2014山东省烟台二模理科数学试题
- 格式:doc
- 大小:983.50 KB
- 文档页数:9
2014²山东卷(理科数学)1.[2014·山东卷] 已知a ,b ∈R ,i 是虚数单位,若a -i 与2+b i 互为共轭复数,则(a +b i)2=( )A .5-4iB .5+4iC .3-4iD .3+4i1.D [解析]因为a -i 与2+b i 互为共轭复数,所以a =2,b =1,所以(a +b i)2=(2+i)2=3+4i.故选D.2.,[2014·山东卷] 设集合A ={x ||x -1|<2},B ={y |y =2x ,x ∈[0,2]},则A ∩B =( ) A .[0,2] B .(1,3) C .[1,3) D .(1,4) 2.C [解析]根据已知得,集合A ={x |-1<x <3},B ={y |1≤y ≤4},所以A ∩B ={x |1≤x <3}.故选C.3.,[2014·山东卷] 函数f (x )=1(log 2x )2-1的定义域为( )A.⎝⎛⎭⎫0,12B .(2,+∞) C.⎝⎛⎭⎫0,12∪(2,+∞) D.⎝⎛⎦⎤0,12∪[2,+∞) 3.C [解析]根据题意得,⎩⎪⎨⎪⎧x >0,(log 2)2-1>0,解得⎩⎪⎨⎪⎧x >0,x >2或x <12.故选C. 4.[2014·山东卷] 用反证法证明命题“设a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是( )A.方程x 2+ax +b =0没有实根B.方程x 2+ax +b =0至多有一个实根C.方程x 2+ax +b =0至多有两个实根D.方程x 2+ax +b =0恰好有两个实根4.A [解析]“方程x 2+ax +b =0至少有一个实根”等价于“方程x 2+ax +b =0有一个实根或两个实根”,所以该命题的否定是“方程x 2+ax +b =0没有实根”.故选A.5.,,[2014·山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A.1x 2+1>1y 2+1B.ln(x 2+1)>ln(y 2+1)C.sin x >sin yD.x 3>y 35.D [解析]因为a x <a y (0<a <1),所以x >y ,所以sin x >sin y ,ln(x 2+1)>ln(y 2+1),1x 2+1>1y 2+1都不一定正确,故选D. 6.[2014·山东卷] 直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A.2 2B.4 2C.2D.46.D [解析]直线y =4x 与曲线y =x 3在第一象限的交点坐标是(2,8),所以两者围成的封闭图形的面积为⎠⎛02(4x -x 3)d x =⎝⎛⎪⎪⎭⎫2x 2-14x 420=4,故选D.7.[2014·山东卷] 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组.下图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )图1-1A.6B.8C.12D.187.C [解析]因为第一组与第二组一共有20人,并且根据图像知第一组与第二组的人数比是0.24∶0.16=3∶2,所以第一组有20³35=12.又因为第一组与第三组的人数比是0.24∶0.36=2∶3,所以第三组一共有12÷23=18.因为第三组中没有疗效的有6人,所以第三组中有疗效的人数是18-6=12.8.[2014·山东卷] 已知函数f (x )=|x -2|+1,g (x )=kx ,若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )A.⎝⎛⎭⎫0,12B.⎝⎛⎭⎫12,1C.(1,2) D.(2,+∞) 8.B [解析]画出函数f (x )的图像,如图所示.若方程f (x )=g (x )有两个不相等的实数,则函数f (x ),g (x )有两个交点,则k >12,且k <1.故选B.9.[2014·山东卷] 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -1≤0,2x -y -3≥0,当目标函数z =ax +by (a >0,b >0)在该约束条件下取到最小值25时,a 2+b 2的最小值为( )A.5B.4C.5D.29.B [解析]画出约束条件表示的可行域(如图所示).