9秩亏自由网平差作业
- 格式:ppt
- 大小:630.00 KB
- 文档页数:24
秩亏自由网平差及其通解赵超英;黄观文【摘要】通过坐标转换将初始坐标系下的特解转换得到任意坐标系下的通解,研究了秩亏自由网基准转换的实质.结果表明,秩亏自由网平差最优解实质是基于近似值所确定的基准下的最优解,在实际应用中确定合适的基准是关键.以西安地区GPS沉降监测网为例,不同基准下秩亏解均为该基准下最优解,但只有顾及板块运动的基准才具有物理意义.【期刊名称】《地球科学与环境学报》【年(卷),期】2010(032)002【总页数】3页(P215-217)【关键词】秩亏;自由网平差;基准条件;坐标系;通解【作者】赵超英;黄观文【作者单位】长安大学,地质工程与测绘学院,陕西,西安,710054;长安大学,地质工程与测绘学院,陕西,西安,710054【正文语种】中文【中图分类】P228.4自Messl提出自由网平差以来[1],其理论研究和应用研究均得到较大的发展,中国学者自20世纪80年代开始对其进行了系统研究[2-3]。
后来Xu相继提出了非线性秩亏自由网平差的通解及其应用[4-6],推出不同坐标系以及不同基准下的通解。
笔者在介绍秩亏自由网平差通解的基础上,分析了如何将传统自由网平差扩展为各种坐标系、各种基准下的通解。
这有助于理解秩亏自由网平差的实质,并在实际应用中通过确定合理的基准从而获取具有物理意义的解。
_对于非线性大地控制网,观测方程满足式中:E(·)为数学期望;D(·)为方差;σ0为单位权中误差;F(·)、f(·)为非线性函数;X为初始(任意)坐标系t维待定坐标向量;L为n维观测值向量;Δ为观测值所含的偶然误差;P为观测值的权。
通常,选定初始坐标系S0下的一组初始坐标X0,对观测方程进行线性化得式中:A为n×t维设计矩阵,其秩R(A)=r<t,r为自由度,d=t-r为秩亏数;l为常数项;ΔX为初始坐标系S0下的坐标改正数。
观测值改正数V的误差方程为采用最小二乘准则可得基于初始坐标系S0下参数的通解式中:N为ATPA;M为任意非零向量;I为单位阵; N-为N的广义逆。
秩亏自由网多期序贯平差在矿区地表沉陷观测的应用徐博;王坚【摘要】本论文在讨论秩亏自由网平差以及多期序贯平差的基础上,提出了一种秩亏自由网多期序贯平差的模型,并将此模型应用于矿区地表沉陷观测.经实验数据验证,此模型能够很好地结合多期序贯平差的高效率以及秩亏自由网平差无起始控制点数据的特性,可以广泛地应用于数据量较大、无起始数据的矿区地表沉陷观测中.【期刊名称】《北京测绘》【年(卷),期】2017(000)002【总页数】4页(P37-40)【关键词】秩亏自由网;序贯平差;沉陷测量;矿区【作者】徐博;王坚【作者单位】中国矿业大学环境与测绘工程学院,江苏徐州221008;中国矿业大学环境与测绘工程学院,江苏徐州221008【正文语种】中文【中图分类】P207+.2工程测量时,针对无起始数据的控制网平差计算,提出了秩亏自由网平差的方法,解决了经典自由网平差无法应用于起算数据不足的水准测量、变形测量、GNSS测量等[1]。
在控制网改扩建、分期布网时,由于数据分期采集处理,传统平差方法数据量较大,计算复杂,因此采用序贯平差,便于计算机工作,提高工作效率[2]。
在矿区地表沉陷观测中,由于地形复杂,很多情况下,无起始控制点数据,观测需要分期进行。
针对这一工程特点,本文结合多期序贯平差和秩亏自由网平差的原理,提出了秩亏自由网多期序贯平差的模型,并应用于实例,对结果进行分析总结。
序贯平差也叫逐次相关间接平差,它是将观测值分成两组或多组,按组的顺序分别做相关间接平差,不必考虑前一阶段的观测值,但利用前期平差结果,达到与两期或多期网一起整体平差同样的结果[3]。
分组后可以使每组的法方程阶数降低,减轻计算强度,现常用于控制网的改扩建或分期布网的平差计算。
序贯平差有一套规律性很强的递推公式,便于计算机工作,用途非常广泛。
将观测值L分为两组,记为Lk-1和Lk,它们的权阵分别为Pk-1和Pk,设这两组观测值不相关,则有误差方程为将(1)式单独平差,得式中为的协因数阵,故有或将(1)(2)式联合解算,即由两组观测值作整体平差,可组成法方程为其解为它是两组观测值整体平差的结果,按间接平差知,其法方程系数的逆阵就是的协因数阵,故有综合上式,得由以上推导,得到序贯平差的一组递推公式:在经典间接平差中,必须具有足够的起算数据。
秩亏自由网平差(水准网)1.实验目的1.掌握秩亏自由网平差的函数模型及原理;2.提高编制程序、使用相关软件的能力;3.熟练使用秩亏自由网准则处理测量数据。
2.实验地点辽宁工程技术大学计算机实验室3.实验原理秩亏自由网平差模型式(1-1-1),即⎪⎭⎪⎬⎫==-=min ˆˆmin ˆx x PV V l x B V T T (1-1-1)式中:t n t r B R ><=,)(。
在min =PV V T下,由误差方程式可组成法方程为 Pl ΒxΝΤ=ˆ (1-1-2) 因秩t r B R PB B R N R T <===)()()(。
N 为奇异,且式为相容方程组,xˆ不唯一,为求其最优解,引入最小范数准则min ˆˆ=x xT,即求得法方程(1-1-2)的最小范数解 Pl B N x T m -=ˆ (1-1-3)-=-)(NN N N m (1-1-4) 因N 阵对称,故最小范数逆可按式(1-1-4)计算,则上式为Pl B NN N x T -=)(ˆ (1-1-5)式(1-1-3)、(1-1-5)为秩亏自由网平差模型(1-1-1)的最优解,N 的最小范数逆不唯一,可以在满足式(1-1-3)的条件下任意选择,但其解xˆ唯一。
4.精度评定单位权方差估值仍为)(ˆ2B R n PV V f PV V T T -==σ (1-1-6) 其中:f 为平差自由度,即平差问题的多余观测数。
