水文地质概念模型共46页
- 格式:ppt
- 大小:4.43 MB
- 文档页数:46
工程水文学之水文模型●按模型构建的基础分
●物理模型
●概念性模型
●新安江(三水源)流域水文模型
●模型结构
●流域分块
●目的
●方法
●泰森多边形法
●自然流域划分法
●蒸散发计算
●三层蒸发模式
●产流量的计算
●蓄满产流理论
●水源划分
自由水蓄水库
●地表径流
●壤中流
●地下径流
●汇流计算
●坡地汇流计算
●单位线
●线性水库
●滞后演算法
●河网汇流计算
●河道洪水演算
●马斯京根法
●分段连续演算法
●模型参数及调试
●模型参数
●直接设置参数
●参数估计
●模型评述
●SCS模型
●水箱模型
●模型评述
●黑箱子模型
●按对流域水文过程描述的离散程度分
●集总式模型
●半分布式模型
●分布式模型
●水文系统理论模型
●水文系统的概念
●系统输入
●系统的功能
●系统输出
●总径流线性响应模型(SLM模型)
●线性扰动模型LPM
●建立水文模型的过程
●表达水文过程整体和径流形成各环节间的关系
●建立模型各个部分的逻辑关系
●率定参数
●模型检验。
1.渗透系数K简介又称水力传导系数(hydraulic conductivity)。
在各向同性介质中,它定义为单位水力梯度下的单位流量,表示流体通过孔隙骨架的难易程度,表达式为:κ=kρg/η,式中k为孔隙介质的渗透率,它只与固体骨架的性质有关,κ为渗透系数;η为动力粘滞性系数;ρ为流体密度;g为重力加速度。
在各向异性介质中,渗透系数以张量形式表示。
渗透系数愈大,岩石透水性愈强。
强透水的粗砂砾石层渗透系数〉10米/昼夜;弱透水的亚砂土渗透系数为1~0.01米/昼夜;不透水的粘土渗透系数<0.001米/昼夜.据此可见土壤渗透系数决定于土壤质地.意义及计算方法渗透系数K是综合反映土体渗透能力的一个指标,其数值的正确确定对渗透计算有着非常重要的意义。
影响渗透系数大小的因素很多,主要取决于土体颗粒的形状、大小、不均匀系数和水的粘滞性等,要建立计算渗透系数K的精确理论公式比较困难,通常可通过试验方法(包括实验室测定法和现场测定法)或经验估算法来确定K值渗透系数的应用地下水流速的确定:在地下水等水位图上的地下水流向上,求出相邻两等水位线间的水力梯度,然后利用公式计算地下水的流速V=kI式中:V---地下水的渗流速度(m/d)K---渗透系数(m/d)I----水力梯度正文表示岩土透水性能的数量指标。
亦称水力传导度。
可由达西定律求得:q=KI 式中q为单位渗流量,也称渗透速度(米/日);K为渗透系数(米/日);I为水力坡度,无量纲。
可见,当I=1时,q=K,表明渗透系数在数值上等于水力坡度为1时,通过单位面积的渗流量。
岩土的渗透系数愈大,透水性越强,反之越弱。
渗透系数的大小主要不取决于岩土空隙度的值,而取决于空隙的大小、形状和连通性,也取决于水的粘滞性和容量,因此,温度变化,水中有机物、无机物的成分和含量多少,均对渗透系数有影响。
在均质含水层中,不同地点具有相同的渗透系数;在非均质含水层中,渗透系数与水流方向无关,而在各向异性含水层中,同一地点当水流方向不同时,具有不同的渗透系数值。
水文地质概念模型Conceptual hydrogeological model把含水层实际的边界性质、内部结构、渗透性能、水力特征和补给排泄等条件概化为便于进行数学与物理模拟的基本模式。
(1)透水边界Permeable boundary渗透性良好的含水层边界。
(2)隔水边界Confining boundary渗透性极差的含水层边界,即法向方向水力梯度(或流量)等于零的边界。
(3)弱透水边界Weakly-permeable boundary能通过一定流量的渗透性较弱的含水层边界。
(4)已知水位边界(一类边界)Boundary of known water level已知外节点水位值的边界。
(5)已知流量边界(二类边界)Boundary of known flow已知地下水流入或流出量的边界。
(6)混合边界(三类边界)Mixed boundary由已知水位和已知流量边界共同组成的计算渗流场的边界。
(7)定水头边界Boundary of fixed water level水位数值不变的已知水位边界。
(8)定流量边界Boundary of fixed flow流量数值不变的已知流量边界。
1 目的与任务(1)充分收集研究区以往各类地质、水文地质、地形地貌、气象、水文、钻孔、水资源开发利用等资料,进行系统的分析与研究,明确研究区的水文地质条件;(2)对研究区水文地质条件进行合理的概化,使概化模型达到即反映水文地质条件的实际情况,又能用先进的工具进行计算的目的,并最终提交概化的框图、平面图、剖面图及其文字说明。
