人教a版高考数学(理)一轮课件:10.2排列与组合
- 格式:pptx
- 大小:922.89 KB
- 文档页数:1
1.排列与组合的概念名称定义排列从n个不同元素中取出m(m≤n)个元素按照一定的顺序排成一列组合合成一组2.排列数与组合数(1)排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫作从n个不同元素中取出m个元素的排列数,用A m n表示.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫作从n 个不同元素中取出m个元素的组合数,用C m n表示.3.排列数、组合数的公式及性质公式(1)A m n=n(n-1)(n-2)…(n-m+1)=n!(n-m)!(2)C m n=A m nA m m=n(n-1)(n-2)…(n-m+1)m!=n!m!(n-m)!性质(1)0!=1;A n n=n!(2)C m n=C n-mn ;C m n+1=C m n+C m-1n【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列.(×)(2)一个组合中取出的元素讲究元素的先后顺序.(×)(3)两个组合相同的充要条件是其中的元素完全相同.(√)(4)(n+1)!-n!=n·n!.(√)(5)A m n=n A m-1n-1.(√)(6)k C k n=n C k-1n-1.(√)1.(2016·四川)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为() A.24 B.48C.60 D.72答案D解析由题可知,五位数要为奇数,则个位数只能是1,3,5;分为两步:先从1,3,5三个数中选一个作为个位数有C13种情况,再将剩下的4个数字排列得到A44种情况,则满足条件的五位数有C13·A44=72(个).故选D.2.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.24答案D解析“插空法”,先排3个空位,形成4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A34=4×3×2=24.3.(教材改编)用数字1,2,3,4,5组成的无重复数字的四位数,其中偶数的个数为()A.8 B.24 C.48 D.120答案C解析末位数字排法有A12种,其他位置排法有A34种,共有A12A34=48(种).4.某高三毕业班有40人,同学这间两两彼此给对方写一条毕业留言,那么全班共写了________条毕业留言.(用数字作答)答案 1 560解析依题意知两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了A240=40×39=1 560(条)留言.5.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案有________种.答案14解析分两类:①有1名女生:C12C34=8.②有2名女生:C22C24=6.∴不同的选派方案有8+6=14(种).题型一排列问题例1(1)3名男生,4名女生,选其中5人排成一排,则有________种不同的排法.(2)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有________种.答案(1)2 520(2)216解析(1)问题即为从7个元素中选出5个全排列,有A57=2 520(种)排法.(2)当最左端排甲时,不同的排法共有A55种;当最左端排乙时,甲只能排在中间四个位置之一,则不同的排法共有C14A44种.故不同的排法共有A55+C14A44=120+96=216(种).引申探究1.本例(1)中若将条件“选其中5人排成一排”改为“排成前后两排,前排3人,后排4人”,其他条件不变,则有多少种不同的排法?解前排3人,后排4人,相当于排成一排,共有A77=5 040(种)排法.2.本例(1)中若将条件“选其中5人排成一排”改为“全体站成一排,男、女各站在一起”,其他条件不变,则有多少种不同的排法?解相邻问题(捆绑法):男生必须站在一起,是男生的全排列,有A33种排法;女生必须站在一起,是女生的全排列,有A44种排法;全体男生、女生各视为一个元素,有A22种排法.根据分步乘法计数原理,共有A33·A44·A22=288(种)排法.3.本例(1)中若将条件“选其中5人排成一排”改为“全体站成一排,男生不能站在一起”,其他条件不变,则有多少种不同的排法?解不相邻问题(插空法):先安排女生共有A44种排法,男生在4个女生隔成的5个空中安排共有A35种排法,故共有A44·A35=1 440(种)排法.4.本例(1)中若将条件“选其中5人排成一排”改为“全体站成一排,甲不站排头也不站排尾”,其他条件不变,则有多少种不同的排法?解先安排甲,从除去排头和排尾的5个位置中安排甲,有A15=5(种)排法;再安排其他人,有A66=720(种)排法.所以共有A15·A66=3 600(种)排法.思维升华排列应用问题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.由0,1,2,3,4,5这六个数字组成的无重复数字的自然数.