以太网帧结构详解
- 格式:doc
- 大小:43.50 KB
- 文档页数:7
以太网的帧结构要讲帧结构,就要说一说OSI七层参考模型。
一个是访问服务点,每一层都对上层提供访问服务点(SAP),或者我们可以说,每一层的头里面都有一个字段来区分上层协议。
比如说传输层对应上层的访问服务点就是端口号,比如说23端口是telnet,80端口是http。
IP层的SAP是什么?其实就是protocol字段,17表示上层是UDP,6是TCP,89是OSPF,88是EGIRP,1是ICMP 等等。
以太网对应上层的SAP是什么呢?就是这个type或length。
比如 0800表示上层是IP,0806表示上层是ARP。
我第二个要了解的就是对等层通讯,对等层通讯比较好理解,发送端某一层的封装,接收端要同一层才能解封装。
我们再来看看帧结构,以太网发送方式是一个帧一个帧发送的,帧与帧之间需要间隙。
这个叫帧间隙IFG—InterFrame GapIFG长度是96bit。
当然还可能有Idle时间。
以太网的帧是从目的MAC地址到FCS,事实上以太网帧的前面还有preamble,我们把它叫做先导字段。
作用是用来同步的,当接受端收到 preamble,就知道以太网帧就要来了。
preamble 有8个字节前面7个字节是10101010也就是16进制的AA,最后一个字节是 10101011,也就是AB,当接受端接受到连续的两个高电平,就知道接着来的就是D_mac。
所以最后一个字节AB我们也叫他SFD(帧开始标示符)。
所以在以太网传输过程中,即使没有idle,也就是连续传输,也有20个字节的间隔。
对于大量64字节数据来说,效率也就显得不1s = 1,000ms=1,000,000us以太网帧最小为64byte(512bit)10M以太网的slot time =512×0.1 = 51.2us100M以太网的slot time = 512×0.01 = 5.12us以太网的理论帧速率:Packet/second=1second/(IFG+PreambleTime+FrameTime)10M以太网:IFG time=96x0.1=9.6us100M以太网:IFG time=96x0.01=0.96us以太网发送方式是一个帧一个帧发送的,帧与帧之间需要间隙。
以太网帧格式详解:Etherne II报头8 目标地址6 源地址6 以太类型2 有效负载46-1500 帧检验序列4 报头:8个字节,前7个0,1交替的字节(10101010)用来同步接收站,一个1010101011字节指出帧的开始位置。
报头提供接收器同步和帧定界服务。
目标地址:6个字节,单播、多播或者广播。
单播地址也叫个人、物理、硬件或MAC地址。
广播地址全为1,0xFF FF FF FF。
源地址:6个字节。
指出发送节点的单点广播地址。
以太网类型:2个字节,用来指出以太网帧内所含的上层协议。
即帧格式的协议标识符。
对于IP报文来说,该字段值是0x0800。
对于ARP信息来说,以太类型字段的值是0x0806。
有效负载:由一个上层协议的协议数据单元PDU构成。
可以发送的最大有效负载是1500字节。
由于以太网的冲突检测特性,有效负载至少是46个字节。
如果上层协议数据单元长度少于46个字节,必须增补到46个字节。
帧检验序列:4个字节。
验证比特完整性。
IEEE 802.3根据IEEE802.2 和802.3标准创建的,由一个IEEE802.3报头和报尾以及一个802.2LLC报头组成。
报头7 起始限定符1 目标地址6(2)源地址6(2)长度2 DSAP1 SSAP1 控件2 有效负载3 帧检验序列4-----------802.3报头--------------§---802.2报头----§ §-802.3报尾-§IEEE802.3报头和报尾报头:7个字节,同步接收站。
位序列10101010起始限定符:1个字节,帧开始位置的位序列10101011。
报头+起始限定符=Ethernet II的报头目标地址:同Ethernet II。
也可以为2个字节,很少用。
源地址:同Ethernet II。
也可以为2个字节,很少用。
长度:2个字节。
帧检验序列:4个字节。
IEEE802.2 LLC报头DSAP:1个字节,指出帧的目标节点的上层协议。
以太网/IEEE 802.3帧的结构下图所示为以太网/IEEE 802.3帧的基本组成。
