生理学——骨骼肌的收缩功能
- 格式:ppt
- 大小:5.71 MB
- 文档页数:19
《生理学基础》教案
(3)肌丝滑行过程
结构基础:肌节(相邻Z线之间的肌原纤维.串联成肌原纤维)
滑行过程:
①口2+与肌钙蛋白结合后发生变构
②原肌球蛋白位移,暴露横桥作用点
③横桥与细肌丝肌动蛋白结合,活激ATP酶,分解ATP
④横桥获得能量拉动细肌丝向M线方向滑行,肌节缩短
3.骨骼肌收缩形式与影响因素
⑴肌细胞收缩形式
搴长收缩等张收缩
等长收缩:长度不变,张力增加的收缩形式
意义:发展肌张力,克服重力等外力
等张收缩:张力不变,长度缩短的收缩形式
意义:可使机体做功或运动
单收缩复合收缩
单收缩:刺激一次,完成一次收缩与舒张
不完全强直收缩:连续刺激的频率增加到新刺激都落在前一次收缩的舒张期,引起每次舒张均不完全的收缩形
式,仅见于实验中
完全强直收缩:连续刺激的频率增加到新刺激都叠加前一次收缩的舒张期,引起持续收缩而不舒张的收缩形
式,在体骨骼肌收缩均为此类型
⑵影响因素
前负荷:肌肉收缩前承受的负荷,可改变肌肉初长度,进而影响肌肉收缩力
后负荷:肌肉收缩开始后承受的负荷,改变肌肉收缩形式与收缩速度
肌肉收缩能力:肌肉的功能状态与内在特性,与前后负荷无关
(-)单项选择题
跟 1 .兴奋-收缩藕联中起关键作用的离子是( )。
A. K+
B.Na+
C. Ca2+
D. Cl-
E. Na+和Cl-
教学反思。
骨骼肌收缩舒张原理
骨骼肌的收缩和舒张是基于肌肉纤维内部的运动蛋白和神经信号的相互作用而发生的生理过程。
这个过程通常被称为肌肉收缩-舒张机制,其基本原理包括:
1.神经冲动传导:当大脑或脊髓产生神经冲动时,通过神经元传递到神经肌接头,释放乙酰胆碱等神经递质。
这些神经递质刺激肌肉纤维膜上的受体,引发动作电位的产生。
2.横纹肌纤维收缩:动作电位沿着肌肉纤维的膜表面传播,进入肌肉纤维的深处。
在肌肉纤维内部,动作电位激活钙离子的释放,使得肌肉细胞内的钙离子浓度升高。
3.肌钙蛋白复合物解离:在钙离子浓度升高的情况下,肌肉纤维中的肌钙蛋白复合物解离,使得肌动蛋白上的活性位点暴露出来。
4.肌肉收缩:肌动蛋白的活性位点暴露后,肌球蛋白头部的活化能与肌动蛋白结合,形成肌动蛋白-肌球蛋白复合物。
接着,肌动蛋白上的肌小球蛋白头部释放ADP和Pi,导致肌小球蛋白头部发生构象变化,从而产生力学工作,使肌肉纤维产生收缩。
5.肌肉舒张:当神经冲动停止时,肌肉纤维内的钙离子被肌钙蛋白复合物重新吸收,肌动蛋白的活性位点被覆盖,肌动蛋白-肌球蛋白复合物解离,肌肉纤维恢复至松弛状态,完成舒张过程。
总的来说,骨骼肌的收缩和舒张是通过神经冲动引发肌肉纤维内部的化学反应和蛋白质结构的变化而实现的。
这一过程是高度有序和协调的,以确保肌肉的正常运动和功能。
1 / 1。
骨骼肌单收缩和复合收缩--生理学实验骨骼肌纤维受运动神经纤维的控制,神经纤维受到刺激后,其兴奋延神经纤维以动作电位的形式传导到相应的肌纤维,触发肌纤维收缩。
若通过神经给予肌肉一次刺激,使肌肉产生一次收缩,称为单收缩。
如果肌肉受到连续的刺激,则其收缩可出现复合现象。
本实验用蟾蜍的坐骨神经-腓肠肌标本,使用机-电换能器,通过powerLab系统来获得肌肉的收缩曲线,分析单收缩和复合收缩产生的机制与特点。
实验动物:蟾蜍实验器材和药品:PowerLab8S主机,生物电放大器,铁架台,标本盒,任氏液。
蛙手术器械,实验步骤:1.标本制备:蟾蜍坐骨神经标本制备方法参见P18蟾蜍基本技术操作。
