NAND flash详解
- 格式:docx
- 大小:62.55 KB
- 文档页数:5
nandflash的原理及运行时序NAND Flash(非与非闪存)是一种主要用于存储数据的闪存类型,广泛应用于各种存储设备中,如固态硬盘(SSD)、USB闪存驱动器(U盘)以及移动设备中的存储卡等。
NAND Flash的原理:NAND Flash中的基本存储单元是晶体管,每个晶体管可以存储一个或多个bit的数据,通过对晶体管的电荷状态进行读取和写入来实现数据的存储和读取。
NAND Flash的存储单元结构主要有两种类型:单栅结构和多栅结构。
单栅结构中每个晶体管只有一个控制栅(Control Gate)和一个栅介电层(Oxide Layer),而多栅结构中每个晶体管有一个控制栅和多个叠加的栅介电层。
NAND Flash的存储单元编址是按行和列进行的。
每一行包含一个选择门(Word Line),每一列包含一个位线(Bit Line)。
数据的读取和写入都是通过对选择门和位线的控制来实现的。
NAND Flash的运行时序:1.写入时序:(1)输入地址:将要写入的存储单元的地址输入到NAND Flash中。
(2)擦除块的选择:选择需要写入数据的块进行擦除。
(3)擦除块的擦除:对选择的块进行擦除操作,将存储单元中的数据清除。
(4)写入数据:将要写入的数据输入到NAND Flash中。
(5)写入选择门:通过选择门将输入的数据写入到相应的存储单元中。
2.读取时序:(1)输入地址:将要读取的存储单元的地址输入到NAND Flash中。
(2)读取选择门:通过选择门将存储单元中的数据读出。
(3)读取数据:将读取的数据输出。
需要注意的是,NAND Flash的擦除操作是以块为单位进行的,而写入操作是以页为单位进行的。
擦除块的大小通常为64KB或128KB,一页的大小通常为2KB或4KB。
此外,NAND Flash还包含了一些管理区域,用于存储元数据和管理信息。
总结:NAND Flash是一种基于晶体管的闪存类型,通过对晶体管的电荷状态进行读取和写入来实现数据的存储和读取。
NANDFlash原理和使用一、NAND Flash的原理NAND Flash基于浮栅效应晶体管(Floating Gate Field Effect Transistor)的工作原理进行存储数据。
每个存储单元包含一个浮动栅和一个控制栅,通过对控制栅施加电压,可以改变浮动栅中电子的分布状态。
当浮动栅的电荷状态表示0时,电子充分存储在浮动栅中;而当浮动栅的电荷状态表示1时,几乎没有电子存储在浮动栅中。
数据的写入和擦除是NAND Flash的两个重要操作。
写入数据时,首先需要根据所需的数据位序列确定相应的单元位置,然后通过施加一定的电压对浮动栅进行充、放电,以改变电子的位状态。
擦除数据时,需要对整个块进行一次性的擦除操作,将所有存储单元的电子位状态恢复为0。
同时,为了提高存储密度和读写性能,NAND Flash还使用了一些技术,如多层单元(Multi-Level Cell,MLC)和三层单元(Triple-Level Cell,TLC)来实现在每个存储单元中存储多位数据。
二、NAND Flash的使用1. 存储器层面:NAND Flash因其非易失性和快速读写性能被广泛应用于存储器中,取代了传统的硬盘驱动器。
固态硬盘(SSD)是其中的典型应用,它不仅在电脑中使用,也可以用于服务器、云存储等领域。
2. 智能手机和平板电脑:NAND Flash被广泛应用于智能手机和平板电脑中的存储器,用于存储操作系统、应用程序和用户数据。
由于NAND Flash具有快速的读写速度和较小的体积,可实现轻薄设计,因此非常适合移动设备。
3. 数字相机和摄像机:NAND Flash也用作数码相机和摄像机中的存储媒介,用于保存拍摄的照片和视频。
相比于传统的存储卡,NAND Flash 存储器具有更高的读写速度和更大的容量,可以满足高清拍摄的需求。
4. 汽车电子:随着汽车电子的普及,NAND Flash也开始在汽车的娱乐系统、导航系统和车载电子控制单元中得到应用。