如图所示,以太网和IEEE 802.3帧的基本结构如下:前导码(Preamble):由0、1间隔代码组成,可以通知目标站作好接收准备。
IEEE 802.3帧的前导码占用7个字节,紧随其后的是长度为1个字节的帧首定界符(SOF)。
以太网帧把SOF包含在了前导码当中,因此,前导码的长度扩大为8个字节。
帧首定界符(SOF:Start-of-Frame Delimiter):IEEE 802.3帧中的定界字节,以两个连续的代码1结尾,表示一帧实际开始。
目标和源地址(DA、SA):表示发送和接收帧的工作站的地址,各占据6个字节。
其中,目标地址可以是单址,也可以是多点传送或广播地址。
类型(以太网):占用2个字节,指定接收数据的高层协议。
长度L(IEEE 802.3):表示紧随其后的以字节为单位的数据段的长度。
数据L(以太网):在经过物理层和逻辑链路层的处理之后,包含在帧中的数据将被传递给在类型段中指定的高层协议。
虽然以太网版本2中并没有明确作出补齐规定,但是以太网帧中数据段的长度最小应当不低于46个字节。
数据(IEEE 802.3:LLCPDU逻辑链路层协议数据单元):IEEE 802.3帧在数据段中对接收数据的上层协议进行规定。
如果数据段长度过小,使帧的总长度无法达到64个字节的最小值,那么相应软件将会自动填充数据段,以确保整个帧的长度不低于64个字节。
LLCPDU——它的范围处在46字节至1500字节之间。
最小LLCPDU长度46字节是一个限制,目的是要求局域网上所有的站点都能检测到该帧,即保证网络工作正常。
如果LLCPDU小于46个字节,则发送站的MAC子层会自动填充“0”代码补齐。
802.3一个帧的长度计算公式:DA+SA+L+LLCPDU+FCS=6+6+2+(46~1500)+4=64~1518即当LLCPDU为46个字节时,帧最小,帧长为64字节;当LLCPDU为1500字节时,帧最大,帧长为1518字节帧校验序列(FCS:Frame Check Sequence):该序列包含长度为4个字节的循环冗余校验值(CRC),由发送设备计算产生,在接收方被重新计算以确定帧在传送过程中是否被损坏。
以太⽹帧结构详解⽹络通信协议⼀般地,关注于逻辑数据关系的协议通常被称为上层协议,⽽关注于物理数据流的协议通常被称为低层协议。
IEEE802就是⼀套⽤来管理物理数据流在局域⽹中传输的标准,包括在局域⽹中传输物理数据的802.3以太⽹标准。
还有⼀些⽤来管理物理数据流在使⽤串⾏介质的⼴域⽹中传输的标准,如帧中继FR(FrameRelay),⾼级数据链路控制HDLC(High-LevelDataLinkControl),异步传输模式ATM(AsynchronousTransferMode)。
分层模型0OSI国际标准化组织ISO于1984年提出了OSIRM(OpenSystemInterconnectionReferenceModel,开放系统互连参考模型)。
OSI参考模型很快成为了计算机⽹络通信的基础模型。
OSI参考模型具有以下优点:简化了相关的⽹络操作;提供了不同⼚商之间的兼容性;促进了标准化⼯作;结构上进⾏了分层;易于学习和操作。
OSI参考模型各个层次的基本功能如下:物理层:在设备之间传输⽐特流,规定了电平、速度和电缆针脚。
数据链路层:将⽐特组合成字节,再将字节组合成帧,使⽤链路层地址(以太⽹使⽤MAC地址)来访问介质,并进⾏差错检测。
⽹络层:提供逻辑地址,供路由器确定路径。
传输层:提供⾯向连接或⾮⾯向连接的数据传递以及进⾏重传前的差错检测。
会话层:负责建⽴、管理和终⽌表⽰层实体之间的通信会话。
该层的通信由不同设备中的应⽤程序之间的服务请求和响应组成。
表⽰层:提供各种⽤于应⽤层数据的编码和转换功能,确保⼀个系统的应⽤层发送的数据能被另⼀个系统的应⽤层识别。
应⽤层:OSI参考模型中最靠近⽤户的⼀层,为应⽤程序提供⽹络服务。
分层模型-TCP/IPTCP/IP模型同样采⽤了分层结构,层与层相对独⽴但是相互之间也具备⾮常密切的协作关系。
TCP/IP模型将⽹络分为四层。
TCP/IP模型不关注底层物理介质,主要关注终端之间的逻辑数据流转发。
常见以太网帧结构详解以太网是一个常用的局域网技术,其数据传输是以帧的形式进行的。
以太网帧是以太网数据传输的基本单位,通过帧头、帧数据和帧尾等部分来描述有效载荷的数据。