显然,当目标函数z =ax +by 过点A (2,1)时,z 取得最小值,即2 5=2a +b ,所以2 5-2a =b ,所以a 2+b 2=a 2+(2 5-2a )2=5a 2-8 5a +20,构造函数m (a )=5a 2-8 5a +20(5>a >0),利用二次函数求最值,显然函数m (a )=5a 2-85a +20的最小值是4³5³20-(8 5)24³5=4,即a 2+b 2的最小值为4.故选B.10.,[2014·山东卷] 已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b 2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为( ) A.x ±2y =0B.2x ±y =0C.x ±2y =0D.2x ±y =010.A [解析]椭圆C 1的离心率e 1=a 2-b 2a ,双曲线C 2的离心率e 2=a 2+b 2a .由e 1e 2=a 2-b 2a ²a 2+b 2a=1-⎝⎛⎭⎫b a 2³1+⎝⎛⎭⎫b a 2=32,解得⎝⎛⎭⎫b a 2=12,所以b a =22,所以双曲线C 2的渐近线方程是y =±22x .故选A.11.[2014·山东卷] 执行如图1-2所示的程序框图,若输入的x 的值为1,则输出的n 的值为____.图1-211.3 [解析]x =1满足不等式,执行循环后,x =2,n =1;x =2满足不等式,执行循环后,x =3,n =2;x =3满足不等式,执行循环后,x =4,n =3;x =4不满足不等式,结束循环,输出的n 的值为3.12.,[2014·山东卷] 在△ABC 中,已知AB →²AC →=tan A ,当A =π6时,△ABC 的面积为______.12.16 [解析]因为AB ·AC =|AB →|²|AC →|cos A =tan A ,且A =π6,所以|AB →|²|AC →|=23,所以△ABC 的面积S =12|AB →|²|AC →|sin A =12³23³sin π6=16.13.[2014·山东卷] 三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC 的体积为V 2,则V 1V 2=________.13.14 [解析]如图所示,由于D ,E 分别是边PB 与PC 的中点,所以S △BDE =14S △PBC .又因为三棱锥A BDE 与三棱锥A -PBC 的高长度相等,所以V 1V 2=14.14.,[2014·山东卷] 若⎝⎛⎭⎫ax 2+bx 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________.14.2[解析]T r +1=C r 6(ax 2)6-r²⎝⎛⎭⎫b x r=C r6a 6-r ²b r x 12-3r ,令12-3r =3,得r =3,所以C 36a 6-3b 3=20,即a 3b 3=1,所以ab =1,所以a 2+b 2≥2ab =2,当且仅当a =b ,且ab =1时,等号成立.故a 2+b 2的最小值是2.15.[2014·山东卷] 已知函数y =f (x )(x ∈R ),对函数y =g (x )(x ∈I ),定义g (x )关于f (x )的“对称函数”为函数y =h (x )(x ∈I ),y =h (x )满足:对任意x ∈I ,两个点(x ,h (x )),(x ,g (x ))关于点(x ,f (x ))对称.若h (x )是g (x )=4-x 2关于f (x )=3x +b 的“对称函数”,且h (x )>g (x )恒成立,则实数b 的取值范围是________.15.(210,+∞) [解析]g (x )的图像表示圆的一部分,即x 2+y 2=4(y ≥0).当直线y =3x +b 与半圆相切时,满足h (x )>g (x ),根据圆心(0,0)到直线y =3x +b 的距离是圆的半径求得|b |9+1=2,解得b =210或b =-210(舍去),要使h (x )>g (x )恒成立,则b >210,即实数b 的取值范围是(210,+∞).16.,[2014·山东卷] 已知向量a =(m ,cos2x ),b =(sin2x ,n ),函数f (x )=a ·b ,且y =f (x )的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2. (1)求m ,n 的值;(2)将y =f (x )的图像向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图像,若y =g (x )图像上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.16.解:(1)由题意知,f (x )=a·b =m sin2x +n cos2x .