NAND FLASH 的特殊性1.存在壞塊。
由於NAND生產工藝的原因,出廠晶片中會隨機出現壞塊。
壞塊在出廠時已經被初始化,並在特殊區域中標記為不可用,在使用過程中如果出現壞塊,也需要進行標記。
2.易出現位反轉。
NAND FLASH更易出現位反轉的現象,如果位反轉出現在關鍵檔上,會導致系統掛機。
所以在使用NAND FLASH的同時,建議使用ECC/EDC演算法確保可靠性。
3.存在Spare區。
正因為NAND FLASH有著上面的兩項特殊的地方,Spare區就扮演作存放壞塊標誌,ECC值以及晶片資訊和檔資訊的作用。
4.多維的空間結構。
NAND FLASH一般由block,page,sector等結構組成。
所以在有的檔系統中就衍生出各種分區資訊和磁區資訊等。
NAND FLASH 燒錄的複雜性1.處理壞塊。
由於NAND存在壞塊,導致位址空間不是連續的。
所以正確的處理壞塊是保證NAND FLASH燒錄後能夠正常運行的關鍵。
從大的方面來說,處理壞塊常用的最有效的主要為兩種方法:a.跳過;b.替代。
也有部分客戶為了使用方便,並沒有把壞塊處理的概念引入,直接(在壞塊上寫過,這種方法雖然簡單,但容易產生很多不穩定的因素。
目前我們公司在出廠的時候為每一種NAND FLASH配置標準的壞塊處理方式有Skip(跳過),ReservedSamsung的保留替代方案)和直接在壞塊上寫過(一般情況不建議客戶使用)2.計算ECC。
ECC/EDC演算法具有查錯,糾錯的功能,並且在NAND FLASH使用的大多數環境,需要帶有ECC演算法的。
目前廣泛使用的為Samsung的漢明碼(Hamming code),分為512Byte&256W兩種。
還有功能更為強大的4-bit ECC 和Computer ECC。
由於ECC演算法比較多,每個演算法個體又具有比較強的可變性(位元組織,分段計算等),而且在Spare區存放的位置也不能統一,所以無法做成統一的演算法。
NandFlash原理与启动详解一、Nandflash内部是怎么工作的:1片Nandflash=1设备;1设备=4096块;1块=32页;1页=528字节=数据大小(512字节)+oob块大小(16字节)(oob用于Nandflash命令执行完成后设置状态)可以通过NAND Flash命令00h/01h/50h分别对前半部、后半部、OOB进行定位,通过NAND Flash内置的指针指向各自的首地址。
存储操作特点有:擦除操作的最小单位是块;NAND Flash芯片每一位只能从1变为0,而不能从0变为1,所以在对其进行写入操作之前一定要将相应块擦除(擦除即是将相应块的位全部变为1);OOB部分的第6字节(即517字节)标志是否是坏块,值为FF时不是坏块,否则为坏块。
除OOB第6字节外,通常至少把OOB的前3字节用来存放NAND Flash硬件ECC码。
(ECC:"Error Correcting Code" "错误检查纠正",带有奇偶校验的内存的主要功能。
)1.Nand flash以page为单位进行读写,以block为单位进行擦除,没页分为main区和spare区,main区用于存放正常的数据,spare区用于存放一些附加信息2.S3c2440 支持从Nand 启动是因为内部有一个叫做Steppingstone的SRAM buffer,当启动的时候,nand 的前4k的将会代码将被拷贝到steppingstone中执行,注意前4k代码是不会经过ECC校验的,所以必须确保这些代码的准确3.对nand的操作都是通过使用命令来实现,有的操作只要一个命令就可以完成,而有的需要两个命令才能完成,下面是K9F1G08U0B的命令表:4 Flash烧写程序原理及结构基本原理:将在SDRAM中的一段存储区域中的数据写到NAND Flash存储空间中。
烧写程序在纵向上分三层完成。
Nand Flash 介绍及高通nand flash驱动1. Nand Flash 相关概念1.1 NOR flash与nand flash1) Nor flash 写速度要比Nand flash 慢得多,Nor flash的读速度比Nand flash快得多。
