ANSYS几何非线性基础
- 格式:ppt
- 大小:1.17 MB
- 文档页数:10
ANSYS 非线性和线性对比分析的一个工程实例二力杆几何非线性分析土木工程中,钢模板由于制作不精细或搬运模板过程受到碰撞或者挤压等外力作用常常会造成模板某处凸起,在活、恒载作用下或搬运过程中,该处常常会突然从凸起变成凹进状态。
这一现象被称为油罐效应,通常采用桁架的失稳模型进行几何非线性简化分析,因为也称为桁架的经典跳越问题。
分析模型如图1所示,采用LINK1单元构成二力杆,两端完全约束,中间节点加集中力。
图1荷载与顶点位移理论关系为:0(sin )(2sin )P EA x x x θθ=--式中,E 为弹性模量,0A 为杆件初始截面积,x=V/0L ,V 为顶点的竖向位移,0L 为杆长,θ为杆件倾角。
分析中取0A =102mm ,E=200Gpa, 0L =100mm, θ=06。
分析所用的非线性命令流如下。
!********************** 二力杆几何非线性分析************************FINI/CLEAR/FILENAME,NONLINEAR_ER-LI-GAN/TITLE,The Analysis of NONLINEAR_ER-LI-GAN /PREP7/PNUM,LINE,1/PNUM,KP,1LO=100CTA=6*AFUN,DEGL1=2*LO*COS(CTA)H1=LO*SIN(CTA)AA=10EM=2E5ET,1,LINK1MP,EX,1,EMR,1,AAK,1K,2,0.5*L1,H1K,3,L1L,1,2$L,2,3LESIZE,ALL,,,1LMESH,ALLFINI/SOLUDK,1,ALLDK,3,ALLFK,2,FY,-1200ANTYPE,0NLGEOM,1NSUBST,100OUTRES,ALL,ALLARCLEN,ONSOLVEFINI/POST1/ESHAPE,1EPLOTSET,LASTPLDISP,1 !绘制变形图PRRSOLFINI/POST26NSOL,2,2,U,Y,DISPLACEMENTABS,3,2RFORCE,4,1,F,Y,F/AXLAB,X,DISPLACEMENT/AXLAB,Y,F/GRID,1XVAR,3PLVAR,4 !绘制节点2位移和节点1的竖向支反力关系FINI通用后处理中可得到最后一个荷载步时节点1 和节点3受到的水平方向支座反力分别为-4759.0N和4759.0N,双杆均受拉。
ANSYS基础教程,非线性分析
由荷载-变形曲线将会发现非线性结构的基本特征:变化的结构刚度。
引起非线性的原因
引起非线性行为的原因很多,这里介绍三种主要原因:
几何非线性
如果结构经受大变形,它变化的几何形状可能会引起结构的非线性响应,例如:随着钓鱼竿钓到鱼,竖向荷载就增加,杆不断弯曲以至于动力臂明显减少,导致杆端显示出较高的荷载下不断增长的刚性。
材料非线性
非线性的应力-应变关系是造成结构的非线性的常见的原因。
许多因素可以影响材料的应力应变性质,包括加载历史(如在弹塑性响应状况下)、环境状况(如温度)、加载的时间总量(如在蠕变响应情况下)。
状态非线性
许多普通结构表现出一种与状态相关的非线性行为,例如,一根只能拉伸的电缆可能是松散的,也可能是绷紧的;轴承套可能是接触的,也可能是不接触的;冻土可能是冻结的,也可能是融化的。
这些系统的刚度由于系统状态的改变在不同的值之间变化。
状态改变也许
和荷载直接有关(如在电缆情况下),也可能由某种外部原因引起(如冻土中的紊乱力学条件)。
ANSYS程序中单元的激活与杀死选项用来给这种状态的变化建模。
接触是一种很普遍的非线性行为,是状态变化非线性类型中一个特殊而重要的子集。
第一章钢筋混凝土结构非线性分析概述1.1 钢筋混凝土结构的特性1.钢筋混凝土结构由两种材料组成,两者的抗拉强度差异较大,在正常使用阶段,结构或构件就处在非线性工作阶段,用弹性分析方法分析的结构内力和变形无法反映结构的真实受力状况;2.混凝土的拉、压应力-应变关系具有较强的非线性特征;3.钢筋与混凝土间的黏结关系非常复杂,特别是在反复荷载作用下,钢筋与混凝土间会产生相对滑移,用弹性理论分析的结果不能反映实际情况;4.混凝土的变形与时间有关:徐变、收缩;5.应力-应变关系莸软化段:混凝土达到强度峰值后有应力下降段;6.产生裂缝以后成为各向异形体。
混凝土结构在荷载作用下的受力-变形过程十分复杂,是一个变化的非线性过程。
11.2 混凝土结构分析的目的和主要内容《混凝土结构设计规范》(GB50010-2002)中新增的主要内容:(1)混凝土的本构关系和多轴强度:给出了单轴受压、受拉非线性应力-应变(本构)关系,混凝土二轴强度包络图、三轴抗压强度图和三轴应力状态破坏准则;(2)结构分析:规范概括了用于混凝土结构分析的5类方法,列入了结构非线性分析方法。
