如何解析质谱图
- 格式:ppt
- 大小:2.85 MB
- 文档页数:10
质谱谱图解读质谱谱图是质谱仪测量过程中的一个结果,它可以提供目标化合物的质量及其相对丰度,帮助分析师根据特定的质谱特征来确定化合物的结构和组成。
在本文中,我们将深入探讨质谱谱图的解读方法,以帮助读者更好地理解和应用这一重要的分析工具。
1. 质谱图的基本构成质谱谱图由两个主要的轴组成:质量轴和信号强度轴。
质谱仪通过离子化处理将样品中的化合物转化为带电离子,然后按照质量-电荷比(m/z)对离子进行分离和检测。
质谱图上的峰表示不同质荷比的离子相对丰度,而峰的位置则对应着化合物的质量。
2. 质谱峰的解析质谱图中的每个峰都代表着一个特定的离子,其相对强度可以用于确定化合物的相对丰度。
对于单个峰的解析,我们需要考虑以下几个方面:2.1 基峰(Base Peak):基峰是质谱图中信号最强的峰,其相对强度被标为100%。
其他峰的相对强度是以基峰为参照来测量和表示的。
2.2 分子离峰(Molecular Ion Peak):分子离峰是由分子化合物的整个分子离子(M)形成的,其质量等于化合物的分子量。
这个峰通常是质谱图中质量最高的峰,可以用来确定化合物的分子式。
2.3 碎裂峰(Fragmentation Peak):碎裂峰是由分子离峰经过一系列的分裂反应生成的。
这些峰的存在可以提供关于化合物的结构信息,帮助确定分子中的官能团以及它们的相对位置。
3. 质谱峰的解释解读质谱谱图可以通过以下几个步骤进行:3.1 确定基峰和分子离峰:首先,找到质谱图中的基峰和分子离峰。
基峰的相对强度为100%,分子离峰的质量对应着化合物的分子量。
3.2 观察碎裂峰:仔细观察质谱图中的碎裂峰,并比较其质量和相对强度。
通过分析碎裂峰的出现模式和质量差异,可以推断化合物中的官能团和原子组成。
3.3 结合其他谱图:质谱谱图常常与其他谱图(如红外光谱、紫外光谱等)一起使用,来进一步解读化合物的结构和性质。
4. 实例分析为了更好地理解和应用质谱谱图解读的方法,我们以某药物分析为例进行实例分析。
质谱图怎么分析质谱图是一种重要的分析技术,广泛应用于物质结构分析、化学定量分析等领域。
本文将通过详细介绍质谱图的原理和分析方法,以及几个常见的应用案例,来深入探讨质谱图的分析过程。
一、质谱图的原理质谱图是通过分析样品中的离子,利用其质量与电荷比的特征,来获取样品的化学信息。
其原理可以概括为以下几个步骤:1.样品的蒸发与电离:样品首先被蒸发,形成气态或带电态的离子。
这可以通过热蒸发、电子轰击或激光蒸发等方法实现。
2.离子的分离与加速:离子经过一个激发或过滤装置,根据其质量与电荷比进行分离,并通过电场加速。
3.离子的检测与记录:离子经过检测器,转化为可观测的电信号,并记录下来。
4.质谱图的解析:根据离子的质量与电荷比,将记录的信号表示为质谱图,进而分析样品的成分和结构。
二、质谱图的分析方法质谱图分析主要依靠质谱仪的仪器参数与样品特征的匹配,常用的分析方法包括以下几种:1.质量谱库比对法:将质谱图与质量谱库中的标准质谱图进行比对,通过相似度计算来识别样品成分。
2.质量谱碎片规律法:通过分析样品离子的裂解规律,推测样品的化学结构以及反应机制。
3.谱峰的分析法:通过对质谱图中峰的位置、形状、相对强度等特征进行定性和定量分析。
4.同位素峰的分析法:利用同位素的相对丰度比例,来推测样品中元素的含量和化学环境。
三、质谱图的应用案例1.药物研发:质谱图常用于药物分子的结构确认与质量控制,根据药物分子的质谱图可以准确地确定化合物的结构和分子量,以及确认附加物的存在。
2.环境分析:质谱图在环境中有机物的污染分析中有着广泛的应用,可以检测大气、水体、土壤等样品中的有害物质和残留物。