2.模型概化原则(1)实用性地下水流模拟是一实用性很强的技术,解决现实问题是它的根本目的。
因此,建立的水文地质概念模型须与一定时期的科学技术水平以及研究区的水文地质调查研究程度相适应,能用于解决社会、经济发展中所面临的地下水模拟与管理问题。
(2)完整性概念模型必须尽可能真实全面地反映实体系统的内部结构与动态特征,专业人员既要到现场进行调查,又要广泛收集有关的各种信息,必要时还要补充部分现场调查(包括观测、试验等)工作,详细分析系统的输入、输出、状态演变、功能作用以及它与周围环境的相互作用关系等,以达到对于真实系统全面深入的掌握,保证模型在理论上的完整性,提高地下水流系统模拟的精度。
水文地质一、概述水文地质指自然界中地下水的各种变化和运动的现象。
水文地质学是研究地下水的科学。
它主要是研究地下水的分布和形成规律,地下水的物理性质和化学成分,地下水资源及其合理利用,地下水对工程建设和矿山开采的不利影响及其防治等。
本次实习阶段中需要关于水文地质方面的知识大致是关于岩溶地貌和地下水类型。
实习中的水文地质现象主要在王乔洞、紫薇洞和金银洞遇到。
二、地貌与新构造1、侵蚀与剥蚀地貌:①背斜谷、向斜山:由下志留统高家边组粉砂质泥岩之软弱层构成的;向斜山有平顶山,向该山和北凤凰山(305高地)。
平顶山是以下三叠统和龙山组为核部的向斜山;向核山和北凤凰山则是以下二叠统栖霞组为核部的向斜山。
②次成谷:平顶山至马家山一带,东、西两侧山谷都是由于龙潭组—殷坑组的软弱岩层,风化、剥蚀而成的。
③单面山:主要有朝阳山、麒麟山、大尖山和巨嶂山等。
它们的共同特点都是:一面由五通组石英砂砾岩至二叠系灰岩等硬岩层组成,而另一面则是由志留系砂、泥岩等软弱岩层组,因软、硬岩层差异风化而形成单面山。
2、堆积地貌:残一坡积,山崩及倒石堆带:残一坡积,分布在区内坡麓地带,呈长条状分布,组成坡积裙。
山崩及倒石堆,由于区内山势低缓不发育仅在碾盘石西坡和猫耳洞北面山坡等地发充规模较小的倒石堆。
(平顶山向斜地貌景观)(北凤凰山305高地)古滑坡体主体由石炭系黄龙组和船山组灰岩构成,呈长舌部分之滑舌的前缘可见金陵组和高骊组岩片直接盖在高家边组之上,推测滑坡位移量达1km。
现令残存部分占地面积约700×200m2,估算滑坡体体积约30×105m3。
滑坡体的后缘正好是喻府大村向斜扬起端,其北面为一堵110°-290°方向的悬崖峭壁,高约50-60m。
峭壁为船山组、黄龙组和和州组炭岩构成,峭壁底部为高骊山组泥、页岩,产状均很平缓。
峭壁发充一组110°-290°方向的近直立裂隙(与向斜轴近垂直),与岩层层面刚好构成“Y”型的贯通面。
核电厂水文地质概念模型研究1水文地质单元划分与分区(1)水文地质单元的细分。
根据地下水补给条件、赋存条件和分水岭分布特征,厂址半径5km范围内可划分出3个一级水文地质单元,即第Ⅰ、第Ⅱ和第Ⅲ水文地质单元(单元间可不考虑地下水水力联系)。
厂址所在第Ⅲ水文地质单元可划分为3类4个二级水文地质单元(界线主要为岩性边界、断层边界、断裂破碎带和不整合边界;次级单元间地下水具有一定的水力联系)。
由含水介质岩性、构造和地下水赋存特征,Ⅲ-1、Ⅲ-3二级水文地质单元可分别细分为2个三级水文地质单元Ⅲ-1-1、Ⅲ-1-2和Ⅲ-3-1、Ⅲ-3-2(表1)。
(2)水文地质参数分区。
因为花岗片麻岩风化作用强度存有显著差异,非常有必要按照风化裂隙与构造裂隙发育水准细分为浅、中、深3段,即:浅部花岗片麻岩风化裂隙发育段(包括全风化和强风化岩体)、中部花岗片麻岩构造裂隙发育段(包括中等风化、微风化岩体)、深部花岗片麻岩致密段。
厂区南侧分布的全新统海积层因为岩性和渗透系数的差异,亦可细分为上、下两层,即上部粉质黏土层和下部中细砂层(表1)。
(3)断裂破碎带。
断裂破碎带的富水水准主要取决于断裂带(断裂规模尤为重要)及旁侧岩石裂隙的发育水准,断层影响带以外的未风化花岗岩基岩基本不含水[4-5]。
厂址半径5km范围内有1个断裂破碎带F2(宽约20m),由一组剪切面构成,带内岩石破碎(原岩可辨),胶结作用及各种蚀变现象不明显。
F2不但是良好的汇水廊道和导水通道(断裂破碎带两侧地下水标高、水力坡度与厂区及附近渗流场特征基本一致),还可作为次级水文地质单元分界线(图1)。
(4)侵入岩接触带与岩脉。
侵入岩组主要分布在厂址西侧的Ⅲ-2水文地质单元。
在Ⅲ-3水文地质单元内,侵入岩以岩脉形式存有于花岗片麻岩中,脉岩走向多为NE-NEE 向,产状较陡(倾角一般50°~80°);岩脉宽一般小于10m(个别达100m)、延伸长一般大于500m,核岛基坑负挖资料显示岩脉出露厚度一般0.3~3.2m。