求:(1)有多少个含2,3,但它们不相邻的五位数?(2)有多少个含数字1,2,3,且必须按由大到小顺序排列的六位数?解(1)先不考虑0是否在首位,0,1,4,5先排三个位置,则有A34个,2,3去排四个空档,有A24个,即有A34A24个;而0在首位时,有A23A23个,即有A34A24-A23A23=252(个)含有2,3,但它们不相邻的五位数.(2)在六个位置先排0,4,5,先不考虑0是否在首位,则有A36个,去掉0在首位,即有A36-A25个,0,4,5三个元素排在六个位置上留下了三个空位,1,2,3必须由大到小进入相应位置,并不能自由排列,所以有A36-A25=100(个)六位数.题型二组合问题例2(1)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法的种数是()A.60 B.63C.65 D.66(2)要从12人中选出5人去参加一项活动,A,B,C三人必须入选,则有________种不同选法.答案(1)D(2)36解析(1)因为1,2,3,…,9中共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数或全为偶数或2个奇数和2个偶数,故有C45+C44+C25C24=66(种)不同的取法.(2)只需从A,B,C之外的9人中选择2人,即有C29=36(种)不同的选法.引申探究1.本例(2)中若将条件“A,B,C三人必须入选”改为“A,B,C三人都不能入选”,其他条件不变,则不同的选法有多少种?解由A,B,C三人都不能入选只需从余下9人中选择5人,即有C59=C49=126(种)不同的选法.2.本例(2)中若将条件“A,B,C三人必须入选”改为“A,B,C三人只有一人入选”,其他条件不变,则不同的选法有多少种?解可分两步,先从A,B,C三人中选出1人,有C13种选法,再从余下的9人中选4人,有C49种选法,所以共有C13×C49=378(种)不同的选法.3.本例(2)中若将条件“A,B,C三人必须入选”改为“A,B,C三人至少一人入选”,其他条件不变,则不同的选法有多少种?解可考虑间接法,从12人中选5人共有C512种,再减去A,B,C三人都不入选的情况C59种,共有C512-C59=666(种)不同的选法.思维升华组合问题常有以下两类题型变化(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.某市工商局对35种商品进行抽样检查,已知其中有15种假货.现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?解(1)从余下的34种商品中,选取2种有C234=561(种),∴某一种假货必须在内的不同取法有561种.(2)从34种可选商品中,选取3种,有C334种或者C335-C234=C334=5 984(种).∴某一种假货不能在内的不同取法有5 984种.(3)从20种真货中选取1件,从15种假货中选取2件有C120C215=2 100(种).∴恰有2种假货在内的不同的取法有2 100种.(4)选取2件假货有C120C215种,选取3件假货有C315种,共有选取方式C120C215+C315=2 100+455=2 555(种).∴至少有2种假货在内的不同的取法有2 555种.(5)选取3件的总数为C335,因此共有选取方式C335-C315=6 545-455=6 090(种).∴至多有2种假货在内的不同的取法有6 090种.题型三排列与组合问题的综合应用命题点1相邻问题例3(2017·济南调研)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为()A.3×3! B.3×(3!)3C.(3!)4D.9!答案C解析把一家三口看作一个排列,然后再排列这3家,所以有(3!)4种坐法.命题点2相间问题例4某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是________.答案120解析先安排小品节目和相声节目,然后让歌舞节目去插空.安排小品节目和相声节目的顺序有三种:“小品1,小品2,相声”,“小品1,相声,小品2”和“相声,小品1,小品2”.对于第一种情况,形式为“□小品1歌舞1小品2□相声□”,有A22C13A23=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个空,其形式为“□小品1□相声□小品2□”,有A22A34=48(种)安排方法.由分类加法计数原理知共有36+36+48=120(种)安排方法.命题点3特殊元素(位置)问题例5(2016·郑州检测)从1,2,3,4,5这五个数字中任取3个组成无重复数字的三位数,当三个数字中有2和3时,2需排在3的前面(不一定相邻),这样的三位数有________个.答案51解析分三类:第一类,没有2,3,由其他三个数字组成三位数,有A33=6(个);第二类,只有2或3其中的一个,需从1,4,5中选两个数字组成三位数,有2C23A33=36(个);第三类,2,3均有,再从1,4,5中选一个,因为2需排在3的前面,所以可组成12C13A33=9(个).由分类加法计数原理,知这样的三位数共有51个.