2.)Nor flash 可以挂上CPU 芯片的地址线,不需要额外的sdram 就可直接在Nor flash 中直接运行,而Nand flash 需要代码搬运到Ram中运行,所以需要Boot loader,需要额外的sdram 的开销。
3)Nandflash需要做badblock检测和ecc校验;每个page中需有一块区域标识坏块信息,而 Nor flash 没有badblock 和ecc 校验的概念。
4)Nand flash最小的program单位为page,而Nor flash 可以对bit进行1.2 什么是SLC和MLCSLC,Single Level Cell:单个存储单元,只存储一位数据,表示成1或0.对于数据的表示,单个存储单元中内部所存储电荷的电压,和某个特定的阈值电压Vth,相比,如果大于此Vth值,就是表示1,反之,小于Vth,就表示0.MLC,Multi Level Cell:与SLC相对应,就是单个存储单元,可以存储多个位,比如2位,4位等。
其实现机制,就是,通过控制内部电荷的多少,分成多个阈值,通过控制里面的电荷多少,而达到我们所需要的存储成不同的数据。
比如,假设输入电压是Vin=4V那么,可以设计出2的2次方=4个阈值, 1/4 的Vin=1V,2/4的Vin=2V,3/4的Vin=3V,Vin=4V,分别表示2位数据00,01,10,11。
对于写入数据,就是充电,通过控制内部的电荷的多少,对应表示不同的数据。
另,nand flash:页大小是512+16=528的称为small page页大小是2048+64=2112的称为large page1.3 Nand flash的组成结构图2 Nand flash 物理存储单元的阵列组织结构NAND Flash 的数据是以bit 的方式保存在memory cell,一般来说,一个cell 中只能存储一个bit。
NandFlash详述1. 硬件特性:【Flash的硬件实现机制】Flash全名叫做Flash Memory,属于非易失性存储设备(Non-volatile Memory Device),与此相对应的是易失性存储设备(Volatile Memory Device)。
这类设备,除了Flash,还有其他比较常见的如硬盘,ROM等,与此相对的,易失性就是断电了,数据就丢失了,比如大家常用的内存,不论是以前的SDRAM,DDR SDRAM,还是现在的DDR2,DDR3等,都是断电后,数据就没了。
Flash的内部存储是MOSFET,里面有个悬浮门(Floating Gate),是真正存储数据的单元。
-------------------------------------------------------------------------------------------------------------------------金属-氧化层-半导体-场效晶体管,简称金氧半场效晶体管(Metal-Oxide-SemiconductorField-Effect Transistor, MOSFET)是一种可以广泛使用在模拟电路与数字电路的场效晶体管(field-effect transistor)。
MOSFET依照其“通道”的极性不同,可分为n-type与p-type的MOSFET,通常又称为NMOSFET与PMOSFET,其他简称尚包括NMOS FET、PMOS FET、nMOSFET、pMOSFET等。
-------------------------------------------------------------------------------------------------------------------------在Flash之前,紫外线可擦除(uv-erasable)的EPROM,就已经采用用Floating Gate存储数据这一技术了。
nand flash读写工作原理概述说明1. 引言1.1 概述NAND Flash是一种非常常见和重要的存储设备,被广泛应用于各种电子产品中。
