等差数列
- 格式:doc
- 大小:92.50 KB
- 文档页数:4
数列专题(一)——等差数列1.等差数列定义:⇔∈=-+为常数d N n d a a n n ),(*1数列}{n a 为等差数列。
2.等差数列的通项公式1(1)n a a n d =+-; 3.等差数列的前n 项和:公式1:2)(1n n a a n S +=;公式2:1(1)2n n n S na d -=+; 4.等差数列的性质公式: (1)()n m a a n m d =+-;n ma a d n m-=-,如:855(85),(5)n a a d a a n d =+-=+-等;(2)若q p n m +=+,则q p n m a a a a +=+,如11038a a a a +=+; (3)若2m n p +=,则2m n p a a a +=,如11162a a a +=;(4)n S 为等差数列}{n a 的前n 项和,则数列,...,,232m m m m m S S S S S --也是等差数列. 基础题1.已知等差数列}{n a 的前n 项和为n S ,若12,261=-=S a ,则6a 的值为( ) A.4 B.5 C.6 D.82.(15年安徽文科)已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前 9项和等于 。
3.设等差数列}{n a 的前n 项和为n S ,若2,11952-=+-=a a a ,则当n S 取最小值时,n 等 于( ) A. 9 B. 8 C. 7 D. 64.(15年广东理科)在等差数列{}n a 中,若2576543=++++a a a a a ,则82a a +=5.(15年新课标2文科)设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .116.已知等差数列}{n a 中,其前n 项和为n S ,36,963==S S ,则._______987=++a a a 提高题1.(15年新课标2理科)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.2.已知等差数列}{n a 中,若,0,031110119<⋅<+a a a a 且数列}{n a 的前n 项和n S 有最大值,那么n S 取得最小正值时n 等于( ) A. 20 B. 17 C. 19 D. 213.已知等差数列}{n a 中,其前n 项和为n S ,且满足35124,2a a a a a n n n -=-=++,则7S =( ) A. 7 B. 12 C. 14 D. 214.在等差数列}{n a 中,前四项之和为20,最后四项之和为60,前n 项之和是100,则项数n 为( ) A. 9 B. 10 C. 11 D. 125.设n n T S ,分别是等差数列}{},{n n b a 的前n 项和,且5959=T S ,则35b a的值为_________.6.(15年福建文科)等差数列{}n a 中,24a =,4715a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.7.【2015高考山东,文19】已知数列{}n a 是首项为正数的等差数列,数列11n n a a +⎧⎫⎨⎬∙⎩⎭的前n 项和为21nn +. (I )求数列{}n a 的通项公式;(II )设()12n an n b a =+⋅,求数列{}n b 的前n 项和n T .一、等差数列3.等差数列的通项公式1(1)n a a n d =+-; 2.等差数列的前n 项和:公式1:2)(1n n a a n S +=;公式2:1(1)2n n n S na d -=+; 3.等差数列的性质公式: (1)()n m a a n m d =+-;n ma a d n m-=-,如:855(85),(5)n a a d a a n d =+-=+-等;(2)若q p n m +=+,则q p n m a a a a +=+,如11038a a a a +=+; (3)若2m n p +=,则2m n p a a a +=,如11162a a a +=. 基础题2.已知等差数列}{n a 的前n 项和为n S ,若12,261=-=S a ,则6a 的值为( ) A.4 B.5 C.6 D.8 答案:C5.(15年安徽文科)已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前 9项和等于 。
