离散数学 复习和例题讲解
- 格式:ppt
- 大小:699.00 KB
- 文档页数:9
【半群】G非空,·为G上的二元代数运算,满足结合律。
【群】(非空,封闭,结合律,单位元,逆元)恰有一个元素1适合1·a=a·1=a,恰有一个元素a-1适合a·a-1=a-1·a=1。
【Abel群/交换群】·适合交换律。
可能不只有两个元素适合x2=1【置换】n元置换的全体作成的集合Sn对置换的乘法作成n 次对称群。
【子群】按照G中的乘法运算·,子集H仍是一个群。
单位子群{1}和G称为平凡子群。
【循环群】G可以由它的某元素a生成,即G=(a)。
a所有幂的集合an,n=0,±1,±2,…做成G的一个子群,由a生成的子群。
若G的元数是一个质数,则G必是循环群。
n元循环群(a)中,元素ak是(a)的生成元的充要条件是(n,k)=1。
共有ϕ(n)个。
【三次对称群】{I(12)(13)(23)(123)(132)}【陪集】a,b∈G,若有h∈H,使得a =bh,则称a合同于b(右模H),a≡b(右mod H)。
H有限,则H的任意右陪集aH的元数皆等于H的元数。
任意两个右陪集aH和bH或者相等或者不相交。
求右陪集:H本身是一个;任取a∉H而求aH又得到一个;任取b∉H∪aH而求bH又一个。
G=H∪aH∪bH∪…【正规子群】G中任意g,gH=Hg。
(H=gHg-1对任意g∈G都成立)Lagrange定理G为有限群,则任意子群H的元数整除群G的元数。
1有限群G的元数除以H的元数所得的商,记为(G:H),叫做H在G中的指数,H的指数也就是H的右(左)陪集的个数。
2设G为有限群,元数为n,对任意a∈G,有an=1。
3若H在G中的指数是2,则H必然是G的正规子群。
证明:此时对H的左陪集aH,右陪集Ha,都是G中元去掉H的所余部分。
故Ha=aH。
4G的任意多个子群的交集是G的子群。
并且,G的任意多个正规子群的交集仍是G的正规子群。
5 H是G的子群。
离散数学应用题总结分类及经典例题一、命题逻辑1. 命题逻辑基本概念和运算规则- 命题、命题公式、真值表- 与、或、非、异或运算- 逻辑等价、逻辑蕴含、逻辑等值、逻辑与式、逻辑析式等概念2. 命题公式的简化和合取范式- 联结词的法则与性质- 逻辑表达式的简化- 布尔函数的合取范式3. 命题逻辑的演绎推理- 推理规则:假言推理、析取引入、逆否命题引入等- 短路原理和证明方法二、谓词逻辑1. 一阶逻辑的基本概念- 常量、变量、函数、谓词、连接词- 全称量词、存在量词- 函数与数学归纳法2. 谓词公式的形式化定义和语义解释- 语义解释和真值表- 等值逻辑、矢列逻辑3. 谓词逻辑的演绎推理和运算规则- 等效变换和替换规则- 归结演算和合一术- 基本规则和证明方法三、图论与树1. 图的基本概念和性质- 顶点、边、路径、圈- 连通图、欧拉图、哈密顿图- 对偶图、平面图、可平面图2. 图的数据结构和遍历算法- 图的表示方法与存储结构- 广度优先搜索、深度优先搜索- 最小生成树和最短路径算法3. 树的基本概念和性质- 根节点、叶节点、子树、森林- 二叉树、平衡二叉树、哈夫曼树- B树、B+树4. 树的应用- 排序算法:二叉排序树、AVL树、红黑树- 堆、优先队列四、组合数学1. 排列与组合的基本概念- 排列、组合、幂集、二项式系数- 齐次线性递推关系2. 容斥原理和抽屉原理- 容斥原理的应用- 抽屉原理的应用3. 连通图的计数- 生成函数的定义和使用- 应用实例分析五、图的着色与平面分区1. 图的着色问题- 四色定理和五色定理- 补图和可着色图- 哈密顿图和Hamilton回路2. 平面分区问题- 固定多边形的划分- 平面图的着色问题六、离散数学在计算机科学中的应用1. 逻辑电路设计- 逻辑门电路- 布尔代数和真值表2. 算法设计与分析- 递归算法、回溯算法、动态规划等- 时间复杂度和空间复杂度这份文档总结了离散数学的应用题,并对每个分类进行了简要介绍和例题演示。
1、求公式(p→q)→r对应的主析取范式和主合取范式。