以太网帧的结构如下:1. 帧前同步码(Preamble):以太网帧的开始部分有7个字节的帧前同步码,其作用是为接收端提供定时的参考,帮助接收端进行帧同步。
2.帧起始界定符(SFD):帧前同步码之后的1字节帧起始界定符为0x55,标志着以太网帧的开始。
3. 目标MAC地址(Destination MAC Address):目标MAC地址占6个字节,表示帧的接收者的MAC地址。
4. 源MAC地址(Source MAC Address):源MAC地址占6个字节,表示帧的发送者的MAC地址。
5. 长度/类型字段(Length/Type Field):长度/类型字段占2个字节,当该字段的值小于等于1500时,表示以太网帧的长度;当该字段大于等于1536时,表示该字段定义了帧中的协议类型。
6. 帧数据(Data):帧数据部分是以太网帧的有效载荷,其长度为46到1500字节,不包括帧头和帧尾。
7. 帧校验序列(Frame Check Sequence,FCS):帧校验序列占4个字节,主要用于对帧进行错误检测,以保证数据的可靠性。
8. 帧尾(Frame Check Sequence,FCS):帧尾占4个字节,用于标识以太网帧的结束。
以太网帧的长度为64到1518字节,其中有效载荷部分数据长度为46到1500字节,不同帧的长度可以根据网络需求进行调整。
在发送以太网帧时,发送方会在帧尾的后面添加额外的字节以保证整个帧的长度达到最低限制。
这些额外的字节即填充字节(Padding),用于使帧长达到最小限制的要求。
以上是以太网帧的常见结构,它描述了以太网帧的各个部分的作用和位置。
了解以太网帧的结构对于理解以太网的工作原理和网络通信非常重要。
常见以太网错误帧的解释1 引言我们在测试中经常会听到各种以太网帧术语,比如说CRC,Alignment,Fragment,超小帧(Runt),超长帧(oversize),Jabber帧, Jumbo帧等。
很多初学者对这些概念不清楚,我在此想对这些术语做些总结。
首先介绍一些基本的概念然后再做关于错误的介绍。
2 以太网帧基本概念以太网主要有两种帧结构Ethernet II帧和IEEE 802.3帧:Preamble : 称前导符, 由0,1 交替组成的7字节, 通知目的地准备接收SOF: 帧首定界字符, 由两个连续的代码1结尾, 标识一帧的开始Destination Adress & Source Adress:目的MAC地址\源MAC地址,可以是单播,组播或广播地址;Type\Length:type表明数据域类型长度;Length表明紧随其后数据段的字节数。
该值的大小区分Ethernet II帧和IEEE 802.3帧大于1500:类型域中数值大于1500的帧是Ethernet II帧,该域中的值最小为1536 (600 hex)。
小于等于1500:长度域中数值小于等于1500的帧是IEEE 802.3帧, 该域中的值最大为1500。
DATA: 数据段, 以太网的字节传输最大值是1518 bytes(未启用Jumbo),最小值是64 bytes,数据包中的字节数必须要能被8整除。
FCS : 帧校验,该序列为4个字节的循环冗余校验CRC, 发送方按一定计算方式产生,接收方对接收到的数据用同样的方式计算并将得到的校验码和接收到的校验码比较,如果一致认为传输正确.。
Jumbo帧:伴随着以太网速率的提高,千兆以太网的产生而提出了Jumbo帧.也称巨型帧即字节数大于1518字节的帧. 现在的单板TGE,SEC,RSEB\RSEA, MSEB\MSEA都有支持Jumbo帧的配置选项. MSEB单板最大支持的帧长可以达到64kbyte(需求只要求9600byte).3 以太网CRC实现在传输系统中,为了保证数据传输的正确性, 对传输过程进行差错控制, 循环冗余校验(CRC)就是一种差错控制机制.循环冗余码是建立在近世代数基础上的,编解码电路简单,检错能力强。
以太网帧格式详解:Etherne II报头8 目标地址6 源地址6 以太类型2 有效负载46-1500 帧检验序列4 报头:8个字节,前7个0,1交替的字节(10101010)用来同步接收站,一个1010101011字节指出帧的开始位置。
报头提供接收器同步和帧定界服务。
目标地址:6个字节,单播、多播或者广播。
单播地址也叫个人、物理、硬件或MAC地址。