等差数列公式大全1、 a n =()1121)n n s s n s n -⎧-≥⎪⎨=⎪⎩( (注意:(1)此公式对于一切数列均成立(2)1--=n n n s s a 不是对一切正整数n 都成立,而是局限于n ≥2)2、 等差数列通项公式:n a =1a +(n-1)dn a =m a +(n-m)d ⇒ d=m n a a m n --(重要)3、若{n a }是等差数列,m+n=p+q ⇔m a +n a =p a +q a 4、若a,A,b 成等数列则2A=a+b (A 是a,b 的等差中项) 5、 {n a }是等差数列,若m 、n 、p 、q ∈N *且m ≠n,p ≠q,则m n a a m n --=q p a a q p --=d 6、 等差数列{n a }的前n 项和为n s ,则n s =()21na a n + (已知首项和尾项)=()211d n n na -+ (已知首项和公差)=n d a dn ⎪⎭⎫ ⎝⎛-+212112(二次函数可以求最值问题) 7、等差数列部分和性质:m m m m m s s s s s 232,,--…仍成等差数列。
8、 在等差数列中抽取新数列:一般地,对于公差为d 的等差数列{n a },若...,321k k k 成等差数列,那么,......,,,321kn k k k a a a a 仍成等差数列,而且公差为(12k k -)d 9、n s 的最值问题:若{n a }是等差数列,1a 为首项,d 为公差 ①首项1a >0,d <0,n 满足n a ≥0,1+n a <0时前n 项和n s 最大 ②首项1a <0,d >0,n 满足n a ≤0,1+n a >0时前n 项和n s 最小 10、 在等差数列{n a }中,奇s 与偶s 的关系:①当n 为奇数时,n s =21+n ,奇s -偶s =a 21+n ,偶奇s s =11-+n n ②当n 为奇数时,n s =n.2122++nn a a ,奇s -偶s =d n 2 偶奇s s =122+nna a 11、等差数列的判别方法:⑴定义法: 1+n a -n a =d (d 为常数) ⇔ {n a }是等差数 ⑵中项公式法: 21+n a =n a +a 2n + (n ∈N*)⇔ {n a }是等差数列 ⑶通项公式法: n a =pn+q (p,q 为常数) ⇔ {n a }是等差数列 ⑷前n项和公式法: n s =An 2+Bn (A,B 为常数) ⇔ {n a }是等差数列。
等差数列的计算方法
1、等差数列基本公式:末项=首项+(项数-1)*公差项数=(末项-首项)÷公差+1首项=末项-(项数-1)*公差和=(首项+末项)*项数÷2末项:最后一位数首项:第一位数项数:一共有几位数和:求一共数的总和。
2、Sn=na(n+1)/2n为奇数
sn=n/2(An/2+An/2+1)n为偶数
3、等差数列如果有奇数项,那么和就等于中间一项乘以项数,如果有偶数项,和就等于中间两项和乘以项数的一半,这就是中项求和。
4、公差为d的等差数列{an},当n为奇数是时,等差中项为一项,即等差中项等于首尾两项和的二分之一,也等于总和Sn除以项数n。
将求和公式代入即可。
当n为偶数时,等差中项为中间两项,这两项的和等于首尾两项和,也等于二倍的总和除以项数n。
等差数列定义
等差数列是一种常见的数列,其定义为:一个数列中,相邻两项之差都是固定值,这个固定值称为等差数列的公差,通常用字母 d 表示。
例如,数列 1,4,7,10,13,16 就是一个等差数列,其中,公差为 3。
等差数列的通项公式是:an = a1 + (n-1)d,其中 an 表示等差数列的第 n 项,a1 表示等差数列的第一项,n 表示数列中的项数,d 表示公差。
等差数列的性质有:
1. 公差相等性质:一个数列中,相邻两项之差都是固定值,这个固定值称为等差数列的公差,公差相等。
2. 首项性质:等差数列的第一项称为首项,通常用 a1 表示。
3. 末项性质:等差数列的最后一项称为末项,通常用 an 表示。
4. 项数性质:等差数列中项的数量称为项数,通常用 n 表示。
5. 总和性质:等差数列的前 n 项和称为总和,通常用 Sn 表示。
通过这些性质,可以求解等差数列的各种问题。
例如,可以根据已知的等差数列前几项和公差,求出数列的通项公式和第 n 项的值;也可以根据已知的等差数列前几项,求出数列的前 n 项和。
等差数列在数学中有广泛的应用,例如在科学和工程中,可以用等差数列描述时间、距离、速度等变化规律;在金融领域中,可以用等差数列描述资金的增长和降低等变化规律。
等差数列的概念等差数列是指数列中相邻两项之差恒定的数列。