因为y =f (x )的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2,所以⎩⎨⎧3=m sin π6+n cos π6,-2=m sin 4π3+n cos 4π3,即⎩⎨⎧3=12m +32n ,-2=-32m -12n ,解得m =3,n =1.(2)由(1)知f (x )=3sin2x +cos2x =2sin ⎝⎛⎭⎫2x +π6.由题意知,g (x )=f (x +φ)=2sin ⎝⎛⎭⎫2x +2φ+π6.设y =g (x )的图像上符合题意的最高点为(x 0,2).由题意知,x 20+1=1,所以x 0=0,即到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g (x )得,sin ⎝⎛⎭⎫2φ+π6=1.因为0<φ<π,所以φ=π6.因此,g (x )=2sin ⎝⎛⎭⎫2x +π2=2cos2x .由2k π-π≤2x ≤2k π,k ∈Z 得k π-π2≤x ≤k π,k ∈Z ,所以函数y =g (x )的单调递增区间为⎣⎡⎦⎤k π-π2,k π,k ∈Z .17.,[2014·山东卷] 如图1-3所示,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,∠DAB =60°,AB =2CD =2,M 是线段AB 的中点.图1-3(1)求证:C 1M ∥平面A 1ADD 1;(2)若CD 1垂直于平面ABCD 且CD 1=3,求平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值.17.解:(1)证明:因为四边形ABCD 是等腰梯形, 且AB =2CD ,所以AB ∥DC ,又M 是AB 的中点,所以CD ∥MA 且CD =MA .连接AD 1.因为在四棱柱ABCD -A 1B 1C 1D 1中,CD ∥C 1D 1,CD =C 1D 1,所以C 1D 1∥MA ,C 1D 1=MA ,所以四边形AMC 1D 1为平行四边形, 因此,C 1M ∥D 1A .又C 1M ⊄平面A 1ADD 1,D 1A ⊂平面A 1ADD 1, 所以C 1M ∥平面A 1ADD 1. (2)方法一:连接AC ,MC .由(1)知,CD ∥AM 且CD =AM , 所以四边形AMCD 为平行四边形, 所以BC =AD =MC .由题意∠ABC =∠DAB =60°, 所以△MBC 为正三角形,因此AB =2BC =2,CA =3, 因此CA ⊥CB .设C 为坐标原点,建立如图所示的空间直角坐标系C xyz .所以A (3,0,0),B (0,1因此M ⎝⎛⎭⎫32,12,0,所以MD 1→=⎝⎛⎭⎫-32,-12,3,D 1C 1→=MB →=⎝⎛⎭⎫-32,12,0.设平面C 1D 1M 的一个法向量n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·D 1C 1→=0,n ·MD 1→=0,得⎩⎨⎧3x -y =0,3x +y -2 3z =0,可得平面C 1D 1M 的一个法向量n =(1,3,1). 又CD 1→=(0,0,3)为平面ABCD 的一个法向量.因此cos 〈CD 1→,n 〉=CD 1→²n |CD 1→||n |=55,所以平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值为55. 方法二:由(1)知,平面D 1C 1M ∩平面ABCD =AB ,点过C 向AB 引垂线交AB 于点N ,连接D 1N.由CD 1⊥平面ABCD ,可得D 1N ⊥AB , 因此∠D 1NC 为二面角C 1AB C 的平面角. 在Rt △BNC 中,BC =1,∠NBC =60°, 可得CN =32, 所以ND 1=CD 21+CN 2=152. 在Rt △D 1CN 中,cos ∠D 1NC =CN D 1N =32152=55,所以平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值为55. 18.,[2014·山东卷] 乒乓球台面被网分隔成甲、乙两部分,如图1-4所示,甲上有两个不相交的区域A ,B ,乙被划分为两个不相交的区域C ,D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其他情况记0分.对落点在A 上的来球,队员小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在A ,B 上各一次,小明的两次回球互不影响.