将标本浸在任氏液中约5分钟,待其兴奋性稳定后实验。
2.仪器装置及程序设置:⑴.连接仪器(图3-4)。
图3-4.骨骼肌单收缩和复合收缩的实验框图其中,S1和S2为刺激电极,与PowerLab的outputI相连。
⑵.参数设置:启动计算机,打开PowerLab主机电源,在桌面上单击Chart4forwindow图标,进入Chart应用程序窗口。
某选择采样速度为40K/,显示比例为500:1。
某在Channel1显示骨骼肌收缩曲线。
放大器参数设置参见P38放大器参数设置。
Range为200mV,LowPa为100Hz。
如果在BridgeAmplifier设置对话框左侧的信号显示窗口中看不到输入信号,可用鼠标左键单击右侧的zero按钮,系统自动调整输入信号的零位。
单击BridgeAmplifier设置对话框下方的unit按钮,进入UnitConverion(单位转换)对话框。
单位转换的方法参见P39信号幅度范围的设置和单位的转换。
某在Channel2显示刺激方波。
在刺激参数设置对话框下方的StimulatorMarker框中选取Channel2。
刺激设置方法参见P42刺激输出的设置。
设置完毕后,单击菜单栏的etup,选取StimulatorPanel(刺激面板),弹出StimulatorPanel,在实验中可以方便地由刺激面板来设置刺激频率、幅度和波宽等参数。
生理学——骨骼肌的收缩功能骨骼肌是人体内最常见的肌肉组织,也是最重要的肌肉组织之一、它不仅具有支撑和保护的功能,还能通过收缩产生力量并推动我们的骨骼运动。
骨骼肌的收缩是通过肌肉纤维的收缩来完成的,以下将详细介绍肌肉收缩的过程以及与之相关的生理学知识。
肌肉收缩的过程可以分为四个主要步骤:兴奋-收缩-释放-恢复。
首先,神经冲动通过神经末梢传递给肌肉纤维,这个传递的过程称为兴奋。
神经冲动到达肌肉纤维后,会引发细胞内的一系列电生理反应,最终导致细胞内的钙离子释放。
当钙离子释放到肌肉纤维的细胞质中时,它们会与肌球蛋白结合在一起,这个过程被称为肌球蛋白和钙离子的结合。
肌球蛋白位于肌肉纤维中,并由两个部分组成:肌球蛋白I和肌球蛋白T。
钙离子结合到肌球蛋白I 上,使其发生构象改变,从而将粘着蛋白暴露出来。
接下来的步骤是收缩,也就是肌肉纤维产生力量并缩短。
肌球蛋白的构象改变会引起肌球蛋白和肌动蛋白之间的相互作用。
肌动蛋白是另一种蛋白质,负责肌肉纤维的收缩。
当肌动蛋白和肌球蛋白相互作用时,肌动蛋白会拉动肌球蛋白,使肌肉纤维缩短。
这个过程不断地发生,直到肌肉纤维达到最大的收缩程度。
完成收缩后,肌肉纤维需要重新松弛。
这个过程被称为释放。
释放过程中,钙离子被重新吸收到肌肉纤维内的储钙体中。
这让肌球蛋白恢复到初始状态,使肌动蛋白和肌球蛋白之间的相互作用断开。
最后一个步骤是恢复,也就是肌肉纤维回到初始状态。
在恢复过程中,肌球蛋白和肌动蛋白之间的相互作用断开,肌动蛋白返回到肌球蛋白表面以等待下一次收缩。
肌肉纤维的收缩过程是一个高度协调的过程。
它是由神经系统通过神经冲动控制的,神经冲动通过神经末梢到达肌肉纤维后,会引发一系列电生理反应,最终导致肌肉纤维的收缩。
这种神经冲动的传递是由神经递质介导的,其中最重要的神经递质是乙酰胆碱。
乙酰胆碱通过神经递质的释放使得肌肉纤维收缩。
肌肉收缩的力量大小与肌肉纤维的数量和激活程度有关。
每个肌肉纤维都是由许多肌原纤维组成的,每个肌原纤维内有成千上万个肌纤维。
骨骼肌收缩与兴奋收缩原理
骨骼肌收缩是由于神经冲动引起的。
当神经冲动到达骨骼肌时,它会引发一系列事件,最终导致肌肉收缩。
