质谱解析方法
- 格式:ppt
- 大小:5.36 MB
- 文档页数:1
质谱数据解析
质谱数据解析是质谱分析中的一个重要步骤,它把得到的质谱数据转化为有用的信息,帮助分析师确定样品中存在的物质成分,鉴定分子结构和确定化合物的数量。
总的来说,质谱数据解析主要包括以下几个方面:
1. 分离峰的提取:在质谱图中,通常会出现多个峰,表示样品中可能存在多种物质。
分离峰的提取是把这些峰分开,以便分别进行分析。
2. 确定化合物的分子式:分离出的质谱图上的峰通常可以通过测定分子离子峰、裂解峰等特征峰来确定化合物的基本分子式。
3. 确定化合物的结构:分析样品的质谱数据,根据裂解片段、离子对和其他特征峰等信息确定化合物的分子结构和功能基团。
4. 确定化合物的浓度:质谱分析通常可以确定化合物的浓度,这对于定量分析非常重要。
上述过程中,质谱仪是不可或缺的工具。
质谱仪通过对物质分子进行电离、加速、分离和检测等过程,得到物质在质谱上的分布情况。
不同质谱仪的检测灵敏度、分辨率和分析速度都有差别,因此,合理选择、使用质谱仪是确保数据解析准确的关键。
1.质谱就是真空中,利用电子束轰击待测化学物质的分子,将该分子打散,打成一个一个的带电荷的分子离子片段,再根据质谱仪上各个分子离子片段的出峰位置和强度,最终显示出各个离子的分子量以及相应浓度。
2.最右面的峰是全分子的离子峰,是化学物质的分子失去1个质子产生的峰,最右面的分子量最大了,显然分子片段不可能比全分子的分子量大,所以最右侧峰应该是大约相对分子量的数值。
3.氧上面加上正号,不一定是失去电子,多数情况下是氧又和一个质子(H+)结合了,从而多了一个正电荷。
4.看质谱图,只要看特征峰就好了,不要每个峰都知道是什么,只有有自己想要的峰,就行了。
化学物质的分子中,单纯依靠质谱来判断是否有某种化学分子存在的情况几乎不存在,更重要的是做为一种辅助监测手段。
不过懂得看质谱图,利用质谱分析,还是有必要的什么是质谱图中的分子碎片,怎么写出它们的化学式?不同质荷比质荷比(mass-to-charge ratio)指带电粒子的质量与所带电荷之比值。
以m/e表示。
是质谱分析中的一个重要参数,不同m/e值的粒子在一定的加速电压V和一定磁场强度E下,所形成的一个弧形轨迹的半径r与m/e成正比。
90年代时IUPAC规定用以表示质荷比的m/e改为m/z。
更多>> 的离子经质量分析器分开后,到检测器被检测并记录下来,经计算机处理后以质谱图的形式表示出来。
在质谱图中,横坐标表示离子的质荷比(m/z)值,从左到右质荷比的值增大,对于带有单电荷的离子,横坐标表示的数值即为离子的质量;纵坐标表示离子流的强度,通常用相对强度来表示,即把最强的离子流强度定为100%,其它离子流的强度以其百分数表示,有时也以所有被记录离子的总离子流强度作为100%,各种离子以其所占的百分数来表示。
编辑本段质谱中主要离子峰从有机化合物的质谱图中可以看到许多离子峰.这些峰的m/z和相对强度取决于分子结构,并与仪器类型,实验条件有关.质谱中主要的离子峰有分子离子峰,碎片离子峰,同位素离子峰,重拍离子峰及亚稳离子峰等.正是这些离子峰给出了丰富的质朴信息,为质谱分析法提供依据.下面对这些离子峰进行简要介绍. (一)分子离子峰分子受电子束轰击后失去一个电子而生成的离子M.+称为分子离子,例如:M+e¨→M.+ + 2e¨ 在质谱图中由M.+ 所形成的峰称为分子离子峰.因此,分子离子峰的m/z值就是中性分子的相对分子质量Mr,而Mr 是有机化合物的重要质谱数据. 分子离子峰的强弱,随化合物结构不同而异,其强弱一般为:芳环>醚>酯>胺>酸>醇>高分子烃.分子离子峰的强弱可以为推测化合物的类型提供参考信息. (二)碎片离子峰当电子轰击的能量超过分子离子电离所需要的能量时(约为50~70eV),可能使分子离子的化学键进一步断裂,产生质量数较低的碎片,称为碎片离子.在质谱图上出现相应的峰,称为碎片离子峰.