思维升华排列与组合综合问题的常见类型及解题策略(1)相邻问题捆绑法.在特定条件下,将几个相关元素视为一个元素来考虑,待整个问题排好之后,再考虑它们“内部”的排列.(2)相间问题插空法.先把一般元素排好,然后把特定元素插在它们之间或两端的空当中,它与捆绑法有同等作用.(3)特殊元素(位置)优先安排法.优先考虑问题中的特殊元素或位置,然后再排列其他一般元素或位置.(4)多元问题分类法.将符合条件的排列分为几类,而每一类的排列数较易求出,然后根据分类加法计数原理求出排列总数.(1)(2016·山西四校联考三)有5名优秀毕业生到母校的3个班去做学习经验交流,则每个班至少去一名的不同分派方法种数为( ) A .150 B .180 C .200D .280(2)将甲、乙、丙、丁、戊五位同学分别保送到北大、上海交大和浙大3所大学,若每所大学至少保送1人,甲不能被保送到北大,则不同的保送方案共有( ) A .150种 B .114种 C .100种 D .72种答案 (1)A (2)C解析 (1)分两类:一类,3个班分派的毕业生人数分别为2,2,1,则有C 25C 23A 22·A 33=90(种)分派方法;另一类,3个班分派的毕业生人数分别为1,1,3,则有C 35·A 33=60(种)分派方法,所以不同分派方法种数为90+60=150,故选A.(2)先将五人分成三组,因为要求每组至少一人,所以可选择的只有2,2,1或者3,1,1,所以共有C 25C 23C 112+C 35C 12C 112=25(种)分组方法.因为甲不能被保送到北大,所以有甲的那组只有上海交大和浙大两个选择,剩下的两组无限制,一共有4种方法,所以不同的保送方案共有25×4=100(种).14.排列、组合问题典例有20个零件,其中16个一等品,4个二等品,若从20个零件中任意取3个,那么至少有1个一等品的不同取法有________种.错解展示解析先从一等品中取1个,有C116种取法;再从余下的19个零件中任取2个,有C219种不同取法,共有C116×C219=2 736(种)不同取法.答案 2 736现场纠错解析方法一将“至少有1个是一等品的不同取法”分三类:“恰有1个一等品”,“恰有2个一等品”,“恰有3个一等品”,由分类加法计数原理,知有C116C24+C216C14+C316=1 136(种).方法二考虑其对立事件“3个都是二等品”,用间接法:C320-C34=1 136(种).答案 1 136纠错心得(1)解排列、组合问题的基本原则:特殊优先,先分组再分解,先取后排;较复杂问题可采用间接法,转化为求它的对立事件.(2)解题时要细心、周全,做到不重不漏.1.两家夫妇各带一个小孩一起到动物园游玩,购票后排队依次入园,为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人的入园顺序排法种数为() A.48 B.36 C.24 D.12答案C解析(捆绑法)爸爸排法有A22种,两个小孩排在一起故看成一体,有A22种排法,妈妈和孩子共有A33种排法,∴排法种数共有A22A22A33=24(种).故选C.2.(2016·黄山月考)某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为()A.16 B.18 C.24 D.32答案C解析将四个车位捆绑在一起,看成一个元素,先排3辆不同型号的车,在三个车位上任意排列,有A33=6(种)排法,再将捆绑在一起的四个车位插入4个空档中,有4种方法,故共有4×6=24(种)方法.3.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C在实施时必须相邻,问实验顺序的编排方法共有()A.34种B.48种C.96种D.144种答案C解析程序A有A12=2(种)结果,将程序B和C看作一个元素与除A外的3个元素排列有A22 A44=48(种),由分步乘法计数原理,知实验编排共有2×48=96(种)方法.4.将A,B,C,D,E排成一列,要求A,B,C在排列中顺序为“A,B,C”或“C,B,A”(可以不相邻),这样的排列数有()A.12种B.20种C.40种D.60种答案C解析(消序法)五个元素没有限制全排列为A55,由于要求A,B,C的次序一定(按A,B,C或C,B,A),故除以这三个元素的全排列A33,可得A55A33×2=40(种).5.(2016·长沙模拟)某校高二年级共有6个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为( )A .A 26C 24 B.12A 26C 24 C .A 26A 24D .2A 26答案 B解析 方法一 将4人平均分成两组有12C 24种方法,将此两组分配到6个班级中的2个班有A 26种.所以不同的安排方法有12C 24A 26(种).方法二 先从6个班级中选2个班级有26C 种不同方法,然后安排学生有C 24C 22种,故有222642C C C =12A 26C 24(种). 6.(2017·汉中质检)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( ) A .24对 B .30对 C .48对 D .60对答案 C解析 正方体中共有12条面对角线,任取两条作为一对共有C 212=66(对),12条对角线中的两条所构成的关系有平行、垂直、成60°角.