广播地址全为1,0xFF FF FF FF。
源地址:6个字节。
指出发送节点的单点广播地址。
以太网类型:2个字节,用来指出以太网帧内所含的上层协议。
即帧格式的协议标识符。
对于IP报文来说,该字段值是0x0800。
对于ARP信息来说,以太类型字段的值是0x0806。
有效负载:由一个上层协议的协议数据单元PDU构成。
可以发送的最大有效负载是1500字节。
由于以太网的冲突检测特性,有效负载至少是46个字节。
如果上层协议数据单元长度少于46个字节,必须增补到46个字节。
帧检验序列:4个字节。
验证比特完整性。
IEEE 802.3根据IEEE802.2 和802.3标准创建的,由一个IEEE802.3报头和报尾以及一个802.2LLC报头组成。
报头7 起始限定符1 目标地址6(2)源地址6(2)长度2 DSAP1 SSAP1 控件2 有效负载3 帧检验序列4-----------802.3报头--------------§---802.2报头----§ §-802.3报尾-§IEEE802.3报头和报尾报头:7个字节,同步接收站。
位序列10101010起始限定符:1个字节,帧开始位置的位序列10101011。
报头+起始限定符=Ethernet II的报头目标地址:同Ethernet II。
也可以为2个字节,很少用。
源地址:同Ethernet II。
也可以为2个字节,很少用。
长度:2个字节。
帧检验序列:4个字节。
IEEE802.2 LLC报头DSAP:1个字节,指出帧的目标节点的上层协议。
一、以太网帧格式来自线路的二进制数据包称作一个帧。
从物理线路上看到的帧,除其他信息外,还有前导码和帧开始符。
任何物理硬件都会需要这些信息。
下面的表格显示了在以1500个八位元组为MTU传输(有些吉比特以太网甚至更高速以太网支持更大的帧,称作巨型帧)时的完整帧格式。
一个八位元组是八个位组成的数据(也就是现代计算机的一个字节)。
表1:802.3 以太网帧结构二、PPPOE格式PPPOE,全称Point-to-Point Protocol Over Ethernet,它工作在OSI的数据链路层,PPPOE协议提供了在广播式的网络(如以太网)中多台主机连接到远端的访问集中器(我们对目前能完成上述功能的设备为宽带接入服务器)上的一种标准。
PPPOE协议共包括两个阶段,即PPPOE的发现阶段(PPPOE Discovery Stage)和PPPOE的会话阶段(PPPOE Session Stage)。
而两者的主要区别在于只是在PPP的数据报文前封装了PPPOE的报文头。
PPPOE的数据报文是被封装在以太网帧的数据域内的。
简单来说我们可能把PPPOE报文分成两大块,,一大块是PPPOE的数据报头,另一块则是PPPOE 的净载荷(数据域),对于PPPOE报文数据域中的内容会随着会话过程的进行而不断改变。
下表为PPPOE的报文的格式:表2:PPPOE报文的格式以下是对上表中PPPOE各个字段的描述:表1:PPPOE各个字段的描述三、IP数据报格式TCP/IP协议定义了一个在因特网上传输的包,称为IP数据报(IP Datagram)。
这是一个与硬件无关的虚拟包,由首部和数据两部分组成。
首部的前一部分是固定长度,共20 字节,是所有IP数据报必须具有的。
在首部的固定部分的后面是一些可选字段,其长度是可变的。
首都中的源地址和目的地址都是IP 协议地址。
IP数据报头格式见下图::表3:IP数据报格式IP数据报各个字段的描述:四、TCP数据报格式在因特网协议族(Internet protocol suite)中,TCP层是位于IP层之上,应用层之下的传输层。
以太网帧,IP,TCP,UDP首部结构1.以太网帧的格式以太网封装格式2.IP报头格式IP是TCP/IP协议簇中最为重要的协议。
所有的TCP,UDP, ICMP 和IGMP数据都以IP数据报格式传输。
IP提供的是不可靠、无连接的协议。
普通的IP首部长为20个字节,除非含有选项字段。
4位版本:目前协议版本号是4,因此IP有时也称作IPV4.4位首部长度:首部长度指的是首部占32bit字的数目,包括任何选项。
由于它是一个4比特字段,因此首部长度最长为60个字节。
服务类型(TOS):服务类型字段包括一个3bit的优先权字段(现在已经被忽略),4bit的TOS子字段和1bit未用位必须置0。
