第二章 - 5_IGBT(电力电子技术)
- 格式:pptx
- 大小:2.22 MB
- 文档页数:8
任务5IGBT原理与应用IGBT(Insulated Gate Bipolar Transistor)是一种功率半导体器件,结合了MOSFET和BJT的特点,是现代电力电子领域的重要设备之一、本文将介绍IGBT的原理以及应用。
一、IGBT原理IGBT的结构由N区、P区和N+区组成,其中N区和P区形成了PN结。
在PN结上覆盖有一个绝缘层以及一个控制栅极。
IGBT的工作原理如下:1.导通状态:当控制栅极施加正向电压时,栅极与发射极之间形成导通通道,从而形成一个低电阻通路,使电流通过。
这个过程类似于MOSFET的导通状态。
2.关断状态:当控制栅极施加零电压或负电压时,导通通道被切断,电阻变得非常大,电流无法通过。
这个过程类似于MOSFET的关断状态。
3. 关断恢复状态:在控制栅极施加正向电压之前,需要通过引入一个一个“确保关断恢复”(“turn-off recovery”)过程,以消除在导通状态下形成的电荷。
在这个过程中,IGBT的发射区域较小的PN结正向偏置。
由于IGBT在封装设计上能够扩展应用于高电流和高电压环境中,因此在许多领域得到了广泛应用。
二、IGBT应用1.变频调速应用:IGBT在变频调速系统中,可以实现电机的高效率控制。
IGBT的快速开关速度和低开关损耗使其适用于频繁开关的应用环境,如电梯、电动车、空调等。
2.电力传输和配送应用:IGBT能够承受高电压和大电流,因此用于电力传输和配送系统中的开关和控制装置。
例如,IGBT在直流输电系统中,用于实现高效率的功率转换和电力控制。
3.汽车应用:IGBT被广泛应用于汽车电子系统中,如电动车辆的电控系统、混合动力汽车的发动机控制系统和辅助电力转换系统。
IGBT的高可靠性和高温性能使其适合在汽车环境中使用。
4.可逆变频电源应用:IGBT在可逆变频电源中的使用非常广泛,用于实现AC-DC、DC-AC和AC-AC的高效能量转换。
可逆变频电源广泛应用于工业自动化、风力发电、太阳能发电等领域。
智慧树知到《电力电子技术》章节测试答案第一章单元测试1、电力电子技术中,电力变换电路包含()变换。
A:AC/DCB:DC/DCC:DC/ACD:AC/AC正确答案:AC/DC,DC/DC,DC/AC,AC/AC2、()年,电子管出现,从而开创了电子技术之先河。
A:1904B:1914C:1905D:1915正确答案:19043、1957年,美国通用电气公司研制出第一个( ),因电气性能和控制性能优越,其应用范围迅速扩大。
A:晶闸管B:GTOC:GTRD:IGBT正确答案:晶闸管4、一般认为,电力电子学的诞生是以( )的发明为标志。
A:IGBTB:晶闸管C:GTRD:GTO正确答案:晶闸管5、电力电子技术的发展趋势( )A:向容量更大和更小的两个方向发展B:向集成化方向发展C:向智能化方向发展正确答案:向容量更大和更小的两个方向发展,向集成化方向发展,向智能化方向发展6、电力电子器件按照驱动信号分类,可分为()A:电流驱动型B:电压驱动型C:混合型正确答案:电流驱动型,电压驱动型7、电力电子器件按照器件内部电子和空穴两种载流子参与导电的情况分为( )。
A:单极型器件B:双极型器件C:复合型器件正确答案:单极型器件,双极型器件,复合型器件8、电力电子器件按照其控制器通断的能力分为()器件。
A:半控型B:全控型C:不控型正确答案:半控型,全控型,不控型9、电力电子器件组成的系统,一般由()组成。