解:1、真值表法:p q r p→q (p→q)→r 极小项:m1,m3,m4,m5,m70 0 0 1 0 极大项:M0,M2,M60 0 1 1 1 公式主析取范式为:0 1 0 1 0 (p∨q)→r⇔ m1∨m3∨m4∨m5∨m70 1 1 1 1 ⇔(⌝p∧⌝q∧r)∨(⌝p∧q∧r)∨( p∧⌝q∧⌝r)1 0 0 0 1 ∨(p∧⌝q∧r)∨(p∧q∧r)1 0 1 0 1 公式的主合取范式为:1 1 0 1 0 (p∨q)→r⇔ M0∧M2∧M61 1 1 1 1 ⇔(p∨q∨r)∧(p∨⌝q∨r)∧(⌝p∨⌝q∨r)(2、等值演算法也可,略)2、在自然推理系统P中构造下面推理的证明:(要求有符号化、前提、结论、推理及理由)如果乙不参加篮球赛,那么甲就不参加;如果乙参加篮球赛,那么甲和丙就参加。
因此,如果甲参加篮球赛,那么丙就参加。
解:设:p:乙队参加比赛;q:甲队参加比赛;r:丙队参加比赛。
前提:⌝p→⌝q, p→(q∧r),结论:q→r证明①q 附加前提引入②⌝p→⌝q 前提引入③p ①②拒取式规则④p→(q∧r) 前提引入⑤q∧r ③④假言推理⑥r化简推理成立。
3、自然推理系统F中,证明下面推理:(要求有符号化、前提、结论、推理及理由)所有的舞蹈者都很有风度;李霞是个学生并且是个舞蹈者。
因此,有些学生很有风度。
解:设F(x) :x是舞蹈者;G(x):x是学生;H(x):x很有风度;a:李霞。
前提:∀x(F(x)→H(x)), G(a)∧F(a)结论:∃x(G(x)∧H(x))证明:①G(a)∧F(a) 前提引入②G(a) ①化简③F(a) ①化简④∀x(F(x)→H(x)) 前提引入⑤F(a)→H(a) ④UI规则⑥H(a) ③⑤假言推理⑦G(a)∧H(a) ②⑥合取引入⑧∃x(G(x)∧H(x)) ⑦EG规则所以推理成立。
《离散数学》期末复习大纲(完整版)(含例题和考试说明)一、命题逻辑[复习知识点]1、命题与联结词(否定¬、析取∨、合取∧、蕴涵→、等价↔),复合命题2、命题公式与赋值(成真、成假),真值表,公式类型(重言、矛盾、可满足),公式的基本等值式3、范式:析取范式、合取范式,极大(小)项,主析取范式、主合取范式4、公式类型的判别方法(真值表法、等值演算法、主析取/合取范式法)5、命题逻辑的推理理论本章重点内容:命题与联结词、公式与解释、(主)析取范式与(主)合取范式、公式类型的判定、命题逻辑的推理[复习要求]1、理解命题的概念;了解命题联结词的概念;理解用联结词产生复合命题的方法。
2、理解公式与赋值的概念;掌握求给定公式真值表的方法,用基本等值式化简其它公式,公式在解释下的真值。
3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取)范式的概念;掌握用基本等值式或真值表将公式化为主析取(合取)范式的方法。
4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价方法。
5、掌握命题逻辑的推理理论。
[疑难解析]1、公式类型的判定判定公式的类型,包括判定公式是重言的、矛盾的或是可满足的。
具体方法有两种,一是真值表法,二是等值演算法。
2、范式求范式,包括求析取范式、合取范式、主析取范式和主合取范式。
关键有两点:一是准确理解掌握定义;另一是巧妙使用基本等值式中的分配律、同一律和互补律(排中律、矛盾律),结果的前一步适当使用幂等律,使相同的短语(或子句)只保留一个。
3、逻辑推理掌握逻辑推理时,要理解并掌握12个(除第10,11)推理规则和3种证明法(直接证明法、附加前提证明法和归谬法)。