4bit的TOS分别代表:最小时延,最大吞吐量,最高可靠性和最小费用。
4bit中只能置其中1比特。
如果所有4bit均为0,那么就意味着是一般服务。
总长度:总长度字段是指整个IP数据报的长度,以字节为单位。
利用首部长度和总长度字段,就可以知道IP数据报中数据内容的起始位置和长度。
由于该字段长16bit,所以IP数据报最长可达65535字节。
当数据报被分片时,该字段的值也随着变化。
标识字段:标识字段唯一地标识主机发送的每一份数据报。
通常每发送一份报文它的值就会加1。
生存时间:T T L(time-to-live)生存时间字段设置了数据报可以经过的最多路由器数。
它指定了数据报的生存时间。
T T L的初始值由源主机设置(通常为 3 2或6 4),一旦经过一个处理它的路由器,它的值就减去 1。
当该字段的值为 0时,数据报就被丢弃,并发送 I C M P报文通知源主机。
首部检验和:首部检验和字段是根据 I P首部计算的检验和码。
它不对首部后面的数据进行计算。
I C M P、I G M P、U D P和T C P在它们各自的首部中均含有同时覆盖首部和数据检验和码。
3.TCP首部格式尽管T C P和U D P都使用相同的网络层( I P),T C P却向应用层提供与U D P完全不同的服务。
以太网帧格式分析实验报告【摘要】本实验主要对以太网帧格式进行了详细分析和实验验证。
首先,我们了解了以太网帧的基本概念和结构,并学习了以太网帧在网络中的传输过程。
然后,我们通过Wireshark工具对以太网帧进行捕获和分析,并对实验结果进行了解读。
最后,我们总结了实验过程中遇到的问题和经验教训,并对以太网帧格式进行了简要评价。
【关键词】以太网帧格式,Wireshark,捕获,分析一、引言以太网是目前最常用的局域网传输技术,而以太网帧则是以太网传输过程中的基本单位。
以太网帧格式的正确理解对于网络工程师来说非常重要。
本实验的目的是通过对以太网帧格式的分析和实验验证,加深对以太网帧的理解和应用能力。
二、以太网帧结构以太网帧是由头部(header)、数据(data)和尾部(trailer)三部分组成的。
头部包含了目的MAC地址、源MAC地址、帧类型等信息;数据部分是要传输的数据内容;尾部则包括了帧校验序列等信息。
三、以太网帧的传输过程以太网帧的传输是通过物理层和数据链路层进行的。
当数据从网络层传输到数据链路层时,会被封装成以太网帧的格式。
然后,以太网帧通过物理层的传输介质(如电缆)进行传输。
接收端收到以太网帧后,会解析帧头部来获取目的MAC地址,并将帧传输到上层。
四、Wireshark工具的使用Wireshark是一个常用的网络抓包工具,可以捕获网络中的数据包,并对数据包进行分析。
在本实验中,我们使用Wireshark来捕获和分析以太网帧。
五、实验步骤与结果1. 打开Wireshark并选择网络接口;2. 开始启动网络通信,在Wireshark中捕获数据包;3.分析捕获到的数据包,查看其中的以太网帧信息,如目的MAC地址、源MAC地址、帧类型等。
通过实验,我们成功捕获了多个以太网帧,并对其进行了分析。
我们发现,捕获到的以太网帧中的帧头部包含了各种重要信息,如源MAC地址、目的MAC地址、帧类型等。
这些信息对于实现正确的数据传输非常重要。
以太网帧格式详解Etherne II报头8 目标地址6 源地址6 以太类型2 有效负载46-1500 帧检验序列4 报头:8个字节,前7个0,1交替的字节(10101010)用来同步接收站,一个1010101011字节指出帧的开始位置。
报头提供接收器同步和帧定界服务。
目标地址:6个字节,单播、多播或者广播。
单播地址也叫个人、物理、硬件或MAC地址。
广播地址全为1,0xFF FF FF FF。
源地址:6个字节。
指出发送节点的单点广播地址。
以太网类型:2个字节,用来指出以太网帧内所含的上层协议。
即帧格式的协议标识符。
对于IP报文来说,该字段值是0x0800。
对于ARP信息来说,以太类型字段的值是0x0806。
有效负载:由一个上层协议的协议数据单元PDU构成。
可以发送的最大有效负载是1500字节。
由于以太网的冲突检测特性,有效负载至少是46个字节。
如果上层协议数据单元长度少于46个字节,必须增补到46个字节。
帧检验序列:4个字节。
验证比特完整性。