A:控制电路B:驱动电路C:电力电子器件D:保护电路正确答案:控制电路,驱动电路,电力电子器件,保护电路第二章单元测试1、晶闸管稳定导通的条件()A:晶闸管阳极电流大于晶闸管的擎住电流B:晶闸管阳极电流小于晶闸管的擎住电流C:晶闸管阳极电流大于晶闸管的维持电流D:晶闸管阳极电流小于晶闸管的维持电流正确答案:晶闸管阳极电流大于晶闸管的擎住电流2、已经导通的晶闸管的可被关断的条件是流过晶闸管的电流()A:减小至维持电流以下B:减小至擎住电流以下C:减小至门极触发电流以下D:减小至5A以下正确答案:减小至维持电流以下3、为限制功率晶体管的饱和深度,减少存储时间,桓流驱动电路经常采用()A:du/dt抑制电路B:抗饱和电路C:di/dt抑制电路D:吸收电路正确答案:抗饱和电路4、IGBT是一个复合型的器件,它是()A:GTR驱动的MOSFETB:MOSFET驱动的GTRC:MOSFET驱动的晶闸管D:MOSFET驱动的GTO正确答案:MOSFET驱动的GTR5、晶闸管触发电路中,若改变()的大小,则输出脉冲产生相位移动,达到移相控制的目的。
电力电子技术课件一、引言电力电子技术是指利用电子器件和电力电子器件来进行电能的变换、控制和调节的技术领域。
随着现代电力系统的发展和电能质量的要求不断提高,电力电子技术在电力系统中的应用越来越广泛。
本课件将介绍电力电子技术的基本原理、常见的电力电子器件以及其在电力系统中的应用。
二、电力电子技术的基本原理1. 电力电子器件的工作原理1.1 二极管的工作原理1.2 可控硅的工作原理1.3 晶闸管的工作原理1.4 MOSFET的工作原理1.5 IGBT的工作原理2. 电力电子器件的特性参数2.1 二极管的特性参数2.2 可控硅的特性参数2.3 晶闸管的特性参数2.4 MOSFET的特性参数2.5 IGBT的特性参数三、常见的电力电子器件1. 二极管1.1 整流二极管1.2 快恢复二极管1.3 肖特基二极管2. 可控硅2.1 半控型可控硅2.2 全控型可控硅2.3 可关断可控硅3. 晶闸管3.1 双向晶闸管3.2 单向晶闸管3.3 门极可关断晶闸管4. MOSFET4.1 N沟道MOSFET4.2 P沟道MOSFET5. IGBT5.1 IGBT的结构与工作原理5.2 IGBT的优点与应用四、电力电子技术在电力系统中的应用1. 交流电压控制1.1 交流电压调制技术1.2 交流电压控制器的设计与实现2. 直流电压控制2.1 直流电压调制技术2.2 直流电压控制器的设计与实现3. 电力变换与调节3.1 交流-直流变换技术3.2 直流-交流变换技术3.3 直流-直流变换技术4. 电力电子器件的保护与故障诊断4.1 电力电子器件的热保护4.2 电力电子器件的过流保护4.3 电力电子器件的过压保护4.4 电力电子器件的故障诊断与维修五、总结电力电子技术是现代电力系统中不可或缺的重要技术,通过本课件的学习,我们了解了电力电子技术的基本原理、常见的电力电子器件以及其在电力系统中的应用。
希望本课件能够帮助大家更好地理解和应用电力电子技术,提高电力系统的可靠性和效率。
IGBT工作原理概述:IGBT(Insulated Gate Bipolar Transistor)是一种高压、高电流功率开关器件,广泛应用于电力电子领域。
本文将详细介绍IGBT的工作原理,包括结构、工作模式和特性分析。
一、结构:IGBT由PNP型晶体管和NPN型晶体管组成,两个晶体管共享一个N型区域,中间被一个绝缘层隔开。
晶体管的结构使得IGBT既具有MOSFET的高输入电阻特性,又具有Bipolar Transistor的高电流承载能力。
二、工作模式:1. 关断状态:IGBT的控制极(Gate)施加负电压,使得P型区域与N型区域之间形成反向偏置,导致晶体管的PN结截断,IGBT处于关断状态。