求:(1)小明两次回球的落点中恰有一次的落点在乙上的概率; (2)两次回球结束后,小明得分之和ξ的分布列与数学期望.图1-418.解:(1)记A i 为事件“小明对落点在A 上的来球回球的得分为i 分”(i =0,1,3),则P (A 3)=12,P (A 1)=13,P (A 0)=1-12-13=16;记B i 为事件“小明对落点在B 上的来球回球的得分为i 分”(i =0,1,3), 则P (B 3)=15,P (B 1)=35,P (B 0)=1-15-35=15.记D 为事件“小明两次回球的落点中恰有1次的落点在乙上”.由题意,D =A 3B 0+A 1B 0+A 0B 1+A 0B 3, 由事件的独立性和互斥性,P (D )=P (A 3B 0+A 1B 0+A 0B 1+A 0B 3) =P (A 3B 0)+P (A 1B 0)+P (A 0B 1)+P (A 0B 3) =P (A 3)P (B 0)+P (A 1)P (B 0)+P (A 0)·P (B 1)+P (A 0)P (B 3) =12³15+13³15+16³35+16³15 =310, 所以小明两次回球的落点中恰有1次的落点在乙上的概率为310.由题意,随机变量ξ可能的取值为0,1,2,3,4,6. (2)由事件的独立性和互斥性,得 P (ξ=0)=P (A 0B 0)=16³15=130,P (ξ=1)=P (A 1B 0+A 0B 1)=P (A 1B 0)+P (A 0B 1)=13³15+16³35=16,P (ξ=2)=P (A 1B 1)=13³35=15,P (ξ=3)=P (A 3B 0+A 0B 3)=P (A 3B 0)+P (A 0B 3)=12³15+16³15=215,P (ξ=4)=P (A 3B 1+A 1B 3)=P (A 3B 1)+P (A 1B 3)=12³35+13³15=1130,P (ξ=6)=P (A 3B 3)=12³15=110.所以数学期望Eξ=0³130+1³16+2³15+3³215+4³1130+6³110=9130.19.,,[2014·山东卷] 已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n-14na n a n +1,求数列{b n }的前n 项和T n . 19.解: (1)因为S 1=a 1,S 2=2a 1+2³12³2=2a 1+2,S 4=4a 1+4³32³2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)由题意可知, b n =(-1)n -14na n a n +1=(-1)n-14n(2n -1)(2n +1)=(-1)n -1⎝⎛⎭⎫12n -1+12n +1.当n 为偶数时,T n =⎝⎛⎭⎫1+13-⎝⎛⎭⎫13+15+…+⎝⎛12n -3+⎭⎫12n -1-⎝⎛⎭⎫12n -1+12n +1 =1-12n +1=2n2n +1. 当n 为奇数时,T n =⎝⎛⎭⎫1+13-⎝⎛⎭⎫13+15+…-⎝⎛⎭⎫12n -3+12n -1+⎝⎛⎭⎫12n -1+12n +1 =1+12n +1=2n +22n +1. 所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.⎝ ⎛⎭⎪⎫或T n =2n +1+(-1)n -12n +1 20.[2014·山东卷] 设函数f (x )=e x x 2-k ⎝⎛⎭⎫2x +ln x (k 为常数,e =2.71828…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围. 20.解:(1)函数y =f (x )的定义域为(0,+∞),f ′(x )=x 2e x -2x e x x 4-k ⎝⎛⎭⎫-2x 2+1x=x e x -2e x x 3-k (x -2)x 2=(x -2)(e x -kx )x 3.由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减;x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)由(1)知,当k ≤0时,函数f (x )在(0,2)内单调递减,故f (x )在(0,2)内不存在极值点; 当k >0时,设函数g (x )=e x -kx ,x ∈(0,+∞). 因为g ′(x )=e x -k =e x -e ln k , 当0<k ≤1时,当x ∈(0,2)时,g ′(x )=e x -k >0,y =g (x )单调递增, 故f (x )在(0,2)内不存在两个极值点.