例1.试求下列公式的主析取范式:(1)))()((P Q Q P P ⌝∨⌝⌝∧→→;(2))))((R Q Q P P →⌝∨→⌝∨())()(())()((:)1P Q Q P Q P P P Q Q P P ∧∧∨∧∧⌝∨⌝=∧∧∨⌝∨⌝=原式解 Q P P P Q P P Q P ∨⌝=∨⌝∧∨⌝=∧∨⌝=)()()())(())((Q P P Q Q P ∧∨⌝∨∨⌝∧⌝=)()()(Q P Q P Q P ∧∨∧⌝∨⌝∧⌝=)))((()))(((:)2R Q Q P P R Q Q P P ∨∨∨∨=→⌝∨→⌝∨解)()()()(R Q P R Q P R Q P R Q P R Q P ∧⌝∧∨∧∧⌝∨⌝∧∧⌝∨∧⌝∧⌝=∨∨=)()()(R Q P R Q P R Q P ∧∧∨⌝∧∧∨⌝∧⌝∧∨)2.用真值表判断下列公式是恒真?恒假?可满足?(1)(P ∧⌝P )↔Q(2)⌝(P →Q )∧Q(3)((P →Q )∧(Q →R ))→(P →R )解:(1) 真值表因此公式(1)为可满足。
离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。
在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。
2. 下列哪个命题是真命题?A. 所有偶数都是整数。
B. 所有整数都是偶数。
C. 所有整数都是奇数。
D. 所有奇数都是整数。
答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。
选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。
二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。
答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。
如果输入为真,则输出为假;如果输入为假,则输出为真。
2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。
答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。
三、简答题1. 解释什么是等价关系,并给出一个例子。
答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。
例如,考虑整数集合上的“同余”关系。
对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。
这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。
2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。
一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。
《离散数学》期末复习大纲(完整版)(含例题和考试说明)一、命题逻辑[复习知识点]1、命题与联结词(否定¬、析取∨、合取∧、蕴涵→、等价↔),复合命题2、命题公式与赋值(成真、成假),真值表,公式类型(重言、矛盾、可满足),公式的基本等值式3、范式:析取范式、合取范式,极大(小)项,主析取范式、主合取范式4、公式类型的判别方法(真值表法、等值演算法、主析取/合取范式法)5、命题逻辑的推理理论本章重点内容:命题与联结词、公式与解释、(主)析取范式与(主)合取范式、公式类型的判定、命题逻辑的推理[复习要求]1、理解命题的概念;了解命题联结词的概念;理解用联结词产生复合命题的方法.2、理解公式与赋值的概念;掌握求给定公式真值表的方法,用基本等值式化简其它公式,公式在解释下的真值。
3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取)范式的概念;掌握用基本等值式或真值表将公式化为主析取(合取)范式的方法.4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价方法。
5、掌握命题逻辑的推理理论。