它的独特设计使得它成为一种高性能、低功耗、擦写可靠且具有较大容量的存储器解决方案。
由于其许多优点,NAND Flash在移动设备、个人电脑、服务器以及其他许多领域都有着广泛的应用。
1.2 文章结构本文将详细介绍NAND Flash的读写工作原理,并探讨其在存储领域中的优势与应用场景。
首先,我们将简要介绍NAND Flash的基本概念和特点,包括其结构和组成部分。
然后,我们将重点讲解NAND Flash进行读操作和写操作时所涉及的工作原理和步骤。
通过对这些原理的详细阐述,读者将能够全面了解NAND Flash如何实现数据的读取和写入。
除此之外,我们还将探讨NAND Flash相对于其他存储设备的优势,并介绍几个典型应用场景。
这些优势包括快速读写速度、低功耗、体积小且轻便、强大的耐久性以及较大的存储容量。
在应用场景方面,我们将重点介绍NAND Flash 在移动设备领域、物联网和服务器等各个行业中的广泛应用。
最后,我们将进行本文的小结,并对NAND Flash未来的发展进行展望。
通过全面了解NAND Flash的工作原理和优势,读者将能够更好地理解其在现代科技领域中的重要性,并对其未来发展趋势有一个清晰的认识。
1.3 目的本文的目的是通过对NAND Flash读写工作原理进行详细说明,使读者能够全面了解NAND Flash是如何实现数据读写操作的。
此外,我们还旨在向读者展示NAND Flash在存储领域中所具有的优势和广泛应用场景,使其意识到这一存储设备在现代科技产业中所扮演的重要角色。
希望通过本文,读者能够加深对NAND Flash技术的理解,并为相关领域或产品的研发与设计提供参考依据。
2. NAND Flash读写工作原理:2.1 NAND Flash简介:NAND Flash是一种非易失性存储器,采用了电子闪存技术。
nandflash read reclaim机制摘要:1.NAND Flash概述2.NAND Flash读取过程3.NAND Flash回收机制原理4.读取与回收过程中的关键技术5.应用场景及优势6.未来发展趋势正文:近年来,随着电子产品日益普及,NAND Flash存储器在全球市场上需求量持续增长。
NAND Flash存储器是一种非易失性存储器,广泛应用于各类电子设备中。
本文将介绍NAND Flash的读取回收机制,分析其工作原理及优势,并探讨未来发展趋势。
一、NAND Flash概述AND Flash是一种基于浮动栅极技术的非易失性存储器,具有较高的读写速度和较低的成本。
NAND Flash存储器单元由浮动栅极、选择栅极和源漏极组成。
数据存储在浮动栅极上,通过控制源漏极的电流来读取和写入数据。
二、NAND Flash读取过程AND Flash的读取过程主要包括以下几个步骤:1.预充电:在读取之前,对相关单元进行预充电,确保栅极电压达到足够高的水平。
2.读取:通过控制源漏极的电压,测量浮动栅极的电压,从而读取数据。
3.纠错:NAND Flash具有错误纠正码(ECC)功能,可在读取过程中检测并纠正数据错误。
三、NAND Flash回收机制原理AND Flash回收机制主要目的是清除已损坏或不再需要的数据,为新的数据腾出空间。
回收过程主要包括以下几个步骤:1.擦除:通过对指定区域进行擦除操作,清除浮动栅极上的数据。
2.编程:在擦除完成后,对新数据进行编程,将其存储在浮动栅极上。
3.验证:编程完成后,对数据进行验证,确保已正确写入。
四、读取与回收过程中的关键技术1.页读取技术:提高NAND Flash的读取速度,降低功耗。
2.快速擦除技术:缩短擦除操作的时间,提高回收效率。
3.低功耗技术:降低NAND Flash在工作过程中的功耗,提高电池续航能力。
4.3D NAND Flash技术:增加存储密度,提高容量。
NandFlash启动过程详解NAND Flash是一种流行的非易失性存储技术,它可以用于嵌入式系统的启动过程中。
以下是NAND Flash启动过程的详细解释。