IEEE 802.3根据IEEE802.2 和802.3标准创建的,由一个IEEE802.3报头和报尾以及一个802.2LLC报头组成。
报头7 起始限定符1 目标地址6(2)源地址6(2)长度2 DSAP1 SSAP1 控件2 有效负载3 帧检验序列4-----------802.3报头--------------§---802.2报头----§ §-802.3报尾-§IEEE802.3报头和报尾报头:7个字节,同步接收站。
位序列10101010起始限定符:1个字节,帧开始位置的位序列10101011。
报头+起始限定符=Ethernet II的报头目标地址:同Ethernet II。
也可以为2个字节,很少用。
源地址:同Ethernet II。
也可以为2个字节,很少用。
长度:2个字节。
帧检验序列:4个字节。
IEEE802.2 LLC报头DSAP:1个字节,指出帧的目标节点的上层协议。
以太⽹帧包结构以太⽹帧包结构第⼀个是以太⽹Ⅱ帧结构Ethernet_II 的帧中各字段说明如下:DMAC(Destination MAC)是⽬的MAC地址。
DMAC字段长度为6个字节,标识帧的接收者。
SMAC(Source MAC)是源MAC地址。
SMAC字段长度为6个字节,标识帧的发送者。
类型字段(Type)⽤于标识我上⼀层所使⽤的协议类型(即⽹络层,⽤的什么协议,IPv4还是IPv6),该字段长度为2个字节。
数据字段(Data)是⽹络层数据,上⾯⼀层⼀层封装下来的数据,到了我们的数据链路层循环冗余校验字段(FCS)提供了⼀种错误检测机制。
该字段长度为4个字节。
data前⾯的我们称之为头部,后⾯的称之为尾部,再往前是前导符意味着开始,后导符意味着结束以太⽹Ⅰ帧IEEE802.3帧格式类似于Ethernet_II帧,只是Ethernet_II帧的Type域被802.3帧的Length域取代,并且占⽤了Data字段的8个字节作为LLC和SNAP字段。
Length字段定义了Data字段包含的字节数。
逻辑链路控制LLC(Logical Link Control)由⽬的服务访问点DSAP(Destination Service Access Point)、源服务访问点SSAP(Source Service Access Point)和Control字段组成。
SNAP(Sub-network Access Protocol)由机构代码(Org Code)和类型(Type)字段组成。
Org Code三个字节都为0。
Type字段的含义与Ethernet_II帧中的Type字段相同。
以太网帧结构详解分类:计算机网络知识2011-10-25 20:28 3165人阅读评论(0) 收藏举报byte网络工作serviceaccess扩展1 以太网相关背景以太网这个术语通常是指由DEC,Intel和Xerox公司在1982年联合公布的一个标准,它是当今TCP/IP采用的主要的局域网技术,它采用一种称作CSMA/CD 的媒体接入方法。
几年后,IEEE802委员会公布了一个稍有不同的标准集,其中802.3针对整个CSMA/CD网络,802.4针对令牌总线网络,802.5针对令牌环网络;此三种帧的通用部分由802.2标准来定义,也就是我们熟悉的802网络共有的逻辑链路控制(LLC)。
由于目前CSMA/CD的媒体接入方式占主流,因此本文仅对以太网和IEEE 802.3的帧格式作详细的分析。
在TCP/IP世界中,以太网IP数据报文的封装在RFC 894中定义,IEEE802.3网络的IP数据报文封装在RFC 1042中定义。
标准规定:1)主机必须能发送和接收采用RFC 894(以太网)封装格式的分组;2)主机应该能接收RFC 1042(IEEE 802.3)封装格式的分组;3)主机可以发送采用RFC 1042(IEEE 802.3)封装格式的分组。
如果主机能同时发送两种类型的分组数据,那么发送的分组必须是可以设置的,而且默认条件下必须是RFC 894(以太网)。
最常使用的封装格式是RFC 894定义的格式,俗称Ethernet II或者Ethernet DIX。
下面,我们就以Ethernet II称呼RFC 894定义的以太帧,以IEEE802.3称呼RFC 1042定义的以太帧。
2 帧格式Ethernet II和IEEE802.3的帧格式分别如下。