一、结构分析的基本目的:计算在各类荷载作用下的结构效应——内力、位移、应力、应变根据设计的结构方案确定合理的计算简图,选择不利荷载组合,计算结构内力,以便进行截面配筋计算和采取构造措施。
二、结构分析的主要内容:(1)确定结构计算简图:考虑以下因素:(a)能代表实际结构的体形和尺寸;(b)边界条件和连接方式能反映结构的实际受力状态,并有可靠的构造措施;(c)材料性能符合结构的实际情况;(d)荷载的大小、位置及组合应与结构的实际受力吻合;(e)应考虑施工偏差、初始应力及变形位移状况对计算简图进行适当修正;(f)根据结构受力特点,可对计算简图作适当简化,但应有理论或试验依据,或有可靠的工程经验;(g)结构分析结果应满足工程设计的精度要求。
(2)结构作用效应分析:根据结构施工和使用阶段的多种工况,分别进行结构分析,确定最不利荷载效应组合。
第一章钢筋混凝土结构非线性分析概述1.1 钢筋混凝土结构的特性1.钢筋混凝土结构由两种材料组成,两者的抗拉强度差异较大,在正常使用阶段,结构或构件就处在非线性工作阶段,用弹性分析方法分析的结构内力和变形无法反映结构的真实受力状况;2.混凝土的拉、压应力-应变关系具有较强的非线性特征;3.钢筋与混凝土间的黏结关系非常复杂,特别是在反复荷载作用下,钢筋与混凝土间会产生相对滑移,用弹性理论分析的结果不能反映实际情况;4.混凝土的变形与时间有关:徐变、收缩;5.应力-应变关系莸软化段:混凝土达到强度峰值后有应力下降段;6.产生裂缝以后成为各向异形体。
混凝土结构在荷载作用下的受力-变形过程十分复杂,是一个变化的非线性过程。
1.2 混凝土结构分析的目的和主要内容《混凝土结构设计规范》(GB50010-2002)中新增的主要内容:(1)混凝土的本构关系和多轴强度:给出了单轴受压、受拉非线性应力-应变(本构)关系,混凝土二轴强度包络图、三轴抗压强度图和三轴应力状态破坏准则;(2)结构分析:规范概括了用于混凝土结构分析的5类方法,列入了结构非线性分析方法。
一、结构分析的基本目的:计算在各类荷载作用下的结构效应——内力、位移、应力、应变根据设计的结构方案确定合理的计算简图,选择不利荷载组合,计算结构内力,以便进行截面配筋计算和采取构造措施。
二、结构分析的主要内容:(1)确定结构计算简图:考虑以下因素:(a)能代表实际结构的体形和尺寸;(b)边界条件和连接方式能反映结构的实际受力状态,并有可靠的构造措施;(c)材料性能符合结构的实际情况;(d)荷载的大小、位置及组合应与结构的实际受力吻合;(e)应考虑施工偏差、初始应力及变形位移状况对计算简图进行适当修正;(f)根据结构受力特点,可对计算简图作适当简化,但应有理论或试验依据,或有可靠的工程经验;(g)结构分析结果应满足工程设计的精度要求。
(2)结构作用效应分析:根据结构施工和使用阶段的多种工况,分别进行结构分析,确定最不利荷载效应组合。
第二章材料本构关系§2.1本构关系的概念本构关系:应力与应变关系或内力与变形关系结构的力学分析,必须满足三类基本方程:(1)力学平衡方程:结构的整体或局部、静力荷载或动力荷载作用下的分析、精确分析或近似分析都必须满足;(2)变形协调方程:根据结构的变形特点、边界条件和计算精度等,可精确地或近似地满足;(3)本构关系:是连接平衡方程和变形协调方程的纽带,具体表达形式有:材料的应力-应变关系,截面的弯矩-曲率关系,轴力-变形(伸长、缩短)关系,扭矩-转角关系,等等。
所有结构(不同材料、不同结构形式和体系)的力学平衡方程和变形协调方程原则上相同、数学形式相近,但本构关系差别很大。
有弹性、弹塑性、与时间相关的粘弹性、粘塑性,与温度相关的热弹性、热塑性,考虑材料损伤的本构关系,考虑环境对材料耐久性影响的本构关系,等等。
正确、合理的本构关系是可靠的分析结果的必要条件。
混凝土结构非线性分析的复杂性在于:钢筋混凝土---复杂的本构关系:有限元法---结构非线性分析的工具:非线性全过程分析---解决目前结构分析与结构设计理论矛盾的途径:§2.2 一般材料本构关系分类1.线弹性(a) 线性本构关系; (b) 非线性弹性本构关系图2-1 线弹性与非线性弹性本构关系比较在加载、卸载中,应力与应变呈线性关系:}]{[}{εσD = (图2-1a ) 适用于混凝土开裂前的应力-应变关系。
2. 非线性弹性在加载、卸载中,应力与应变呈非线性弹性关系。
即应力与应变有一一对应关系,卸载沿加载路径返回,没有残余变形(图2-1b )。
}{)]([}{εεσD = 或 }{)]([}{εσσD =适用于单调加载情况结构力学性能的模拟分析。
3. 弹塑性图2 – 2 弹塑性本构关系(a)典型弹塑性;(b)理想弹塑性;(c)线性强化;(d)刚塑性典型的钢筋拉伸应力、应变曲线 (图2-2(a ))包含弹性阶段(OA )、流动阶段(AB )及硬化阶段(BC )。