案例三 年金终值与现值
- 格式:docx
- 大小:36.75 KB
- 文档页数:1
年金现值与终值的比较年金现值与终值是财务管理中两个重要的概念,用于评估不同时期的现金流量的价值。
年金现值是指在未来一段时间内产生的现金流量,在当下的价值,而年金终值则是指在未来一段时间内产生的现金流量的未来价值。
在财务决策中,对于年金现值和终值的比较是至关重要的。
本文将就年金现值与终值的比较进行探讨。
首先,我们来看看年金现值的计算方法。
年金现值是指未来一系列现金流量在当下的价值。
计算年金现值的方法可以用现值公式来表示,即PV = PMT × [(1 - (1 + r)^-n) / r],其中PV代表年金现值,PMT代表每期现金流量,r代表折现率,n代表期数。
通过这个公式,我们可以计算出不同时期的现金流量在当下的价值,帮助我们做出更明智的决策。
然后,我们来看看年金终值的计算方法。
年金终值是指未来一系列现金流量在未来的价值。
计算年金终值的方法可以用终值公式来表示,即FV = PV × (1 + r)^n,其中FV代表年金终值,PV代表现值,r代表折现率,n代表期数。
通过这个公式,我们可以计算出未来一系列现金流量的未来价值,帮助我们更好地规划未来的财务安排。
接着,我们来比较年金现值和终值在财务决策中的作用。
年金现值可以帮助我们评估不同时期的现金流量在当下的价值,有助于我们做出投资决策、贷款决策等。
而年金终值则可以帮助我们评估未来一系列现金流量的未来价值,有助于我们规划未来的财务安排和退休计划等。
因此,在财务管理中,年金现值和终值都扮演着重要的角色,需要根据具体情况灵活运用。
最后,需要注意的是,在比较年金现值和终值时,我们应该根据具体情况综合考虑两者的影响因素。
在实际应用中,我们可能需要同时考虑年金现值和终值,综合分析现金流量在不同时间点的价值,以便做出更全面的财务决策。
综上所述,年金现值与终值的比较在财务管理中具有重要意义。
通过对年金现值和终值的计算和比较,我们可以更好地评估现金流量的价值,帮助我们做出明智的财务决策。
解:本例因为涉及到年金当中的递延年金,所以将年金系列一起先介绍,然后解题年金,是指一定时期内每次等额收付款的系列款项,通常记作A 。
如保险费、养老金、折旧、租金、等额分期收款、等额分期付款以及零存整取或整存零取储蓄等等。
年金按每次收付发生的时点不同,可分为普通年金、即付年金、递延年金、永续年金等。
结合本例,先介绍普通年金与递延年金,其他的在后面介绍。
一、普通年金,是指从第一期起,在一定时期内每期期末等额发生的系列收付款项,又称后付年金。
1.普通年金现值公式为:ii A i A i A i A i A P nn n ------+-⨯=+⨯++⨯+++⨯++⨯=)1(1)1()1()1()1()1(21Λ 式中的分式ii n -+-)1(1称作“年金现值系数”,记为(P/A ,i ,n ),可通过直接查阅“1元年金现值表”求得有关的数值,上式也可写作:P=A (P/A ,i ,n ). 2.例子:租入某设备,每年年末需要支付租金120元,年复利利率为10%,则5年内应支付的租金总额的现值为:%10%)101(1120)1(15--+-⨯=+-⨯=i i A P n 4557908.3120≈⨯=(元) 二、递延年金,是指第一次收付款发生时间与第一期无关,而隔若干期(假设为s 期,s ≥1),后才开始发生的系列等额收付款项。
它是普通年金的特殊形式,凡不是从第一期开始的年金都是递延年金。
1.递延年金现值公式为:[]),,/(),,/()1(1)1(1s i A P n i A P A i i i i A P s n -⨯=⎥⎦⎤⎢⎣⎡+--+-⨯=-- (1) 或),,/(),,/()1()1(1)(s i F P s n i A P A i ii A P s s n ⨯-⨯=+⨯+-⨯=--- (2) 上述(1)公式是先计算出n 期的普通年金现值,然后减去前s 期的普通年金现值,即得递延年金的现值,公式(2)是先将些递延年金视为(n-s)期普通年金,求出在第s 期的现值,然后再折算为第零期的现值。
某投资项目预测得净现金流量见下表(万元),设资金基本贴现率为10%,则该项目得净现金值为()万元解:本例因为涉及到年金当中得递延年金,所以将年金系列一起先介绍,然后解题年金,就是指一定时期内每次等额收付款得系列款项,通常记作A 。
如保险费、养老金、折旧、租金、等额分期收款、等额分期付款以及零存整取或整存零取储蓄等等。
年金按每次收付发生得时点不同,可分为普通年金、即付年金、递延年金、永续年金等。
结合本例,先介绍普通年金与递延年金,其她得在后面介绍。
一、普通年金,就是指从第一期起,在一定时期内每期期末等额发生得系列收付款项,又称后付年金。