碎片离子峰在质谱图上位于分子离子峰的左侧. (三)同位素离子峰在组成有机化合物的常见十几种元素中,有几种元素具有天然同位素,如C,H,N,O,S,Cl,Br等.所以,在质谱图中除了最轻同位素组成的分子离子所形成的M.+峰外,还会出现一个或多个重同位素组成的分子离子峰.如(M+1).+,(M+2).+,(M+3).+等,这种离子峰叫做同位素离子峰.对应的m/z为M+1,M+2,M+3表示.人们通常把某元素的同位素占该元素的原子质量分数称为同位素丰度.同位素峰的强度与同位素的风度是相对应的.下表列出了有机化合物中元素的同位素丰度及峰类型.由下表可见,S,Cl,Br等元素的同位素丰度高,因此,含S,C,Br等元素的同位素其M+2峰强度较大.一般根据M和M+2两个峰的强度来判断化合物中是否含有这些元素. 表格------有机化合物中常见元素的天然同位素丰度和峰类型同位素相对丰度/% 峰类型H1 99.985 M H2 0.015 M+1 C12 98.893 M C13 1.107 M+1 N14 99.634 M N15 0.366 M+1 O16 99.759 M O17 0.037 M+1 O18 0.204 M+2S32 95.00 M S33 0.76 M+1 S34 4.22 M+2 Cl35 75.77 M Cl37 24.23 M+2 Br79 50.537 M Br81 49.463 M+2 (四)重排离子峰分子离子裂解成碎片时,有些碎片离子不是仅仅通过键的简单断裂有时还会通过分子内某些原子或基团的重新排列或转移而形成离子,这种碎片离子称为重排离子.质谱图上相应的峰称为重排峰. 重排的方式很多,其中最重要的是麦氏重排(Mclafferty Rearrangement).可以发生麦氏重排的化合物有醛,酮,酸,酯等.这些化合物含有C=X(X为O,S,N,C)基团,当与此基团相连的键上具有γ氢原子时,氢原子可以转移到X原子上,同时β键断裂.例如,正丁醛的质谱图中出现很强的m/z=44峰,就是麦氏重排所形成的.重排离子形成的机理如下:[略,如有参考需要,可查阅原出处].(五)亚稳离子峰前面所阐述的离子都是稳定的离子.实际上,在电离,裂解,重排过程中有些离子处于亚稳态.例如,在离子源中生成质量为m1的离子,在进入质量分析器前的无场飞行时发生断裂,使其质量由m1变为m2, 形成较低质量的离子.这类离子具有质量为m1离子的速度,进入质量分析器是具有m2的质量,在磁场作用下,离子运动的偏转半径大,它的表观质量m*=[m2]^2/m1,这类离子叫亚稳离子,m*形成的质谱峰叫亚稳离子峰,在质谱图上,m*峰不在m2处,而出现在比m2更低的m*处. 由于在无场区裂解的离子m*不能聚焦与一点,故在质谱图上m*峰弱而钝一般可能跨2~5个质量单位,并且m/z常常为非整数,所以m*峰不难识别.例如,在十六烷的质谱图中,有若干个亚稳离子峰,其m/z分别位于32.9,29.5,28.8,25.7,21.7处.m/z=29.5的m*,因41^2/57≈29.5,所以m*=29.5表示存在如下裂解机理: C4H9+→C3H5+ + C H4 m/z=57 m/z=41 由此可见,根据m1和m2就可计算m*,并证实有m1 +→m2+的裂解过程,这对解析一个复杂质谱图很有参考价值. 编辑本段小结通过质谱图可以获得丰富的质谱信息:各种碎片离子元素的组成,根据亚稳离子确定分子离子与碎片离子,碎片离子与碎片离子之间的关系,分子裂解方式与分子结构之间的关系等.通过m/z 峰及其强度,可以进行有机化合物的相对分子质量的测定,确定化合物的化学式,结构式,并进行定量分析如何读质谱图用二维方法来看。
高中化学物质的质谱分析技巧质谱分析是一种常用的化学分析方法,通过对物质分子的质量和结构进行分析,可以帮助我们了解物质的组成和性质。
在高中化学学习中,了解和掌握一些质谱分析的基本技巧对于提高学习效果和解题能力非常有帮助。
本文将介绍几种常见的质谱分析技巧,并结合具体题目进行说明,希望对高中学生和他们的父母有所帮助。