相对两面上的4条对角线组成的C 24=6(对)组合中,平行有2对,垂直有4对,所以所有的平行和垂直共有3C 24=18(对).所以成60°角的有C 212-3C 24=66-18=48(对). 7.(2016·北京西城区期末)现有5名教师要带3个兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,但其中甲教师和乙教师均不能单独带队,则不同的带队方案有________种.(用数字作答) 答案 54解析 第一类,把甲、乙看作一个复合元素,另外3人分成两组,再分配到3个小组中,有C 23A 33=18(种);第二类,先把另外的3人分配到3个小组,再把甲、乙分配到其中2个小组,有A33A23=36(种).根据分类加法计数原理可得,共有36+18=54(种).8.(2017·福州质检)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种.(用数字作答)答案60解析分两类:第一类:3张中奖奖券分给3个人,共A34种分法;第二类:3张中奖奖券分给2个人相当于把3张中奖奖券分两组再分给4人中的2人,共有C23A24种分法.总获奖情况共有A34+C23A24=60(种).9.把5件不同产品摆成一排,若产品A与产品B相邻,产品A与产品C不相邻,则不同的摆法有________种.答案36解析先考虑产品A与B相邻,把A,B作为一个元素有A44种方法,而A,B可交换位置,所以有2A44=48(种)摆法,又当A,B相邻且又满足A,C相邻,有2A33=12(种)摆法,故满足条件的摆法有48-12=36(种).10.若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种.答案11解析把g、o、o、d 4个字母排一列,可分两步进行,第一步:排g和d,共有A24种排法;第二步:排两个o.共一种排法,所以总的排法种数为A24=12.其中正确的有一种,所以错误的共有A24-1=12-1=11(种).11.将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有________种.(用数字作答)答案480解析从左往右看,若C排在第1位,共有A55=120(种)排法;若C排在第2位,A和B有C右边的4个位置可以选,共有A24·A33=72(种)排法;若C排在第3位,则A,B可排C的左侧或右侧,共有A22·A33+A23·A33=48(种)排法;若C排在第4,5,6位时,其排法数与排在第3,2,1位相同,故共有2×(120+72+48)=480(种)排法.12.(2017·青岛月考)2016年某通讯公司推出一组手机卡号码,卡号的前七位数字固定,后四位数从“0000”到“9999”共10 000个号码中选择.公司规定:凡卡号的后四位恰带有两个数字“6”或恰带有两个数字“8”的一律作为“金猴卡”,享受一定优惠政策.如后四位数为“2663”,“8685”为“金猴卡”,求这组号码中“金猴卡”的张数.解①当后四位数恰有2个6时,“金猴卡”共有C24×9×9=486(张);②当后四位数恰有2个8时,“金猴卡”也共有C24×9×9=486(张).但这两种情况都包含了后四位数是由2个6和2个8组成的这种情况,所以要减掉C24=6,即“金猴卡”共有486×2-6=966(张).13.有9名学生,其中2名会下象棋但不会下围棋,3名会下围棋但不会下象棋,4名既会下围棋又会下象棋.现在要从这9名学生中选出2名学生,一名参加象棋比赛,另一名参加围棋比赛,共有多少种不同的选派方法?解设2名会下象棋但不会下围棋的同学组成集合A,3名会下围棋但不会下象棋的同学组成集合B,4名既会下围棋又会下象棋的同学组成集合C,则选派2名参赛同学的方法可以分为以下4类:第一类:A中选1人参加象棋比赛,B中选1人参加围棋比赛,方法数为C12·C13=6(种);第二类:C中选1人参加象棋比赛,B中选1人参加围棋比赛,方法数为C14·C13=12(种);第三类:C中选1人参加围棋比赛,A中选1人参加象棋比赛,方法数为C14·C12=8(种);第四类:C中选2人分别参加两项比赛,方法数为A24=12(种).由分类加法计数原理,知不同的选派方法共有6+12+8+12=38(种).*14.(2017·洛阳预测)设三位数n=abc,若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n有多少个?解a,b,c要能构成三角形的边长,显然均不为0,即a,b,c∈{1,2,3,…,9}.①若构成等边三角形,设这样的三位数的个数为n1,由于三位数中三个数字都相同,所以n1=C19=9;②若构成等腰(非等边)三角形,设这样的三位数的个数为n2,由于三位数中只有2个不同数字,设为a,b,注意到三角形腰与底可以互换,所以可取的数组(a,b)共有2C29组,但当大数为底时,设a>b,必须满足b<a<2b,此时,不能构成三角形的数字是共20种情况.同时,每个数组(a,b)中的两个数字填上三个数位,有C23种情况,故n2=C23(2C29-20)=156.综上,n=n1+n2=165.。