在数学中,等差数列是一种重要的数列类型,具有广泛的应用。
它在数学、物理、经济等领域都有着重要的地位和作用。
一、等差数列的定义等差数列的定义比较简单,即数列中任意两项之差都相等。
数列的通项公式可以表示为:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
二、等差数列的性质1. 公差:等差数列中相邻两项之差称为公差,常用字母d表示。
公差可以是正数、负数或零,代表着数列中每一项之间的间隔。
2. 首项和末项:等差数列中的第一项为首项,常用字母a1表示;最后一项为末项,常用字母an表示。
3. 通项公式:等差数列的通项公式可以用来表示数列中任意一项的值。
根据公式an = a1 + (n-1)d,我们可以轻松地求得数列中任意一项的值。
4. 总和公式:等差数列的前n项和可以用总和公式来表示。
总和公式为Sn = (n/2)(a1 + an),其中Sn表示前n项和。
5. 递推关系:等差数列中的每一项都可以通过前一项加上公差得到。
这种递推关系使得我们可以通过已知条件计算出其他项的值。
三、等差数列的应用等差数列在数学上具有广泛的应用,它们可以通过表达式和性质来解决各种问题。
1. 数学应用:等差数列常常用来解决一次方程和一次不等式的问题。
通过等差数列的性质和公式,我们可以求解未知项的值,计算前n项和,判断数列的增减性等。
2. 物理应用:等差数列在物理学中也有重要的应用。
例如,物体匀速运动的位移、速度和加速度等可以通过等差数列来表示和计算。
3. 经济应用:等差数列在经济学中的应用也非常广泛。
例如,在贷款计算和投资分析中,我们常常需要利用等差数列的公式来计算每期的利息、本金和回报率等。
四、等差数列的例题分析为了更好地理解等差数列的概念和应用,我们来看几个例题。
例题1:已知等差数列的首项为2,公差为3,求该数列的前5项和。
解法:根据等差数列的总和公式Sn = (n/2)(a1 + an),代入已知条件,得到S5 = (5/2)(2 + 2 + 3×4) = 35。
等差数列的知识点总结一、概念等差数列是由一系列按照相同的公差递增或递减的数字所组成的数列。
如果一个数列 a1, a2, a3, ... , an 满足a2 - a1 = a3 - a2 = ... = an - a(n-1)那么这个数列就是等差数列,其中 a1 为首项,a2 - a1 为公差。
例如,3, 6, 9, 12, 15 就是一个等差数列,其中首项为3,公差为3。
二、性质1. 通项公式等差数列的第 n 项 a_n 可以用通项公式表示为a_n = a1 + (n-1)d其中 a1 为首项,d 为公差。
2. 数列求和等差数列的前 n 项和 Sn 可以用求和公式表示为Sn = n/2 * (a1 + an)或Sn = n/2 * (2a1 + (n-1)d)其中 a1 为首项,d 为公差,an 为第 n 项。
3. 任意三项对于等差数列中的任意三项 a_i, a_j, a_k(i < j < k),有2a_j = a_i + a_k这个性质可以用来解决很多等差数列的问题。
4. 求和公式的推导为了理解等差数列求和公式的推导,我们来考虑一个等差数列的和 S_n = a_1 + a_2 + ... + a_n。
如果我们将这个数列反向写,即 S_n = a_n + a_(n-1) + ... + a_1,那么两个数列相加得到的和是2S_n = (a_1 + a_n) + (a_2 + a_(n-1)) + ... + (a_n + a_1)由于等差数列中任意三项的性质,我们知道其中每一对括号内的和都是相等的,所以有2S_n = (a_1 + a_n) + (a_1 + a_n) + ... + (a_1 + a_n) = n * (a_1 + a_n)从而得到了等差数列求和公式。
三、应用等差数列在数学和实际生活中都有着广泛的应用。
在数学中,等差数列的求和公式可以用来解决许多数学问题,比如计算前 n 项的和。
等差数列的概念、性质及其应用等差数列是数学中的一种常见数列形式,也是初等数学中较为基础的概念之一。
它在数学、物理等领域中都有广泛的应用。
本文将围绕等差数列展开,介绍等差数列的概念、性质及其应用。
一、等差数列的概念等差数列是指数列中的任意两个相邻项之间的差恒定的数列。
设数列的首项为a1,公差为d,则数列中的任意一项可以表示为an=a1+(n-1)d。
其中,a1为首项,d为公差,n为项数。
二、等差数列的性质1. 通项公式:等差数列的通项公式为an=a1+(n-1)d,通过这个公式可以计算出等差数列中任意一项的值。