1、普通年金现值公式为:ii A i A i A i A i A P nn n ------+-⨯=+⨯++⨯+++⨯++⨯=)1(1)1()1()1()1()1(21Λ 式中得分式ii n-+-)1(1称作“年金现值系数”,记为(P/A ,i ,n ),可通过直接查阅“1元年金现值表”求得有关得数值,上式也可写作:P=A (P/A ,i ,n )、 2、例子:租入某设备,每年年末需要支付租金120元,年复利利率为10%,则5年内应支付得租金总额得现值为:%10%)101(1120)1(15--+-⨯=+-⨯=i i A P n 4557908.3120≈⨯=(元) 二、递延年金,就是指第一次收付款发生时间与第一期无关,而隔若干期(假设为s 期,s ≥1),后才开始发生得系列等额收付款项。
它就是普通年金得特殊形式,凡不就是从第一期开始得年金都就是递延年金。
1、递延年金现值公式为:[]),,/(),,/()1(1)1(1s i A P n i A P A i i i i A P s n -⨯=⎥⎦⎤⎢⎣⎡+--+-⨯=-- (1) 或),,/(),,/()1()1(1)(s i F P s n i A P A i ii A P s s n ⨯-⨯=+⨯+-⨯=--- (2) 上述(1)公式就是先计算出n 期得普通年金现值,然后减去前s 期得普通年金现值,即得递延年金得现值,公式(2)就是先将些递延年金视为(n-s)期普通年金,求出在第s 期得现值,然后再折算为第零期得现值。
3. 年金终值与年金现值的计算香港首富李嘉诚说过“一个人从现在开始,每年存 1.4万元,并都能投资到股票或房地产,获得每年平均 20%的投资回报率,40年后财富会增长为1亿零 281万元”。
( 1)年金的含义和类型年金是指间隔期相等的系列等额收付款,通常记作 A。
如间隔期固定、金额相等的分期付款赊购、分期偿还贷款、发放养老金、分期支付工程款以及每年相同的销售收入等。
普通年金预付年金递延年金永续年金【提示】普通年金和预付年金都是从第一期开始发生等额收付,两者的区别是普通年金发生在期末,预付年金发生在期初。
( 2)普通年金终值和年偿债基金的计算①普通年金终值F=A+A ( 1+i) +A( 1+i) 2 +… +A( 1+i)n-1 ( 1)将此公式两边都乘以( 1+i),F ( 1+i) =A( 1+i) +A( 1+i) 2 +… +A( 1+i)n ( 2)( 2) -( 1)F i=A ( 1+i)n A ,整理后得【总结】①称作“年金终值系数”,记作:( F/A, i, n)当 n> 1时,年金终值系数与折现率或期数同方向变动。
② 年金终值系数与复利终值系数关系如下:=【应用举例】【例题】 2018 年 1月 16日,某人制定了一个存款计划,计划从 2019年 1月 16日开始,每年存入银行 10万元,共计存款 5次,最后一次存款时间是 2023年 1月 16日。
每次的存款期限都是 1 年,到期时利息和本金自动续存。
假设存款年利率为 2%,打算在 2024年 1月 16日取出全部本金和利息,则届时本利和共为多少?( F/A, 2%, 5) =5.2040,( F/P, 2%, 1) =1.02。
【分析】根据题干描述,画出本题示意图如下:根据图形及要求本题解题步骤如下:第一步:2018 年 1月 16日 -2023年 1月 16日的存入款符合普通年金的形式,所以可先将这5个 10万元按照普通年金的形式折算到 2023年 1月 16日。
案例三年金终值与现值
案例三年金终值与现值
案例三:年金终值和现值——北方公司年金终值和现值的计算
[基本案情]
数据一。
2022年1月1日,北方公司向宏达投资公司租赁了一台自动车床。
租赁协议中规定的双方:租赁期限于2022年12月31日结束,年终租金为5600元,每年年底支付。
宏达投资公司要求的利息和手续费利率通常为8%。
资料二、北方公司2021年拟在某大学设立一笔奖学基金。
奖励计划为:每年特等奖1人,金额为1万元;一等奖学金2人,每人金额5000元;二等奖学金3人,每人金额
3000元;三等奖学金四人,每人金额1000元。
目前银行存款年利率为5%,并预测短期内
不会发生变化。
数据三。
2022年1月1日,北方公司向工商银行哈尔滨分行调拨了一笔资金,银行贷款年利率为8%。
同时,北方公司和哈尔滨分行同意在最初三年内不必偿还本金和利息,但从2022年12月31日到2022年12月31日,每年年底偿还本金和利息40000元。
[分析要点及要求]
1.根据数据计算一系列租金的现值和终值?如果每年年初支付一次年租金,那么计算
系列租金的现值和最终值?
2、根据资料二分析北方公司为设立此项奖学金,应一次性存入银行多少钱?
3.根据数据3,北方公司从银行借了多少本金?到2022年12月31日银行将还清多少本金和利息?
[问题探讨]
1.根据掌握的数学基础,推导出各种年金的终值和现值的计算公式。
2.通过上述推导,总结了各种年金的内在联系。
列出现实经济生活中的几种年金现象。