[疑难解析]1、公式类型的判定判定公式的类型,包括判定公式是重言的、矛盾的或是可满足的。
具体方法有两种,一是真值表法,二是等值演算法。
2、范式求范式,包括求析取范式、合取范式、主析取范式和主合取范式。
关键有两点:一是准确理解掌握定义;另一是巧妙使用基本等值式中的分配律、同一律和互补律(排中律、矛盾律),结果的前一步适当使用幂等律,使相同的短语(或子句)只保留一个.3、逻辑推理掌握逻辑推理时,要理解并掌握12个(除第10,11)推理规则和3种证明法(直接证明法、附加前提证明法和归谬法). 例1.试求下列公式的主析取范式:(1)))()((P Q Q P P ⌝∨⌝⌝∧→→;(2))))((R Q Q P P →⌝∨→⌝∨())()(())()((:)1P Q Q P Q P P P Q Q P P ∧∧∨∧∧⌝∨⌝=∧∧∨⌝∨⌝=原式解Q P P P Q P P Q P ∨⌝=∨⌝∧∨⌝=∧∨⌝=)()()())(())((Q P P Q Q P ∧∨⌝∨∨⌝∧⌝=)()()(Q P Q P Q P ∧∨∧⌝∨⌝∧⌝=)))((()))(((:)2R Q Q P P R Q Q P P ∨∨∨∨=→⌝∨→⌝∨解)()()()(R Q P R Q P R Q P R Q P R Q P ∧⌝∧∨∧∧⌝∨⌝∧∧⌝∨∧⌝∧⌝=∨∨=)()()(R Q P R Q P R Q P ∧∧∨⌝∧∧∨⌝∧⌝∧∨)2.用真值表判断下列公式是恒真?恒假?可满足?(1)(PP )Q (2)(P Q)Q (3)((P Q)(Q R ))(P R) 解:(1) 真值表 P QP P P (P P)Q 0 01 0 1 0 11 0 0 1 00 0 1 1 1 0 0 0因此公式(1)为可满足.(2) 真值表P Q P Q (P Q) (P Q)Q0 0 1 0 00 1 1 0 01 00 1 01 1 1 0 0因此公式(2)为恒假。
离散数学初步例题和知识点总结离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、密码学等领域都有着广泛的应用。
下面我们通过一些例题来讲解离散数学中的部分重要知识点。
一、集合论集合是离散数学中的基本概念之一。
例 1:设集合 A ={1, 2, 3, 4},B ={3, 4, 5, 6},求 A ∪ B 和 A∩ B。
解:A ∪ B ={1, 2, 3, 4, 5, 6},A ∩ B ={3, 4}集合的运算包括并集、交集、差集等。
并集是将两个集合中的所有元素合并在一起,去掉重复的元素;交集是两个集合中共同拥有的元素组成的集合。
知识点:集合的基本运算规则1、交换律:A ∪ B = B ∪ A,A ∩ B =B ∩ A2、结合律:(A ∪ B) ∪ C = A ∪(B ∪ C),(A ∩ B) ∩ C = A ∩ (B ∩ C)3、分配律:A ∩ (B ∪ C) =(A ∩ B) ∪(A ∩ C),A ∪(B ∩C) =(A ∪ B) ∩ (A ∪ C)二、关系关系是集合元素之间的某种联系。
例 2:设集合 A ={1, 2, 3},R 是 A 上的关系,R ={(1, 1),(1, 2),(2, 2),(2, 3),(3, 3)},判断 R 是否具有自反性、对称性和传递性。
解:R 具有自反性,因为对于 A 中的每个元素 a,都有(a, a) ∈ R;R 不具有对称性,因为(1, 2) ∈ R 但(2, 1) ∉ R;R 具有传递性,因为(1, 2) ∈ R 且(2, 3) ∈ R ,同时(1, 3) ∈ R 。
知识点:1、自反关系:对于集合中的每个元素 a,都有(a, a) ∈ R 。
2、对称关系:若(a, b) ∈ R ,则(b, a) ∈ R 。
3、传递关系:若(a, b) ∈ R 且(b, c) ∈ R ,则(a, c) ∈ R 。
三、函数函数是一种特殊的关系。
例 3:设函数f: R → R ,f(x) = x^2 ,求 f(-2),f(0),f(3)。