一、质谱图的解析质谱图是质谱仪记录到的数据,通过对质谱图的解析,可以了解物质的分子量、分子结构以及各个质谱峰的含义。
在解析质谱图时,可以根据以下几个方面进行分析:1. 分子离子峰(M+):分子离子峰是质谱图中最高的峰,代表了分子中的主要质量。
通过测量分子离子峰的质量数,可以推测出物质的分子量。
2. 分子离子峰的相对丰度:分子离子峰的相对丰度可以通过测量峰的高度或面积来确定。
相对丰度较高的峰往往代表了分子中相对丰富的原子或基团。
3. 质谱峰的裂解:质谱峰的裂解可以帮助确定分子结构。
当分子离子峰裂解时,会产生一系列碎片离子峰,通过分析这些碎片离子峰的质量数和相对丰度,可以推测出分子中的基团和它们的相对位置。
举例说明:某质谱图中,分子离子峰的质量数为120,相对丰度最高的峰为质量数为91的峰。
根据质谱峰的裂解,可以确定该分子中含有羟基(-OH)基团。
因此,该物质的分子式可能为C6H6O。
二、质谱峰的分析质谱峰的分析是质谱分析中的重要一环。
通过分析质谱峰的质量数和相对丰度,可以推测出物质的分子结构和它们的相对含量。
在分析质谱峰时,可以注意以下几点:1. 质谱峰的质量数:质谱峰的质量数可以通过质谱图上的刻度读数来确定。
通过比对质谱峰的质量数和已知物质的质谱图,可以推测出物质的分子量和分子结构。
2. 质谱峰的相对丰度:质谱峰的相对丰度可以通过测量峰的高度或面积来确定。
相对丰度较高的峰往往代表了物质中相对丰富的原子或基团。
3. 质谱峰的相对含量:质谱峰的相对含量可以通过比较不同峰的相对丰度来确定。
相对含量较高的峰往往代表了物质中相对含量较高的成分。
质谱分析方法解析质谱仪种类很多,不同类型的质谱仪主要差别在于离子源。
离子源的不同决定了对被测样品的不同要求,同时,所得信息也不同。
质谱仪的分辨率同样十分重要,高分辨质谱仪可给出化合物的组成式,对于未知物定性至关重要。
因此,在进行质谱分析前,要根据样品状况和分析要求选择合适的质谱仪。
目前,有机质谱仪主要有两大类:气相色谱-质谱联用仪与液相色谱-质谱联用仪,现就这两类仪器的分析方法叙述如下:GC-MS分析条件的选择在GC-MS分析中,色谱的分离与质谱数据的采集同时进行,为了使每个组分都得到分离和鉴定,必须设备合适的色谱和质谱分析条件:色谱条件包括色谱柱类型(填充柱或毛细管柱),固定液种类,汽化温度,载气流量,分流比,温升程序等。
设置原则是:一般情况下均使用毛细管柱,极性样品使用极性毛细管柱,非极性样品采用非极性毛细管柱,未知样品可先用中等极性毛细管柱,试用后再调整。
当然,如果有文献可以参考,就采用文献所用条件。
质谱条件包括:电离电压,电子电流,扫描速度,质量范围,这些都要根据样品情况进行设定。
为了保护灯绿和倍增器,在设定质谱条件时,还要设置溶剂去除时间,使溶剂峰通过离子源之后再打开灯绿和倍增器。
在所有的条件确定之后,将样品用微量注射器注入进样口,同时,启动色谱与质谱,进行GC-MS分析。
GC-MS数据采集有机混合物样品用微量注射器由色谱仪进样口注入,经色谱柱分离后进入质谱仪离子原在离子源被电离成离子。
离子经质量分析器,检测器之后即成为质谱仪信号并输入计算机。
样品由色谱柱不断流入离子源,离子由离子源不断进入分析器并不断得到质谱,只要没定好分析器扫描的质量范围和扫描时间,计算机就可以采集到一个个的质谱。
如果没有样品进入离子源,计算机采集到的质谱各离子强度均为0。
当有样品过入离子源时,计算机就采集到具有一定离子强度的质谱。
并且计算机可以自动将每个质谱的所有离子强度相加。
显示出总离子强度,总离子强度随时间变化的曲线就是总离子色谱图,总离子色谱图的形状和普通的色谱图是相一致的,它可以认为是是用质谱作为检测器得到的色谱图。
质谱——质谱图解析流程未知样的质谱图解析流程(一)解析分子离子区(1) 标出各峰的质荷比数,尤其注意高质荷比区的峰。
(2) 识别分子离子峰。