Ethernet II帧格式:----------------------------------------------------------------------------------------------| 前序| 目的地址| 源地址| 类型| 数据 |FCS |---------------------------------------------------------------------------------------------- | 8 byte | 6 byte | 6 byte | 2 byte | 46~1500 byte | 4 byte|IEEE802.3一般帧格式--------------------------------------------------------------------------------------------------------------| 前序| 帧起始定界符| 目的地址| 源地址| 长度| 数据| FCS |------------------------------------------------------------------------------------------------------------| 7 byte | 1 byte | 2/6 byte | 2/6 byte | 2 byte | 46~1500 byte | 4 byte |Ethernet II和IEEE802.3的帧格式比较类似,主要的不同点在于前者定义的2字节的类型,而后者定义的是2字节的长度;所幸的是,后者定义的有效长度值与前者定义的有效类型值无一相同,这样就容易区分两种帧格式了。
一、前序字段前序字段由8个(Ethernet II)或7个(IEEE802.3)字节的交替出现的1和0组成,设置该字段的目的是指示帧的开始并便于网络中的所有接收器均能与到达帧同步,另外,该字段本身(在Ethernet II中)或与帧起始定界符一起(在IEEE802.3中)能保证各帧之间用于错误检测和恢复操作的时间间隔不小于9.6毫秒。
二、帧起始定界符字段该字段仅在IEEE802.3标准中有效,它可以被看作前序字段的延续。
实际上,该字段的组成方式继续使用前序字段中的格式,这个一个字节的字段的前6个比特位置由交替出现的1和0构成。
该字段的最后两个比特位置是11,这两位中断了同步模式并提醒接收后面跟随的是帧数据。
当控制器将接收帧送入其缓冲器时,前序字段和帧起始定界符字段均被去除。
类似地当控制器发送帧时,它将这两个字段(如果传输的是IEEE802.3帧)或一个前序字段(如果传输的是真正的以太网帧)作为前缀加入帧中。
三、目的地址字段目的地址字段确定帧的接收者。
两个字节的源地址和目的地址可用于IEEE802.3网络,而6个字节的源地址和目的地址字段既可用于Ethernet II网络又可用于IEEE802.3网络。
用户可以选择两字节或六字节的目的地址字段,但对IEEE802.3设备来说,局域网中的所有工作站必须使用同样的地址结构。
目前,几乎所有的802.3网络使用6字节寻址,帧结构中包含两字节字段选项主要是用于使用16比特地址字段的早期的局域网。
四、源地址字段源地址字段标识发送帧的工作站。
和目前地址字段类似,源地址字段的长度可以是两个或六个字节。
只有IEEE802.3标准支持两字节源地址并要求使用的目的地址。
Ethernet II和IEEE802.3标准均支持六个字节的源地址字段。
当使用六个字节的源地址字段时,前三个字节表示由IEEE分配给厂商的地址,将烧录在每一块网络接口卡的ROM中。
而制造商通常为其每一网络接口卡分配后字节。
五、类型字段两字节的类型字段仅用于Ethernet II帧。
该字段用于标识数据字段中包含的高层协议,也就是说,该字段告诉接收设备如何解释数据字段。
在以太网中,多种协议可以在局域网中同时共存,例如:类型字段取值为十六进制0800的帧将被识别为IP协议帧,而类型字段取值为十六进制8137的帧将被识别为IPX和SPX 传输协议帧。
因此,在Ethernet II的类型字段中设置相应的十六进制值提供了在局域网中支持多协议传输的机制。
在IEEE802.3标准中类型字段被替换为长度字段,因而Ethernet II帧和IEEE802.3帧之间不能兼容。
六、长度字段用于IEEE802.3的两字节长度字段定义了数据字段包含的字节数。