xˆ的协因数由式(1-1-3)和式(1-1-5)得 +----===N NN N NN N N PQB B N Q T m T m x x )()()(ˆˆ (1-1-7)5.程序设计5.1、设计CLeve 类class CLeve{public:double **b,**bt,*l,**nmn,**Qxx,*v,*x,*w,*h,*H0;int m,n,r,**pp;public:void fun();void xn();void WriteData();void ReadData();void Wl();void MatInvG();void MatInv(double **b,double **bn,int r);CLeve();virtual ~CLeve();};5.2、各个函数的实现(见程序:)//读文件,给h H0 赋值void CLeve::ReadData(){int i;FILE *fp;CFileDialog MyFileDlg(TRUE,NULL,NULL,0,"文本文件(*.txt)|*.txt||");if(MyFileDlg.DoModal()==IDOK){fp=fopen(MyFileDlg.GetFileName(),"r");if(fp==NULL) {AfxMessageBox("文件没有打开!");return;}fscanf(fp,"%d%d%d",&m,&n,&r);pp=new int*[m];for(i=0;i<m;i++) pp[i]=new int[2];h=new double[m];H0=new double[n];//求H0int xx;for(i=0;i<n;i++) fscanf(fp,"%d%lf",&xx,&H0[i]);//求hfor(i=0;i<m;i++)fscanf(fp,"%d%d%lf",&pp[i][0],&pp[i][1],&h[i]);fclose(fp);}} //组成误差方程式组b lvoid CLeve::fun(){int i,j,p1,p2;b=new double*[m];for(i=0;i<m;i++)b[i]=new double[n];l=new double[m];//计算B和lfor(i=0;i<m;i++)for(j=0;j<n;j++){b[i][j]=0.0;}for(i=0;i<m;i++){ p1=pp[i][0];p2=pp[i][1];b[i][p1-1]=-1.0;b[i][p2-1]=1.0;l[i]=(H0[p1-1]+h[i]-H0[p2-1])*1000.0;}//计算b的转置BTbt=new double*[n];for(i=0;i<n;i++) bt[i]=new double[m];for(i=0;i<m;i++)for(j=0;j<n;j++)bt[j][i]=b[i][j];}5.3、在菜单中实现计算void CAdjustDoc::OnAdjustA(){CLeve js;js.ReadData();js.fun();js.MatInvG();js.Wl();js.xn();js.WriteData();AfxMessageBox(" 计算完成!");}5.4、观测数据和已知数据的存储在data.txt 文件中,数据格式如下:5 4 31 31.1002 32.1003 32.1654 31.6001 3 1.0641 2 1.0022 3 0.0603 4 -0.5604 1 -0.500存储格式说明:(1)第一行的5 代表有5条观测水准路线,4 代表有4个水准点,3表示必要观测数;(2)第二行到第五行表示各个高程点的近似高程,单位m;(3)第六行表示水准路线观测方向由1到2,1.064表示观测高差,单位m,其余后几行同此行。
秩亏网平差若干计算方法1.概述在测量平差中,控制网中除了必要起算数据外还有多余起算数据的是附合网,仅有必要起算数据的是自由网,这两种控制网在间接平差时误差方程系数矩阵都是满秩的,由此得到的法方程系数阵也是满秩的,即法方程B N =B T PB 有唯一解。
这是经典平差的范畴。
自由网中有一种具有特殊用途的控制网,就是秩亏自由网,这种自由网没有起始数据参与平差并且以待定点的坐标为待定参数。
此时的误差方程的系数阵是列亏阵,由此所得的法方程系数阵也是秩亏阵。
一般设网中全B N =B T PB 部的待定坐标个数为,必要观测数为,全部观测数为,为阶矩阵,相u t n B n ×u 应的法方程系数阵是阶矩阵,,秩亏数都为N u ×u R (B )=R (N )=t <u ,所以法方程有无穷组解。
这里产生秩亏的原因是控制网中没有起算d =u ‒t 数据,所以就是网中必要的起算数据个数。
对于水准网,必要起算数据是一个d 点的高程,故;对于测角网,必要起算数据是两个点的坐标,故;d =1d =4对于测边网或是边角网,必要起算数据是一个点的坐标和一条边的方位,故。
d =32.秩亏网平差模型以间接平差为例,令个坐标参数的平差值为,观测向量为,则秩亏网的误u X ~L 差方程为:(1)V =Bx ~‒l 式中,,,,R (B )=t <u d =u ‒t X ~=X 0+x ~l =L ‒L0随机模型是:(2)D =σ2Q =σ2P ‒1根据最小二乘原理,在下,可组成发方程如下:V T PV =min (3)B T PBx ~‒B T Pl =0若是按照直接解法用如下的方程组来解求的解:x ~(a ){V =Bx ~‒lB T PBx ~-B T Pl =0V T PV =min容易得到,即该方程组有解但不唯一,虽然满足最小二乘准则,但|B T PB|=0有无穷多组的解,无法求得唯一的,因为参数必须在一定的坐标基准下x ~x ~x ~才能唯一确定。