2. 首项和末项:等差数列的首项为a1,末项为an,根据通项公式可得an=a1+(n-1)d。
3. 公差:等差数列中任意两个相邻项之间的差称为公差,常用字母d表示。
4. 项数:等差数列中项的个数称为项数,常用字母n表示。
5. 求和公式:等差数列的前n项和可以通过求和公式Sn=n/2*(a1+an)来计算。
三、等差数列的应用等差数列在实际应用中有着广泛的应用,以下列举几个常见的应用场景:1. 金融领域:等差数列常用于计算利息、贷款等金融问题中。
例如,某人每月存款1000元,存款期限为10个月,假设存款的年利率为5%,那么可以通过等差数列的求和公式计算出存款的总金额。
2. 物理学:等差数列可以用来描述物体在匀速运动中的位移变化。
例如,某物体以每秒10米的速度匀速向前运动,可以通过等差数列的通项公式计算出物体在任意时间点的位置。
3. 数学研究:等差数列是数学中的一个重要概念,研究等差数列的性质有助于深入理解数列的规律和数学推理的方法。
等差数列是数学中的一个重要概念,它在数学、物理、金融等领域中都有广泛的应用。
通过等差数列的概念、性质及其应用的介绍,我们可以更好地理解等差数列的本质和作用,进一步拓展数学思维,并将其运用到实际问题中。
希望本文能对读者对等差数列有更深入的了解和应用提供帮助。
【专题精华】
【教材深化】
题1 一只小鸡在田里捡稻谷吃,第一天捡了1粒,第二天捡了2粒,第三天捡了3粒……,如此下去,到第100天,这只小鸡总共捡了多少粒稻谷?
敏捷思维通过分析我们发现:这只小鸡从第二天开始捡的稻谷个数起,每一天都比前一天多1,一直排列下去,就成了一个1,2,3……100的数列。
也就是说,这个数列的首项是1,末项是100,从1到100刚好是100个数,所以项数是100.
全解依照等差数列求和公式可知:
1+2+3+4+…+99+100
=(100+1)×100÷2
=5050(粒)
答:到第100天,这只小鸡总共捡了5050粒稻谷。
拓展探究从上题可以看出,等差数列求和需要知道几个条件:首项、末项、项数。
这些条件有时并不能直接知道,需要动脑筋去找找、算算。
1.计算下面等差数列的和:
1+3+5+…+97+99
2、计算下面等差数列的和:
2+5+8+…+98+101
3.(2007·第五届小学“希望杯”全国数学邀请赛)计算1+2+…+8+9+10+9++8+…+2+1的和。
题2 求100以内所有能被2整除的数的和。
敏捷思维我们把100以内所有能被2整除的数用数列的形式写出来:2、4、6、8、 (98)
100,这是一个等差数列。
它的首项是2、末项是100,公差是2,项数为(100-2)÷2+1=50。
全解 2+4+6+8+…+98+100
第8讲等差数列
把若干个数依次排成一列称为数列。
如果一个数列从第二个数开始,每相邻的两个数之间的差相等,这种数列称之为等差数列,如1、2、3、4、5、…999、1000,或2、5、8…98、101等等。
在等差数列中,数列的第一个数叫“首项”,数列的最后一个数叫“末项”,整个数列总共有几个数叫“项数”,相邻数的差叫“公差”。
如上面第一个数列中,首项是1,末项是1000,项数是1000,公差是2-1=1。
本节我们学习等差数列求和的有关知识。
在学习过程中我们要学习和掌握使用几个有关的公式:
1、等差数列的和=(首项+末项)×项数÷2
2、项数=(末项-首项)÷公差+1
3、第N项的数=首项+(项数-1)×公差
4、首项=末项-(项数-1)×公差
=(100+2)×50÷2 =2550 答:100以内所有能被2整除的数的和是2550。
拓展探究 通过分析条件,我们首先把文字题
再根据相关的知识来解决。
1.求自然数中所有两位数的和。
2.求100以内所有能被5整除的数的和。
3.求100
以内所有个位是2的数的和。
【生活数学】 题3 猪八戒把一个大西瓜分成了许多小块,第一次吃了1小块,发现很好吃,以后每次以前一次多吃3块,到了第8次,他一口气吃了22块,正好把整个整个西瓜吃完,那么原来这个西瓜被分成了多少块? 敏捷思维 通过分析,用把文字简化成数字的方法,把猪八戒每次吃的西瓜数一一排列出来:1、4、7、10、13、16、19、
22这是一个等差数列。
它的首项是1,末项是22,公差是3,项数是8. 全解 1+4+…+22 =(1+22)×8÷2 =92(块) 答:原来这个西瓜被分成了92块。
拓展探究 应用上面的分析方法,比较每次的变化量都一样时,符合等差数列的特征,可以1.李师傅做一批零件,第一天做了20个,以后每天比前一天多做2个。
第15天做了48个,正好做完,这批零件共有多少个?