2. 开通状态:IGBT的控制极施加正电压,形成正向偏置,使得P型区域与N型区域之间形成导通通道。
此时,通过控制极的电流可以控制IGBT的导通和截断。
三、工作原理:1. 开通过程:当控制极施加正电压时,形成正向偏置,P型区域的空穴和N型区域的电子会相互扩散并重新组合,形成导通通道。
同时,由于控制极的电流非常小,所以可以忽略控制极的电流对导通过程的影响。
因此,IGBT的导通主要由两个PN结之间的电压来决定。
2. 关断过程:当控制极施加负电压时,形成反向偏置,导致PN结截断。
此时,由于控制极的电流非常小,所以可以忽略控制极的电流对截断过程的影响。
因此,IGBT的截断主要由两个PN结之间的电压来决定。
四、特性分析:1. 低开通电压降:IGBT的开通电压降(VCEsat)非常低,通常在1-2V之间。
这意味着在导通状态下,IGBT可以承受较低的功耗。
2. 高电流承载能力:由于IGBT具有双极型晶体管的结构,因此具有较高的电流承载能力。
普通来说,IGBT的电流承载能力可达几百安培至几千安培。
3. 快速开关速度:IGBT的开关速度较快,通常在数十纳秒至几微秒之间。
这使得IGBT在高频率应用中具有优势。
4. 温度敏感性:IGBT的导通电压降和截断电压升会随着温度的变化而变化。
第2章习题(2)第1部分:填空题1. GTO的多元结构是为了便于实现门极控制关断而设计的。
2. GTO的开通控制方式与晶闸管相似,但是可以通过在门极施加负的脉冲电流使其关断。
3. GTO导通过程与普通晶闸管一样,只是导通时饱和程度较浅,导通时管压降增大。
4. GTO最大可关断阳极电流与门极负脉冲电流最大值I GM之比称为电流关断增益, 该值一般很小,只有5 左右,这是GTO的一个主要缺点。
5. GTR导通的条件是:集电极承受正电压(NPN型)且基极施加驱动电流。
6. 在电力电子电路中GTR工作在开关状态, 在开关过程中,在截止区和饱和区之间过渡时,要经过放大区。
7. 电力MOSFET导通的条件是:漏源极间加正电源且在栅源极间加正电压U GS,且大于开启电压。
8. 电力MOSFET的漏极伏安特性中的三个区域与GTR共发射极接法时的输出特性中的三个区域有对应关系,其中前者的截止区对应后者的截止区、前者的饱和区对应后者的放大区、前者的非饱和区对应后者的放大区。
9.电力MOSFET的通态电阻具有正温度系数。
10.IGBT是由MOSFET 和GTR 两类器件取长补短结合而成的复合器件。
11.IGBT导通的条件是:集射极间加正电源且u GE大于开启电压U GE(th)。
12. IGBT的输出特性分为三个区域,分别是:阻断区、有源区和饱和区。
IGBT的开关过程,是在阻断区和饱和区之间切换。
13.IGCT由IGBT 和GTO 两类器件结合而成的复合器件,目前正在与IGBT等新型器件激烈竞争,试图最终取代GTO 在大功率场合的位置。
14.将多个电力电子器件封装在一个模块中,称为功率模块。
15.与单管器件相比,功率模块的优点是:可缩小装置体积、减小线路电感。
16.功率集成电路将功率器件与逻辑、控制、保护、传感、检测、自诊断等信息电子电路制作在同一芯片上。
17.功率集成电路实现了电能和信息的集成,成为机电一体化的理想接口。
igbt课件IGBT课件IGBT(Insulated Gate Bipolar Transistor)是一种集大功率MOSFET和双极型晶体管优点于一身的功率半导体器件。
它在现代电力电子设备中得到广泛应用,如变频器、电动车控制器、电力传输系统等。