1. 电源投入:启动过程始于将电源连接到系统上。
一旦电源被投入,NAND Flash芯片便开始工作。
芯片内部会进行一系列初始化操作,以确保其正常运行。
2. 主控器初始化:NAND Flash芯片的主控器是其核心部分,它控制着所有数据的读取和写入操作。
在启动过程中,主控器需要进行初始化,以确保它可以正确地与系统中的其他组件进行通信。
3. 片选操作:由于可能存在多个NAND Flash芯片连接到同一个总线上,因此需要使用片选操作来选择要进行读取和写入操作的特定芯片。
在启动过程中,首先需要选择正确的芯片。
4. 地址传输:NAND Flash芯片存储数据的方式是按块存储,而不是按字节存储。
因此,在进行读取和写入操作之前,需要先传输正确的地址以指示要操作的块和页。
5. 读取操作:在启动过程中,通常需要从NAND Flash芯片中读取引导程序代码。
读取操作涉及到将芯片中的数据按照正确的地址传输到系统的内存中。
6. 缓冲区操作:由于NAND Flash芯片的读取速度相较于内存较慢,因此在读取操作中通常会使用缓冲区来提高读取速度。
在读取操作期间,数据会首先存储在缓冲区中,然后再传输至系统的内存中。
7. 写入操作:除了读取操作外,启动过程中还可能需要将数据写入到NAND Flash芯片中。
写入操作涉及将数据从系统的内存中传输到合适的块和页。
8. 擦除操作:NAND Flash芯片的数据存储是按块而不是按页进行的。
因此,在进行写入操作之前,可能需要先擦除芯片中的一些块。
擦除操作会将一些块中的所有数据都清除,以便进行写入操作。
9. 引导加载:启动过程的最后阶段是引导加载,它涉及将引导程序代码从NAND Flash芯片中加载至系统的内存中。
一旦引导程序代码被加载,系统便可以开始执行并启动其他组件。
NAND flash和NOR flash的区别详解[导读]我们使用的智能手机除了有一个可用的空间(如苹果8G、16G等),还有一个RAM容量,很多人都不是很清楚,为什么需要二个这样的芯片做存储呢,这就是我们下面要讲到的这二种存储.关键词:NOR flashNand flashFlaSh我们使用的智能手机除了有一个可用的空间(如苹果8G、16G等),还有一个RAM容量,很多人都不是很清楚,为什么需要二个这样的芯片做存储呢,这就是我们下面要讲到的。
这二种存储设备我们都统称为“FLASH”,FLASH是一种存储芯片,全名叫Flash EEPROM Memory,通地过程序可以修改数据,即平时所说的“闪存”。
Flash又分为NAND flash和NOR flash二种。
U盘和MP3里用的就是这种存储器。
相“flash存储器”经常可以与相“NOR存储器”互换使用。
许多业内人士也搞不清楚NAND闪存技术相对于NOR技术的优越之处,因为大多数情况下闪存只是用来存储少量的代码,这时NOR闪存更适合一些。
而NAND则是高数据存储密度的理想解决方案。
NOR Flash 的读取和我们常见的 SDRAM 的读取是一样,用户可以直接运行装载在 NOR FLASH 里面的代码,这样可以减少 SRAM 的容量从而节约了成本。
NAND Flash 没有采取内存的随机读取技术,它的读取是以一次读取一块的形式来进行的,通常是一次读取 512 个字节,采用这种技术的 Flash 比较廉价。
用户不能直接运行 NAND Flash 上的代码,因此好多使用 NAND Flash 的开发板除了使用 NAND Flah以外,还作上了一块小的 NOR Flash 来运行启动代码。
NOR flash是intel公司1988年开发出了NOR flash技术。
NOR的特点是芯片内执行(XIP, eXecute In Place),这样应用程序可以直接在flash 闪存内运行,不必再把代码读到系统RAM中。
NOR的传输效率很高,在1~4MB的小容量时具有很高的成本效益,但是很低的写入和擦除速度大大影响了它的性能。
Nand-flash内存是flash内存的一种,1989年,东芝公司发表了NAND flash结构。
其内部采用非线性宏单元模式,为固态大容量内存的实现提供了廉价有效的解决方案。
