同时扩大2倍,得到6个足球和8个排球共380元,然后再与(2)式进行比较,发现足球个数相同,而排球多了6个,也就多了380-230=150元,也就是6个排球是150元,一个排球为150÷6=25元,那么一个足球是(190-25×4)÷3=30元。
练习二
1,5筐番茄和2筐黄瓜共重330千克,3筐番茄和4筐黄瓜共重310千克。
一筐番茄和一筐黄瓜各重多少千克?
2,4本练习本和5枝圆株笔共14元,2本练习本和4枝圆珠笔共10元。
一本练习本和一枝圆珠笔各多少元?
3,2件上衣和3条裤子共480元,4件上衣和2条裤子共640地。
一件上衣和一条裤子各多少元?
例题3 商店里有一些气球,其中红气球和蓝气球共21只,蓝气球和黄气球共28只,黄气球和红气球共29只。
红气球、蓝气球和黄气球各有多少只?
思路导航:根据题意,我们可以列出下列关系式:
红气球的个数+蓝气球的个数=21 (1)
蓝气球的个数+黄气球的个数=28 (2)
黄气球的个数+红气球的个数=29 (3)
我们可将(1)+(2)+(3),即21+28+29=78只,这里包含有2倍红气球的个数、2倍蓝气球的个数和2倍黄气球的个数,由此,可得出三种气球的总只数:78÷2=39只。
然后再根据红气球和蓝气球共21只,可求出黄气球的只数:39-21=18只;同理可求出红气球的个数是39×28=11只,蓝气球的个数是39-29=19只。
练习三
1,小明和小红共12岁,小红和小丽共17岁,小丽和小明共13岁。
三人各多少岁?
2,新华书店有批书,故事书和连环画共70本,连环画和科技书共82本,科技书和故事书共76本。
三种书各多少本?
3,公园开菊花展,白菊花和黄菊花共152盆,黄菊花和红菊花共128盆,红菊花和白菊花共168盆。
三种菊花各几盆?
例题4三年级三个班种了一片小树林,其中72棵不是一班种的,75棵不是二班种的,73棵不是三班种的。
三个班各种了多少棵?
思路导航:“72棵不是一班种的”,说明二班和三班共种树72棵;“75棵不是二班种的”,说明一班和三班共种75棵,“73棵不是三班种的”,说明一班和二班共种73棵。
这样,我们就可以求出三个班共种多少棵树:(72+75+73)÷2=110棵。
用110-72=38棵就是一班种的棵数,110-75=35棵就是二班种的棵数,110-73=37棵就是三班种的棵数。
练习四
1,百货商店运来三种鞋子,其中37双不是皮鞋,54双不是运动鞋,51双不是布鞋。
三种鞋各运来多少双?
2,一个班同学在做作业,班主任问后得知:全班同学都只做完了语文、数学英语作业其中的一种。
有23人没有做完数学作业,有19人没有做完语文作业,有16人没有做完英语作业。
做完三种作业的各多少人?
3,学校买四种颜色的气球,其中有93个不是红气球,有95个不是黄气球,有98个不是蓝气球,紫气球有10个。
学校共买了多少个气球?
例题5 已知13个李子的重量等于2个苹果和1个桃子的重量,而4个李子和1个苹果的重量等于1个桃子的重量。
问多少个李子的重量等于1个桃子的重量?
思路导航:根据题意列出等式:
13李=2苹+1桃(1)
4李+1苹=1桃(2)
把(2)式代入(1)式得:13李=2苹+4李+1苹
即9李=3苹,即3李=1苹(3)
把(3)式代入(2)式得:4李+3李=1桃
即:7李=1桃
练习五
1,3个菠萝的重量等于1个梨和1个西瓜的重量,而1个菠萝和3个梨的重量等于1个西瓜的重量。
问多少个梨的重量等于1个西瓜的重量?
2,2个苹果的重量等于3个橘子和3个荔枝的重量,1个苹果和2个荔枝的重量等于3个橘子的重量。
问3个橘子的重量等于多少个荔枝的重量?
3,三个好朋友去文具店买东西,一人买了4枝圆珠笔,一个买了2枝钢笔,还有一个买了1枝钢笔1枝圆珠笔和4枝铅笔,三个人用掉的钱相等。
那么1枝钢笔的价钱相当于几枝铅笔的价钱?。