首先在高质荷比区假定分子离子峰,判断该假定分子离子峰与相邻碎片离子峰关系是否合理,然后判断其是否符合氮律。
若二者均相符,可认为是分子离子峰。
(3) 分析同位素峰簇的相对强度比及峰与峰间的Dm值,判断化合物是否含有C1、Br、S、Si等元素及F、P、I等无同位素的元素。
(4)推导分子式,计算不饱和度。
由高分辨质谱仪测得的精确分子量或由同位素峰簇的相对强度计算分子式。
若二者均难以实现时,则由分子离子峰丢失的碎片及主要碎片离子推导,或与其它方法配合。
(5)由分子离子峰的相对强度了解分子结构的信息。
分子离子峰的相对强度由分子的结构所决定,结构稳定性大,相对强度就大。
对于分子量约200的化合物,若分子离子峰为基峰或强蜂,谱图中碎片离子较少、表明该化合物是高稳定性分子,可能为芳烃或稠环化合物。
例如:萘分子离子峰m/z128为基峰,蒽醌分子离子峰m/z 208也是基峰。
分子离子峰弱或不出现,化合物可能为多支链烃类、醇类、酸类等。
(二)、解析碎片离子(1) 由特征离子峰及丢失的中性碎片了解可能的结构信息。
若质谱图中出现系列CnH2n+1峰,则化合物可能含长链烷基。
若出现或部分出现m/z77,66,65,51,40,39等弱的碎片离子蜂,表明化合物含有苯基。
若m/z91或105为基峰或强峰,表明化合物含有苄基或苯甲酰基。
若质谱图中基峰或强峰出现在质荷比的中部,而其它碎片离子峰少,则化合物可能由两部分结构较稳定,其间由容易断裂的弱键相连。
(2)综合分析以上得到的全部信息,结合分子式及不饱和度,提出化合物的可能结构。
(3)分析所推导的可能结构的裂解机理,看其是否与质谱图相符,确定其结构,并进一步解释质谱,或与标准谱图比较,或与其它谱(1HNMR、13CNMR、IR)配合,确证结构。
质谱解析是一种广泛应用于化学、生物、医学、环境等领域的分析技术。
质谱解析的步骤通常包括以下几个方面:
1.样品制备:根据需要对样品进行处理和前处理,如提取、分离、纯化等。
2离子化:将样品分子转化为离子,通常采用电离法,如电子轰击离子化、化学电离等。
3. 离子分离:将不同离子根据它们的质荷比进行分离,通常采用质谱仪中的质量分析器,如时间飞行质谱仪、四极杆质谱仪(quadrupole mass spectrometer)、离子阱质谱仪、三重四极杆质谱仪等。
4.检测和分析:通过检测和分析离子信号,确定样品中的化合物种类、数量、结构等信息。
5.数据处理和解释:对质谱数据进行处理和解释,如峰检测、峰匹配、谱图分析、数据库检索等。
6.结果报告:根据质谱分析结果,撰写报告并进行数据分析和解释,为进一步的研究提供依据。
需要注意的是,质谱解析的步骤可能因具体应用场景和质谱仪型号而有所不同,但以上几个方面是质谱解析的基本流程。
质谱解谱方法
质谱解谱方法是一种通过质谱仪对化合物进行定性和定量分析的方法。
以下是几种常用的质谱解谱方法:
1.谱图解析:通过对比标准质谱图和未知物的质谱图,对未知物进行初步的判断。
谱图解
析可以帮助确定分子量、分子式、官能团等。
2.高分辨质谱:利用高分辨质谱仪获得更高精度的质量分辨率,精确测定元素的同位素比
值,进而推测化合物的元素组成。
高分辨质谱还可以提供更丰富的结构信息,有助于推断化合物的可能结构。
3.质谱裂解规律:利用已知化合物的质谱裂解规律,对未知化合物进行裂解,通过对比裂
解后的碎片离子,确定未知化合物的结构。
4.质谱与色谱联用:将质谱仪与色谱仪联用,通过色谱仪对混合物进行分离,再利用质谱
仪对分离后的组分进行定性和定量分析。
质谱与色谱联用可以提高复杂混合物的分析效率。
5.数据库检索:将未知化合物的质谱数据与已知质谱数据库进行比对,通过匹配度最高的
已知化合物,推测未知化合物的结构。
数据库检索需要建立庞大的已知质谱数据库,并不断更新数据。
以上是几种常用的质谱解谱方法,可以根据具体情况选择合适的方法进行分析。
质谱解谱方法在药物研发、生物代谢、环境监测等领域应用广泛。