IGBT课件是一种教学资料,用于介绍和讲解IGBT的原理、结构、特性以及应用等方面的知识。
本文将从多个角度对IGBT课件进行探讨,帮助读者更好地了解和应用这一重要的电子器件。
一、IGBT的原理和结构IGBT是一种三端器件,由NPN型双极型晶体管和P型MOSFET组成。
它的工作原理是通过控制栅极电压来控制电流的导通和截止。
在导通状态下,IGBT具有低电压降和高电流承载能力;在截止状态下,它具有高电压隔离能力。
IGBT的结构复杂,包括N型衬底、P型基区、N型漏极、P型栅极等部分。
通过精心设计和优化这些结构,可以实现IGBT的高效率和可靠性。
二、IGBT的特性和优势IGBT具有许多独特的特性和优势,使其成为现代功率电子领域中的主要选择。
首先,IGBT具有高开关速度和低开关损耗,可以实现高频率的开关操作。
其次,IGBT的导通压降较低,可以减少能量损耗和发热。
此外,IGBT还具有较高的电流承载能力和较高的工作温度范围,适用于各种恶劣环境条件下的工作。
这些特性和优势使得IGBT在电力电子应用中得到广泛应用。
三、IGBT的应用领域IGBT在各个领域中都有广泛的应用。
在工业领域,IGBT被用于变频器、电机驱动器、电力传输系统等设备中,用于实现电能的高效转换和控制。
在交通领域,IGBT被应用于电动车控制器、高速列车牵引系统等,提高了交通工具的能效和可靠性。
此外,IGBT还被用于太阳能和风能发电系统中,实现可再生能源的高效利用。
IGBT的应用领域还在不断拓展,为各个行业带来了巨大的发展潜力。
四、IGBT课件的教学意义IGBT课件是一种教学资料,用于向学生介绍和讲解IGBT的相关知识。
《电气工程概论》第二章电力电子技术(第1节)课堂笔记及练习题主题:第二章电力电子技术(第1节)学习时间: 2015年11月23日--11月29日内容:我们这周主要学习电力电子技术第1节中的晶闸管的驱动、功率场效应管、绝缘栅型双极性晶体管、功率半导体器件的保护,通过学习我们要了解掌握晶闸管的驱动,掌握功率场效应管的结构、工作原理、特性、主要参数、安全工作区,掌握绝缘栅型双极性晶体管的结构、工作原理、特性、擎住效应和安全工作区,掌握功率半导体器件的过压、过流保护。
第一节功率半导体器件2.1.6 晶闸管的驱动1.晶闸管触发电路的基本要求:1)触发脉冲信号应有一定的功率和宽度。
2)为使并联晶闸管元件能同时导通,触发电路应能产生强触发脉冲。
3)触发脉冲的同步及移相范围。
4)隔离输出方式及抗干扰能力。
2.常见的触发电路图3-12为常见的触发电路。
它由2个晶体管构成放大环节、脉冲变压器以及附属电路构成脉冲输出环节组成。
当2个晶体管导通时,脉冲变压器副边向晶闸管的门极和阴极之间输出脉冲。
脉冲变压器实现了触发电路和主电路之间的电气隔离。
脉冲变压器原边并接的电阻和二极管是为了脉冲变压器释放能量而设的。
2.1.7 功率场效应晶体管功率场效应晶体管是一种单极型电压控制半导体元件,其特点是控制极静态内阻极高、驱动功率小、开关速度快、无二次击穿、安全工作区宽,开关频率可高达500kHZ,特别适合高频化的电力电子装置。
但由于电流容量小、耐压低,一般只适用小功率的电力电子装置。
1.结构与工作原理(1)结构功率场效应晶体管按导电沟道可分为P沟道和N沟道;根据栅源极电压与导电沟道出现的关系可分为耗尽型和增强型。
功率场效应晶体管一般为N沟道增强型。
从结构上看,功率场效应晶体管与小功率的MOS管有比较大的差别。
图3-13给出了具有垂直导电双扩散MOS结构的VD-MOSFET单元的结构图及电路符号。
(2)工作原理如图3-13 所示,功率场效应晶体管的三个极分别为栅极G、漏极D和源极S。