3.食品安全:质谱图可用于食品中农药、兽药、食品添加剂等的残留检测,保障食品质量和人体健康。
4.煤矿安全:质谱图能够分析煤矿中的可燃气体成分,为煤矿安全生产提供技术支持和预警。
5.生物医学研究:质谱图能够分析生物样品中的代谢产物、蛋白质、核酸等分子,为生物医学研究提供重要数据。
在一定的实验条件下,各种分子都有自己特征的裂解模式和途径,产生各具特征的离子峰,包括其分子离子峰、同位素离子峰及各种碎片离子峰。
根据这些峰的质量及强度信息,可以推断化合物的结构。
如果从单一的质谱信息还不足以确定化合物的结构或需进一步确证的话,可借助于其他的手段,如红外光谱法、核磁共振波谱法、紫外-可见吸收光谱法等。
质谱图的解释,一般要经历以下几个方面的步骤:⑴ 确定分子量;⑵ 确定分子式,除了上面阐述的用质谱法确定化合物分子式外,也常用元素分析法来确定。
分子式确定之后,就可以初步估计化合物的类型;⑶ 计算化合物的不饱和度(也叫不饱和单元)Ω(也有的用U表示):Ω=1+n4+式中n4、n3、n1分别表示化合物分子中四价、三价、一价元素的原子个数(通常n4为C原子的数目,n3为N原子的数目,n1为H和卤素原子的数目)计算出Ω值后,可以进一步判断化合物的类型Ω=0时为饱和(及无环)化合物Ω=1时为带有一个双键或一个饱和环的化合物Ω=2时为带有二个双键或一个三键或一个双键加一个环的化合物(其他以此类推)Ω=4时常是带有苯环的化合物或多个双键或三键。
⑷ 研究高质量端的分子离子峰及其与碎片离子峰的质量差值,推断其断裂方式及可能脱去的碎片自由基或中性分子,这些可以从前面的表8-2、表8-3查找参考。
在这里尤其要注意那些奇电子离子,这些离子一定符合“氮律”,因为它们的出现,如果不是分子离子峰,就意味着发生重排或消去反应,这对推断结构很有帮助。
⑸ 研究低质量端的碎片离子,寻找不同化合物断裂后生成的特征离子或特征系列,如饱和烃往往产生15+14n质量的系列峰;烷基苯往往产生91-13n质量的系列峰。
根据特征系列峰同样可以进一步判断化合物的类型。
⑹根据上述的解释,可以提出化合物的一些结构单元及可能的结合方式,再参考样品的来源、特征、某些物理化学性质,就可以提出一种或几种可能的结构式。
⑺验证:验证有几种方式——由以上解释所得到的可能结构,依照质谱的断裂规律及可能的断裂方式分解,得到可能产生的离子,并与质谱图中的离子峰相对应,考察是否相符合;——与其他的分析手段,如IR、NMR、UV-VIS等的分析数据进行比较、分析、印证;——寻找标准样品,在与待定样品的同样条件下绘制质谱图,进行比较;——查找标准质谱图、表进行比较,常用标准谱图有:①S.R. Heller,G.W.A.Milne EPA/NIH Mass spectral Data base, U.S.Government printing office,Washington,1978②Eight pe ak Index of Mass spectra,The mass spectrometry Data’centrey, The Royal of chemistry,1983③E.Stenhagen,S.Abrahamsson,F.W.McLafferey,Registy of Mass spectral Data,vol.1-4,John wiley,1974谱图解释例举:[例1]某化合物的化学式是C8H16O,其质谱数据如下表,试确定其结构式解:⑴ 不饱和度Ω=1+8+=1,即有一个双键(或一个饱和环);⑵ 不存在烯烃特有的41及41+14n系列峰(烯丙基的α断裂所得),因此双键可能为羰基所提供,而且没有29(HC O+)的醛特征峰,所以可能是一个酮;⑶ 根据碎片离子表,为43、57、71、85的系列是及离子,分别是C3H7+、CH3CO+,C4H9+、C2H5CO+,C5H11+、C3H7CO+及C6H13+、C4H9CO+离子;⑷ 化学式中N原子数为0(偶数),所以m/e为偶数者为奇电子离子,即86、58的离子一定是重排或消去反应所得,且消去反应不可能,所以是发生麦氏重排,羰基的γ位置上有H,而且有两处γ-H。