Nand-flash存储器具有容量较大,改写速度快等优点,适用于大量数据的存储,因而在业界得到了越来越广泛的应用,如嵌入式产品中包括数码相机、MP3随身听记忆卡、体积小巧的U盘等。
NAND flash和NOR flash原理一、存储数据的原理两种闪存都是用三端器件作为存储单元,分别为源极、漏极和栅极,与场效应管的工作原理相同,主要是利用电场的效应来控制源极与漏极之间的通断,栅极的电流消耗极小,不同的是场效应管为单栅极结构,而FLASH 为双栅极结构,在栅极与硅衬底之间增加了一个浮置栅极。
[attach]158 [/attach]浮置栅极是由氮化物夹在两层二氧化硅材料之间构成的,中间的氮化物就是可以存储电荷的电荷势阱。
上下两层氧化物的厚度大于 50 埃,以避免发生击穿。
二、浮栅的重放电向数据单元内写入数据的过程就是向电荷势阱注入电荷的过程,写入数据有两种技术,热电子注入(hot electron injection)和 F-N 隧道效应(Fowler Nordheim tunneling),前一种是通过源极给浮栅充电,后一种是通过硅基层给浮栅充电。
NOR 型 FLASH 通过热电子注入方式给浮栅充电,而 NAND 则通过 F-N 隧道效应给浮栅充电。
在写入新数据之前,必须先将原来的数据擦除,这点跟硬盘不同,也就是将浮栅的电荷放掉,两种 FLASH 都是通过 F-N 隧道效应放电。
三、0 和 1这方面两种 FLASH 一样,向浮栅中注入电荷表示写入了'0',没有注入电荷表示'1',所以对 FLASH 清除数据是写 1 的,这与硬盘正好相反;对于浮栅中有电荷的单元来说,由于浮栅的感应作用,在源极和漏极之间将形成带正电的空间电荷区,这时无论控制极上有没有施加偏置电压,晶体管都将处于导通状态。
而对于浮栅中没有电荷的晶体管来说只有当控制极上施加有适当的偏置电压,在硅基层上感应出电荷,源极和漏极才能导通,也就是说在没有给控制极施加偏置电压时,晶体管是截止的。
如果晶体管的源极接地而漏极接位线,在无偏置电压的情况下,检测晶体管的导通状态就可以获得存储单元中的数据,如果位线上的电平为低,说明晶体管处于导通状态,读取的数据为 0,如果位线上为高电平,则说明晶体管处于截止状态,读取的数据为 1。
由于控制栅极在读取数据的过程中施加的电压较小或根本不施加电压,不足以改变浮置栅极中原有的电荷量,所以读取操作不会改变FLASH 中原有的数据。
四、连接和编址方式两种 FLASH 具有相同的存储单元,工作原理也一样,为了缩短存取时间并不是对每个单元进行单独的存取操作,而是对一定数量的存取单元进行集体操作, NAND 型 FLASH 各存储单元之间是串联的,而 NOR 型FLASH 各单元之间是并联的;为了对全部的存储单元有效管理,必须对存储单元进行统一编址。
NAND 的全部存储单元分为若干个块,每个块又分为若干个页,每个页是 512byte,就是 512 个 8 位数,就是说每个页有 512 条位线,每条位线下有 8 个存储单元;那么每页存储的数据正好跟硬盘的一个扇区存储的数据相同,这是设计时为了方便与磁盘进行数据交换而特意安排的,那么块就类似硬盘的簇;容量不同,块的数量不同,组成块的页的数量也不同。
在读取数据时,当字线和位线锁定某个晶体管时,该晶体管的控制极不加偏置电压,其它的 7 个都加上偏置电压而导通,如果这个晶体管的浮栅中有电荷就会导通使位线为低电平,读出的数就是 0,反之就是 1。
NOR 的每个存储单元以并联的方式连接到位线,方便对每一位进行随机存取;具有专用的地址线,可以实现一次性的直接寻址;缩短了 FLASH 对处理器指令的执行时间。
五、性能NAND flash和NOR flash的区别一、NAND flash和NOR flash的性能比较flash闪存是非易失存储器,可以对称为块的存储器单元块进行擦写和再编程。
任何flash器件的写入操作只能在空或已擦除的单元内进行,所以大多数情况下,在进行写入操作之前必须先执行擦除。
NAND器件执行擦除操作是十分简单的,而NOR则要求在进行擦除前先要将目标块内所有的位都写为0。