这个过程可以分为四个阶段:兴奋、收缩、松弛和恢复。
在兴奋阶段,神经冲动在神经元间传递,并跨越神经肌结合部(称为神经肌突触)。
在神经肌突触的末梢,神经冲动释放了一种叫做乙酰胆碱的神经递质。
乙酰胆碱结合到肌肉细胞上的乙酰胆碱受体上,导致肌肉细胞内钙离子浓度增加。
在收缩阶段,钙离子结合到肌肉细胞内的肌钙蛋白上,刺激肌纤维内的肌头蛋白。
肌头蛋白与肌动蛋白相互作用,使肌动蛋白上的阻滞物移动,暴露出肌动蛋白上的结合位点。
这使肌头蛋白结合到肌动蛋白上,产生肌肉收缩。
在松弛阶段,神经冲动停止传递,乙酰胆碱被降解并清除。
肌肉细胞内的钙离子被转运回储存器中。
这使肌动蛋白上的阻滞物再次隐藏结合位点,肌头蛋白和肌动蛋白分离,肌肉松弛。
在恢复阶段,肌肉细胞重新储存钙离子,并准备好再次收缩一次。
总的来说,骨骼肌收缩是一个复杂的过程,包括神经冲动的传播、乙酰胆碱的释放、钙离子浓度的调节以及肌头蛋白和肌动蛋白之间的相互作用。
这个过程使得我们能够进行运动和产生力量。
骨骼肌的收缩形式及其生理学特点骨骼肌是人体中最常见的肌肉类型,也是最容易受到人们关注的一种肌肉。
它负责人体的运动功能,包括行走、跑步、举重等各种肌肉活动。
骨骼肌的收缩形式及其生理学特点主要包括等长收缩和等张收缩两种形式。
等长收缩是指骨骼肌在负荷下保持长度不变的收缩形式。
在等长收缩过程中,肌肉的张力增加,但长度保持不变。
这种收缩形式主要发生在肌肉对抗的情况下,例如举重过程中的肱二头肌和肱三头肌的对抗。
等长收缩的特点是收缩时肌肉产生的力量大,但速度较慢,耗能较多。
同时,等长收缩还可以控制肌肉的长度,使其能够保持适当的张力,以维持身体的姿势稳定。
等张收缩是指骨骼肌在负荷下发生长度缩短的收缩形式。
在等张收缩过程中,肌肉的长度缩短,但张力保持不变。
这种收缩形式主要发生在肌肉单独作用的情况下,例如屈膝肌在无重力负荷下的收缩。
等张收缩的特点是收缩时肌肉产生的力量较小,但速度较快,耗能相对较少。
同时,等张收缩还可以改变肌肉的长度,实现人体的各种动作,如走路、跑步等。
骨骼肌的生理学特点主要表现在以下几个方面:1. 可塑性:骨骼肌具有较高的可塑性,即能够通过训练和适应来改变自身的形态和功能。
长期的锻炼可以增加肌肉的力量和耐力,并促进肌肉的生长和发育。
2. 快速收缩与慢速收缩:骨骼肌可以通过调节肌纤维的类型来实现快速收缩和慢速收缩。
快速收缩的肌纤维主要富含易燃的肌纤维,能够迅速产生力量,适用于短时间、高强度的运动。
慢速收缩的肌纤维主要富含耐力型肌纤维,能够持续产生力量,适用于长时间、低强度的运动。
3. 肌肉纤维的分布:骨骼肌中的肌纤维分为红色肌纤维和白色肌纤维。
红色肌纤维富含线粒体和血管,能够进行氧化代谢,适用于长时间的耐力运动。
白色肌纤维缺乏线粒体和血管,主要进行无氧代谢,适用于短时间的高强度运动。
4. 肌肉疲劳:骨骼肌在长时间、高强度的运动后容易出现疲劳。
肌肉疲劳主要是由于肌纤维内乳酸积累、能量耗尽和神经传递障碍等因素导致的。
骨骼肌的收缩形式及其生理学特点骨骼肌是人体内最常见的肌肉类型,它们连接到骨骼上,通过收缩产生力量和运动。
骨骼肌的收缩形式分为等长收缩和等张收缩,每种收缩形式都具有其独特的生理学特点。
等长收缩是指骨骼肌在收缩时保持长度不变。
在等长收缩状态下,肌肉产生的力量可以克服外部阻力,但没有实际的运动。
这种收缩形式常见于保持姿势的肌肉,如站立时维持身体的平衡。
等长收缩时,肌肉中的肌纤维被激活,肌头和肌尾之间的距离缩短,但整体长度保持不变。