质谱解谱方法
质谱解谱方法是一种通过质谱仪对化合物进行定性和定量分析的方法。
以下是几种常用的质谱解谱方法:
1.谱图解析:通过对比标准质谱图和未知物的质谱图,对未知物进行初步的判断。
谱图解
析可以帮助确定分子量、分子式、官能团等。
2.高分辨质谱:利用高分辨质谱仪获得更高精度的质量分辨率,精确测定元素的同位素比
值,进而推测化合物的元素组成。
高分辨质谱还可以提供更丰富的结构信息,有助于推断化合物的可能结构。
3.质谱裂解规律:利用已知化合物的质谱裂解规律,对未知化合物进行裂解,通过对比裂
解后的碎片离子,确定未知化合物的结构。
4.质谱与色谱联用:将质谱仪与色谱仪联用,通过色谱仪对混合物进行分离,再利用质谱
仪对分离后的组分进行定性和定量分析。
质谱与色谱联用可以提高复杂混合物的分析效率。
5.数据库检索:将未知化合物的质谱数据与已知质谱数据库进行比对,通过匹配度最高的
已知化合物,推测未知化合物的结构。
数据库检索需要建立庞大的已知质谱数据库,并不断更新数据。
以上是几种常用的质谱解谱方法,可以根据具体情况选择合适的方法进行分析。
质谱解谱方法在药物研发、生物代谢、环境监测等领域应用广泛。
质谱介绍及质谱图的解析质谱用于定量分析,其选择性、精度和准确度较高。
化合物通过直接进样或利用气相色谱和液相色谱分离纯化后再导入质谱。
质谱定量分析用外标法或内标法,后者精度高于前者。
定量分析中的内标可选用类似结构物质或同位素物质。
前者成本低,但精度和准确度以使用同位素物质为高。
使用同位素物质为内标时,要求在进样、分离和离子化过程中不会丢失同位素物质。
在使用FAB质谱和LC/MS(热喷雾和电喷雾)进行定量分析时,一般都需要用稳定的同位素内标。
分析物和内标离子的相对丰度采用选择离子监测(只监测分析物和内标的特定离子)的方式测定。
选择离子监测相对全范围扫描而言,由于离子流积分时间长而增加了选择性和灵敏度。
利用分析物和内标的色谱峰面积或峰高比得出校正曲线,然后计算样品中分析物的色谱峰面积或它的量。
解析未知样的质谱图,大致按以下程序进行。
(一)解析分子离子区标出各峰的质荷比数,尤其注意高质荷比区的峰。
(1)(2)识别分子离子峰。
首先在高质荷比区假定分子离子峰,判断该假定分子离子峰与相邻碎片离子峰关系是否合理,然后判断其是否符合氮律。
若二者均相符,可认为是分子离子峰。
(3)分析同位素峰簇的相对强度比及峰与峰间的Dm值,判断化合物是否含有CI、Br、S、Si等元素及F、P、I等无同位素的元素。
(4)推导分子式,计算不饱和度。
由高分辨质谱仪测得的精确分子量或由同位素峰簇的相对强度计算分子式。
若二者均难以实现时,则由分子离子峰丢失的碎片及主要碎片离子推导,或与其它方法配合。
(5)由分子离子峰的相对强度了解分子结构的信息。
分子离子峰的相对强度由分子的结构所决定,结构稳定性大,相对强度就大。
对于分子量约200的化合物,若分子离子峰为基峰或强蜂,谱图中碎片离子较少、表明该化合物是高稳定性分子,可能为芳烃或稠环化合物。
例如:萘分子离子峰m/z 128为基峰,蒽醌分子离子峰m/z 208也是基峰。
分子离子峰弱或不出现,化合物可能为多支链烃类、醇类、酸类等。