不论是在Ethernet II还是IEEE802.3标准中,从前序到FCS字段的帧长度最小必须是64字节。
最小帧长度保证有足够的传输时间用于以太网网络接口卡精确地检测冲突,这一最小时间是根据网络的最大电缆长度和帧沿电缆长度传播所要求的时间确定的。
基于最小帧长为64字节和使用六字节地址字段的要求,意味着每个数据字段的最小长度为46字节。
唯一的例外是吉比特以太网。
在1000Mbit/s 的工作速率下,原来的802.3标准不可能提供足够的帧持续时间使电缆长度达到100米。
这是因为在1000Mbit/s的数据率下,一个工作站在发现网段另一端出现的任何冲突之前已经处在帧传输过程中的可能性很高。
为解决这一问题,设计了将以太网最小帧长扩展为512字节的负载扩展方法。
对除了吉比特以太网之外的所有以太网版本,如果传输数据少于46个字节,应将数据字段填充至46字节。
不过,填充字符的个数不包括在长度字段值中。
同时支持以太网和IEEE802.3帧格式的网络接口卡通过这一字段的值区分这两种帧。
也就是说,因为数据字段的最大长度为1500字节,所以超过十六进制数05DC的值说明它不是长度字段(IEEE802.3).而是类型字段(Ethernet II)。
七、数据字段如前所述,数据字段的最小长度必须为46字节以保证帧长至少为64字节,这意味着传输一字节信息也必须使用46字节的数据字段:如果填入该该字段的信息少于46字节,该字段的其余部分也必须进行填充。
数据字段的最大长度为1500字节。
八、校验序列字段既可用于Ethernet II又可用于IEE802.3标准的帧校验序列字段提供了一种错误检测机制,每一个发送器均计算一个包括了地址字段、类型/长度字段和数据字段的循环冗余校验(CRC)码。
发送器于是将计算出的CRC填入四字节的FCS字段。
虽然IEEE802.3标准必然要取代Ethernet II,但由于二者的相似以及Ethernet II 作为IEEE802.3的基础这一事实,我们将这两者均看作以太网。
3 以太网帧结构的变种格式以太网帧结构的变种,仅涉及到IEEE802.3帧。
下图描述了IEEE802.3帧数据部分的结构,这个结构就是IEEE802.2定义的LLC(逻辑链路控制),LLC用来识别信息包中所承载的协议。
LLC报头包含DSAP(destination service access point,目的服务访问点)、SSAP(source service access point,源服务访问点)和控制字段。
当DSAP和SSAP取特定值:0xff和0xaa时,会分别产生两个变种:Netware-以太网帧和以太网-SNAP帧;其他的取值均为纯802.3帧。
----------------------------------------------------------------------------------------------- | 前序| 帧起始定界符| 目的地址| 源地址| 长度| 数据| FCS | -----------------------------------------------------------------------------------------------| \| \|\|\|\-------------------------------------- \| DSAP | SSAP | 控制| 信息|---------------------------------------一、Netware-以太网帧Netware-以太网帧对IEEE802.3的数据字段进行了专门分隔以便传输NetWare 类型的数据。
实际使用的帧类型是在系统设置时通过将NetWare与特定类型的帧绑写而定义的。
下图显示了Netware-以太网帧格式。
图中的IPX=0xffff,也就是说,以太网帧中的DSAP=SSAP=0xff时,802.3帧就变成了Netware-以太网帧,用来承载NetWare类型的数据。
由于不再有LLC字段,所以这种帧通常称为简化802.3。
对那些使用或考虑使用NetWare的人,在涉及帧类型时应该小心:Novell使用术语以太网-802.3,因此如果将NetWare设置为以太网-802.2帧,网络实际上是符合以太网-802.3标准的,也就是说,有LLC结构的。