这种收缩形式可以保持肌肉的张力,使人体能够保持姿势和姿态。
等张收缩是指骨骼肌在收缩时缩短长度。
这种收缩形式常见于肌肉产生实际运动的情况下,如抬举重物或进行运动。
在等张收缩时,肌纤维中的肌头和肌尾之间的距离缩短,导致肌肉整体缩短。
这种收缩形式产生的力量可以推动骨骼和产生运动。
等张收缩是通过肌肉中的肌纤维收缩产生的,这些肌纤维由肌原纤维组成,每个肌原纤维又由肌原节构成。
当肌原节受到刺激时,肌原纤维收缩,导致肌纤维收缩,最终引起整个肌肉的收缩。
骨骼肌的收缩是由神经系统的控制和调节的。
当神经系统向肌肉发送信号时,神经末梢释放神经递质,刺激肌原节产生动作电位。
动作电位传播到肌原纤维上,触发肌原纤维中的肌球蛋白和肌凝蛋白之间的相互作用,导致肌纤维收缩。
这种神经-肌肉传递过程被称为神经肌肉连接。
骨骼肌的收缩具有一些重要的生理学特点。
首先,骨骼肌的收缩是快速的。
当神经系统向肌肉发送信号时,肌肉可以迅速响应并产生力量。
这使得骨骼肌非常适合进行迅速而精确的运动,如打击和奔跑。
其次,骨骼肌的收缩是有力的。
骨骼肌可以产生强大的力量,使人体能够进行各种日常活动和运动。
这种力量的产生是通过肌纤维中肌球蛋白和肌凝蛋白之间的相互作用来实现的。
最后,骨骼肌的收缩是疲劳的。
当骨骼肌长时间进行重复收缩时,肌肉会逐渐疲劳并失去力量。
这是因为肌纤维中的能量供应和废物清除速度无法满足高强度持续运动的需求。
总的来说,骨骼肌的收缩形式包括等长收缩和等张收缩,每种收缩形式都具有其独特的生理学特点。
文章标题:神经调控骨骼肌收缩力量的生理机制在生物学和生理学领域,神经调控骨骼肌收缩力量是一个备受关注的主题。
骨骼肌是人体最主要的肌肉组织,其收缩力量受神经系统的调控。
本文将深入探讨神经调控骨骼肌收缩力量的生理机制,并从简到繁地分析这一复杂的过程。
1. 骨骼肌的基本结构和功能骨骼肌是由肌纤维组成的肌肉组织,其主要功能是产生肌肉收缩力量。
肌纤维中含有肌动蛋白和肌原纤维,通过交替收缩和舒张来完成肌肉运动。
这一基本结构为神经系统调控肌肉活动提供了物理基础。
2. 神经系统对骨骼肌活动的调控神经系统通过神经元向骨骼肌传递电信号,从而控制肌肉收缩。
在肌肉收缩过程中,神经元释放神经递质,与肌细胞膜上的受体结合,引发肌肉细胞内钙离子的释放和运动蛋白活化,最终导致肌肉收缩力量的产生。
3. 神经调控骨骼肌收缩力量的生物化学机制神经调控骨骼肌收缩力量的生物化学机制涉及多种信号通路和分子调控。
在神经元与肌肉细胞之间的突触传递过程中,钙离子扮演着关键的角色。
神经元释放神经递质后,钙离子进入肌肉细胞,引发肌肉蛋白的构象变化,最终导致肌肉收缩力量的产生。
4. 神经调控骨骼肌收缩力量的生理学调节除了神经传导外,许多生理学因素也会对骨骼肌收缩力量进行调节。
运动频率、运动类型、营养状况、药物等都会影响神经调控骨骼肌收缩力量的生理过程。
这些调节机制丰富了我们对肌肉活动的理解,也为疾病诊断和治疗提供了新思路。
5. 对神经调控骨骼肌收缩力量的个人理解在我看来,神经调控骨骼肌收缩力量是一个极其精密和复杂的生理过程。
它不仅涉及骨骼肌和神经系统的协调配合,还涉及生物化学、生理学和其他多方面的知识。
深入理解这一生理机制,不仅可以帮助我们更好地锻炼身体,还可以为医学和运动科学的发展提供重要参考。
总结回顾神经调控骨骼肌收缩力量的生理机制是一个需要从多个角度全面理解的主题。
从肌肉基本结构到神经元的信号传导,再到生物化学调节和生理学调控,每一步都是我们认识这一复杂过程的重要组成部分。