【感受奥赛】 题4 (2005·小学数学奥林匹克预赛B 卷) 2005+2004-2003-2002+2001+2000-1999-1998+1997+1996-…-7-6+5+4-2005开始,都是先两个数相加,再连续减去两个数,因此,我们可以运用速算的方法,把每四个连续的数分为一组,每组运算的结果都是4,共可以分成2005÷4=501(组)……1(个) 全解 原式=4×501+1=2005 拓展探究 我们要注意新旧知识的联系和区别,采用合适的方法来解决相应的题目。
1.(第四届小学“希望杯”全国数学邀请赛)
计算:100-99+98-97+…+4-3+2-1
2.(第四届小学“希望杯”全国数学邀请赛)
(2+4+6+…+2006)-(1+3+5+…+2005)= 。
3.(2005·浙江省数学活动课夏令营)
2005+2004+2003-2002-2001-2000+…+7+6+5-4-3-2+1= 。
题5 在1949,1950,1951,…,1997,1998这五十个自然数中,所有偶数之和比所有奇数之和多多少?
敏捷思维 根据题意,先找到偶数有1950,1952,1954,…,1998。
然后求出它们的和;再找到奇数有1949,1951,1953,…,1997。
然后求出它们的和;最后再用它们的和相减。
全解 (1950+1952+…+1998)-(1949+1951+…+1997)×25÷2
=(1950+1998)×25÷2-(1949+1997)×25÷2
=(1950+1998-1949-1997)×25÷2 =2×25÷2
=25
拓展探究通过分析条件,找到解决问题的方法,然后根据等差数列的公式进行计算。
1.1995+1994+1993-1992-1991-1990+1989+1988+1987-1986-1985-1984+…+9+8+7-6-5-4+3+2+1 2.有一列数:1,1993,1992,1,1991,1990,1,…,从第三个数起,每一个数都是它前面两个数中大数减小数的差,求从第一个起到第1993个数这1993个数之和。
3.九个连续偶数的和比期中最小的数多232,这九个数中最大的数是多少?
1.计算:11+14+17+…+101
2.计算:(2009+2007+…+3+1)-(2008+2006+2004+…+4+2)
3.(2006·广东省育苗杯数学竞赛)
一个希望小学收到外地捐书800本,计划把
书分给二年级到六年级,每高一年级就多分
10本,按这个计划,分给五年级的图书有
本。
4.(第三届《小学生数学报》优秀小读者评选活动)
1+2-3-4+5+6-7-8+ (2001)
2002-2003-2004+2005= 。
5.把一堆苹果分给8个朋友,要使每个人都能拿到苹果,而且每个人拿到苹果个数都不同
的话,这堆苹果至少应该有几个?
6.将自然数排列如下图,第10行第一个是几?
第10行所有数的总和是多少?
1
2 3 4
5 6 7 8 9
10 11 12 13 14 15 16
……
7.2009+2008-2007-2006+2005+2004-2003-2002+…-7-6+5+4-3-2+1=。
8.若干人围成8圈,一圈套一圈,从外向内各圈人数依次少4人.如果最内圈有32人,共有多少?
9.(第四届小学“希望杯”全国数学邀请赛)
1+2+3+…+2006被7除,余数是。
10.图中是一个堆放铅笔的V形架,如果最上面一层放60支铅笔.问一共有多少支铅笔?
11.小刚练习口算,他按照自然数排列的顺序从1开始一直往后加,当加到某数时,和是1300,在验算时发现计算时少加了一个数,少加的是哪个数?
12.(2006·“我爱数学杯”数学竞赛初赛)
1+2+3+…+999+1000+1002+1004+……+2004+2006= 。
13.(2006·“我爱数学杯”数学竞赛初赛)
1+2+3+…+2010+30+60+90+…+
2010×= 。
14.(2006·浙江省数学活动课夏令营)
有一个由17个自然数组成的等差数列,和是2006。
最大一项是。
第8讲等差数列提高卷60分钟·夯基础,求提高,成为奥数明星!。