由于擦除NOR器件时是以64~128KB的块进行的,执行一个写入/擦除操作的时间为5s,与此相反,擦除NAND器件是以8~32KB的块进行的,执行相同的操作最多只需要4ms。
执行擦除时块尺寸的不同进一步拉大了NOR和NADN之间的性能差距,统计表明,对于给定的一套写入操作(尤其是更新小文件时),更多的擦除操作必须在基于NOR的单元中进行。
这样,当选择存储解决方案时,设计师必须权衡以下的各项因素。
1、NOR的读速度比NAND稍快一些。
2、NAND的写入速度比NOR快很多。
3、NAND的4ms擦除速度远比NOR的5s快。
4、大多数写入操作需要先进行擦除操作。
5、NAND的擦除单元更小,相应的擦除电路更少。
二、NAND flash和NOR flash的接口差别NOR flash带有SRAM接口,有足够的地址引脚来寻址,可以很容易地存取其内部的每一个字节。
NAND器件使用复杂的I/O口来串行地存取数据,各个产品或厂商的方法可能各不相同。
8个引脚用来传送控制、地址和数据信息。
NAND读和写操作采用512字节的块,这一点有点像硬盘管理此类操作,很自然地,基于NAND的存储器就可以取代硬盘或其他块设备。
三、NAND flash和NOR flash的容量和成本NAND flash的单元尺寸几乎是NOR器件的一半,由于生产过程更为简单,NAND结构可以在给定的模具尺寸内提供更高的容量,也就相应地降低了价格。
NOR flash占据了容量为1~16MB闪存市场的大部分,而NAND flash只是用在8~128MB的产品当中,这也说明NOR主要应用在代码存储介质中,NAND适合于数据存储,NAND在CompactFlash、Secure Digital、PC Cards和MMC存储卡市场上所占份额最大。
四、NAND flash和NOR flash的可靠性和耐用性采用flahs介质时一个需要重点考虑的问题是可靠性。
对于需要扩展MTBF的系统来说,Flash是非常合适的存储方案。
可以从寿命(耐用性)、位交换和坏块处理三个方面来比较NOR和NAND的可靠性。
五、NAND flash和NOR flash的寿命(耐用性)在NAND闪存中每个块的最大擦写次数是一百万次,而NOR的擦写次数是十万次。
NAND存储器除了具有10比1的块擦除周期优势,典型的NAND块尺寸要比NOR器件小8倍,每个NAND存储器块在给定的时间内的删除次数要少一些。
六、位交换所有flash器件都受位交换现象的困扰。
在某些情况下(很少见,NAND发生的次数要比NOR多),一个比特位会发生反转或被报告反转了。
一位的变化可能不很明显,但是如果发生在一个关键文件上,这个小小的故障可能导致系统停机。
如果只是报告有问题,多读几次就可能解决了。
当然,如果这个位真的改变了,就必须采用错误探测/错误更正(EDC/ECC)算法。
位反转的问题更多见于NAND闪存,NAND的供应商建议使用NAND闪存的时候,同时使用七、EDC/ECC算法这个问题对于用NAND存储多媒体信息时倒不是致命的。
当然,如果用本地存储设备来存储操作系统、配置文件或其他敏感信息时,必须使用EDC/ECC系统以确保可靠性。
八、坏块处理NAND器件中的坏块是随机分布的。
以前也曾有过消除坏块的努力,但发现成品率太低,代价太高,根本不划算。
NAND器件需要对介质进行初始化扫描以发现坏块,并将坏块标记为不可用。
在已制成的器件中,如果通过可靠的方法不能进行这项处理,将导致高故障率。
九、易于使用可以非常直接地使用基于NOR的闪存,可以像其他存储器那样连接,并可以在上面直接运行代码。
由于需要I/O接口,NAND要复杂得多。
各种NAND器件的存取方法因厂家而异。
在使用NAND器件时,必须先写入驱动程序,才能继续执行其他操作。
向NAND器件写入信息需要相当的技巧,因为设计师绝不能向坏块写入,这就意味着在NAND器件上自始至终都必须进行虚拟映射。
十、软件支持当讨论软件支持的时候,应该区别基本的读/写/擦操作和高一级的用于磁盘仿真和闪存管理算法的软件,包括性能优化。