第三章 秩亏网平差(研究生)
- 格式:ppt
- 大小:536.00 KB
- 文档页数:7
第32卷第2期2010年6月地球科学与环境学报Journal of Earth Sciences and EnvironmentVol.32No.2Jun.2010收稿日期:2009 07 15基金项目:国家自然科学基金项目(40672173;40802075) 作者简介:赵超英(1976 ),男,山西平遥人,副教授,工学博士,从事InSAR 理论与数据处理的教学与研究。
E mai l:zhaochaoying@秩亏自由网平差及其通解赵超英,黄观文(长安大学地质工程与测绘学院,陕西西安710054)摘要:通过坐标转换将初始坐标系下的特解转换得到任意坐标系下的通解,研究了秩亏自由网基准转换的实质。
结果表明,秩亏自由网平差最优解实质是基于近似值所确定的基准下的最优解,在实际应用中确定合适的基准是关键。
以西安地区GP S 沉降监测网为例,不同基准下秩亏解均为该基准下最优解,但只有顾及板块运动的基准才具有物理意义。
关键词:秩亏;自由网平差;基准条件;坐标系;通解中图分类号:P228.4 文献标志码:A 文章编号:1672 6561(2010)02 0215 03Rank Defect Free Net Adjustment andIts General SolutionZH AO Chao ying ,H UANG Guan w en(S chool of Ge olog ical E ngineer ing an d Su rv ey ing ,Chang an Unive rsity ,X i an 710054,S haanxi,China)Abstract:T hro ug h transfor ming the par ticular solut ion o f initial coo rdinates to the g ener al solution o f ar bitrar y co or dinate,rank def ect free net adjust ment is analyzed,and the essence of the datum tr ansfor matio n is discussed.T he results sho w t hat the o ptimized solution of rank defect fr ee net adjust ment is t he o ne so lution under t he datum which is calculated by the approx imat ion v alue.In pr act ice,the key problem is to determine t he appro pr iate datum.G PS monito ring netw or k in Xi an is t aken as an example to demonstrate the differ ent o pt imal so lutio ns under differ ent data,w hereas the so lutio ns in plate mo tion ar e physically significant.Key words:rank defect ;fr ee net adjustment;datum condition;co or dinate system;general so lutio n0 引言自Messl 提出自由网平差以来[1],其理论研究和应用研究均得到较大的发展,中国学者自20世纪80年代开始对其进行了系统研究[2 3]。
§8-2 秩亏自由网平差2学时在前面介绍的经典平差中,都是以已知的起算数据为基础,将控制网固定在已知数据上。
如水准网必须至少已知网中某一点的高程,平面网至少要已知一点的坐标、一条边的边长和一条边的方位角。
当网中没有必要的起算数据时,我们称其为自由网,本节将介绍网中没有起算数据时的平差方法,即自由网平差。
在经典间接平差中,网中具备必要的起算数据,误差方程为111ˆ⨯⨯⨯⨯-=n t t n n l xB V (8-2-1)式中系数阵B 为列满秩矩阵,其秩为t B R =)( 。
在最小二乘准则下得到的法方程为0ˆ11=-⨯⨯⨯t t tt bb W xN (8-2-2)由于其系数阵的秩为t B R PB B R N R Tbb ===)()()(,所以bb N 为满秩矩阵,即为非奇异阵,具有凯利逆bb N 1-,因此具有唯一解,即W N xbb 1ˆ-= (8-2-3)当网中无起算数据时,网中所有点均为待定点,设未知参数的个数为u ,误差方程为111ˆ⨯⨯⨯⨯-=n u u n n l xB V (8-2-4)式中d t u +=d 为必要的起算数据个数。
尽管增加了d 个参数,但B 的秩仍为必要观测个数,即u t B R <=)(其中B 为不满秩矩阵,称为秩亏阵,其秩亏数为d 。
组成法方程0ˆ11=-⨯⨯⨯u u u u W xN(8-2-5)式中PlB W PB B N T u T uu ==⨯⨯1,,且u t B R PB B R N R T<===)()()(,所以N 也为秩亏阵,秩亏数为:t u d -=(8-2-6)由上式知,不同类型控制网的秩亏数就是经典平差时必要的起算数据的个数。
即有:⎪⎩⎪⎨⎧=测角网网测边网、边角网、导线水准网、测站平差,4,3,1d在控制网秩亏的情况下,法方程有解但不唯一。
也就是说仅满足最小二乘准则,仍无法求得xˆ的唯一解,这就是秩亏网平差与经典平差的根本区别。
秩亏自由网平差的研究刘 阳(江苏师范大学,城建学部,江苏 徐州 )摘要:秩亏自由网是因为控制网中没有足够的起始数据, 即缺乏基准的平差问题,因此按间接平差进行平差时, 其误差方程的系数阵 B 不能满足列满秩的要求, 相应的法方程系数阵T bbN B PB 是秩亏阵.为了求定未知参数的唯一确定解, 除了遵循最小二乘准则外, 还需增加新的基准约束条件 , 从而得到未知参数的唯一确定解.本文主要利用MATLAB 从传统的测量平差的观点出发, 来计算例题,分析,和论述亏秩自由网平差之解的性质,讨论了附加矩阵S 的形式了确定的方式,讨论了秩亏自由网平差之解与传统自由网平差之解的关系, 给出了详细的解答过程,并且比较了俩种方法的各自的优缺点,给出总结。
关键词:秩亏自由网;平差;间接平差Research Rank Defect Free NetworkAdjustmentLiuyang(School of Urban construction and design, Jiangsu Normal University, 221116)Abstract:Rank Defect Free Network control network because of not enough initial data,That lack of adjustment problems benchmark.Therefore, when carried out by indirect adjustment adjustment, the coefficient matrix B error equation does not meet the requirements of full rank.Corresponding normal equation coefficient matrix is rank deficient matrix.In order to find a unique set of unknown parameters to determine the solution, in addition to following the least squares criterion, the need to add a new benchmark constraints, resulting in a unique solution to determine the unknown parameters.The main advantage of MATLAB article from the traditional viewpoint of Surveying Adjustment,Analysis of the nature of the calculation examples, and discusses the loss of rank free net adjustment of the solution,Additional discussion of the form of the S matrix determined, discusses the relationship between solutions of rank defect free network adjustment of the solution with the traditional free network adjustment, the process gives a detailed answer, and compare the two methods of their advantages and disadvantages.Gives summary.Key words: Rank-defect free net adjustment; adjustment; condition comparison引言在现代测量数据处理过程中,秩亏自由网平差在近几十年得到了广泛应用,是重要的数据处理方法之一,特别是在变形监测、最优化设计中,秩亏自由网平差都展现出其优势。
§8-2 秩亏自由网平差2学时在前面介绍的经典平差中,都是以已知的起算数据为基础,将控制网固定在已知数据上。
如水准网必须至少已知网中某一点的高程,平面网至少要已知一点的坐标、一条边的边长和一条边的方位角。
当网中没有必要的起算数据时,我们称其为自由网,本节将介绍网中没有起算数据时的平差方法,即自由网平差。
在经典间接平差中,网中具备必要的起算数据,误差方程为111ˆ⨯⨯⨯⨯-=n t t n n l xB V (8-2-1)式中系数阵B 为列满秩矩阵,其秩为t B R =)( 。
在最小二乘准则下得到的法方程为0ˆ11=-⨯⨯⨯t t tt bb W xN (8-2-2)由于其系数阵的秩为t B R PB B R N R Tbb ===)()()(,所以bb N 为满秩矩阵,即为非奇异阵,具有凯利逆bb N 1-,因此具有唯一解,即W N xbb 1ˆ-= (8-2-3)当网中无起算数据时,网中所有点均为待定点,设未知参数的个数为u ,误差方程为111ˆ⨯⨯⨯⨯-=n u u n n l xB V (8-2-4)式中d t u +=d 为必要的起算数据个数。
尽管增加了d 个参数,但B 的秩仍为必要观测个数,即u t B R <=)(其中B 为不满秩矩阵,称为秩亏阵,其秩亏数为d 。
组成法方程0ˆ11=-⨯⨯⨯u u u u W xN(8-2-5)式中PlB W PB B N T u T uu ==⨯⨯1,,且u t B R PB B R N R T<===)()()(,所以N 也为秩亏阵,秩亏数为:t u d -=(8-2-6)由上式知,不同类型控制网的秩亏数就是经典平差时必要的起算数据的个数。
即有:⎪⎩⎪⎨⎧=测角网网测边网、边角网、导线水准网、测站平差,4,3,1d在控制网秩亏的情况下,法方程有解但不唯一。
也就是说仅满足最小二乘准则,仍无法求得xˆ的唯一解,这就是秩亏网平差与经典平差的根本区别。
秩亏网平差若干计算方法1.概述在测量平差中,控制网中除了必要起算数据外还有多余起算数据的是附合网,仅有必要起算数据的是自由网,这两种控制网在间接平差时误差方程系数矩阵都是满秩的,由此得到的法方程系数阵也是满秩的,即法方程B N =B T PB 有唯一解。
这是经典平差的范畴。
自由网中有一种具有特殊用途的控制网,就是秩亏自由网,这种自由网没有起始数据参与平差并且以待定点的坐标为待定参数。
此时的误差方程的系数阵是列亏阵,由此所得的法方程系数阵也是秩亏阵。
一般设网中全B N =B T PB 部的待定坐标个数为,必要观测数为,全部观测数为,为阶矩阵,相u t n B n ×u 应的法方程系数阵是阶矩阵,,秩亏数都为N u ×u R (B )=R (N )=t <u ,所以法方程有无穷组解。
这里产生秩亏的原因是控制网中没有起算d =u ‒t 数据,所以就是网中必要的起算数据个数。
对于水准网,必要起算数据是一个d 点的高程,故;对于测角网,必要起算数据是两个点的坐标,故;d =1d =4对于测边网或是边角网,必要起算数据是一个点的坐标和一条边的方位,故。
d =32.秩亏网平差模型以间接平差为例,令个坐标参数的平差值为,观测向量为,则秩亏网的误u X ~L 差方程为:(1)V =Bx ~‒l 式中,,,,R (B )=t <u d =u ‒t X ~=X 0+x ~l =L ‒L0随机模型是:(2)D =σ2Q =σ2P ‒1根据最小二乘原理,在下,可组成发方程如下:V T PV =min (3)B T PBx ~‒B T Pl =0若是按照直接解法用如下的方程组来解求的解:x ~(a ){V =Bx ~‒lB T PBx ~-B T Pl =0V T PV =min容易得到,即该方程组有解但不唯一,虽然满足最小二乘准则,但|B T PB|=0有无穷多组的解,无法求得唯一的,因为参数必须在一定的坐标基准下x ~x ~x ~才能唯一确定。