当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减; x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增. 所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ). 函数f (x )在(0,2)内存在两个极值点. 当且仅当⎩⎪⎨⎪⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k <2,解得e<k <e 22.综上所述,函数f (x )在(0,2)内存在两个极值点时,k 的取值范围为⎝⎛⎭⎫e ,e 22. 21.,,[2014·山东卷] 已知抛物线C :y 2=2px (p >0)的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有|F A |=|FD |.当点A 的横坐标为3时,△ADF 为正三角形.(1)求C 的方程.(2)若直线l 1∥l ,且l 1和C 有且只有一个公共点E . ①证明直线AE 过定点,并求出定点坐标.②△ABE 的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.21.解:(1)由题意知F ⎝⎛⎭⎫p 2,0. 设D (t ,0)(t >0),则FD 的中点为⎝⎛⎭⎫p +2t 4,0.因为|F A |=|FD |,由抛物线的定义知3+p2=⎪⎪⎪⎪t -p 2, 解得t =3+p 或t =-3(舍去). 由p +2t4=3,解得p =2, 所以抛物线C 的方程为y 2=4x . (2)①证明:由(1)知F (1,0).设A (x 0,y 0)(x 0y 0≠0),D (x D ,0)(x D >0). 因为|F A |=|FD |,则|x D -1|=x 0+1,由x D >0得x D =x 0+2,故D (x 0+2,0). 故直线AB 的斜率k AB =-y 02.因为直线l 1和直线AB 平行,设直线l 1的方程为y =-y 02x +b , 代入抛物线方程得y 2+8y 0y -8b y 0=0, 由题意Δ=64y 20+32b y 0=0,得b =-2y 0. 设E (x E ,y E ),则y E =-4y 0,x E =4y 20. 当y 20≠4时,k AE =y E -y 0x E -x 0=-4y 0+y 04y 20-y 204=4y 0y 20-4, 可得直线AE 的方程为y -y 0=4y 0y 20-4(x -x 0), 由y 20=4x 0,整理可得y =4y 0y 20-4(x -1), 直线AE 恒过点F (1,0).当y 20=4时,直线AE 的方程为x =1,过点F (1,0). 所以直线AE 过定点F (1,0).②由①知,直线AE 过焦点F (1,0),所以|AE |=|AF |+|FE |=(x 0+1)+⎝⎛⎭⎫1x 0+1=x 0+1x 0+2. 设直线AE 的方程为x =my +1,因为点A (x 0,y 0)在直线AE 上,故m =x 0-1y 0. 设B (x 1,y 1).直线AB 的方程为y -y 0=-y 02(x -x 0), 由y 0≠0,得x =-2y 0y +2+x 0. 代入抛物线方程得y 2+8y 0y -8-4x 0=0, 所以y 0+y 1=-8y 0, 可求得y 1=-y 0-8y 0,x 1=4x 0+x 0+4. 所以点B 到直线AE 的距离为d =⎪⎪⎪⎪4x 0+x 0+4+m ⎝⎛⎭⎫y 0+8y 0-11+m 2=4(x 0+1)x 0=4⎝⎛⎭⎫x 0+1x 0, 则△ABE 的面积S =12³4⎝⎛⎭⎫x 0+1x 0x 0+1x 0+2≥16, 当且仅当1x 0=x 0,即x 0=1时,等号成立. 所以△ABE 的面积的最小值为16.。
最新2014年全国高考理科数学二模试题及答案-山东卷解析:C对于f(x)=ax,当a1时,f(x)在R上是增函数。
对于g(x)=(2-a)x,当2-a>0时,g(x)在R上是增函数;当2-a<0时,g(x)在R上是减函数。
所以当a>2时,f(x)是减函数,g(x)是增函数,两者同时成立,为充分必要条件。
答案选C。
4在平面直角坐标系内,点A(0,0),点B(3,4),点C(4,3),则△ABC的面积为A5B6C7D8解析:BABC的面积可以用向量叉积求解,设向量BA=(3,-4),向量CA=(4,-3),则ABC的面积为1/2|BA×CA|=1/2|3×(-3)-4×4|=6.答案选B。
5已知集合A={x|x2-2x-3<0},则A的取值范围是A(-∞,1)∪(3,∞)B(-∞,1)∪(3,∞)C(-∞,-1)∪(3,∞)D(-∞,-1)∪(1,3)∪(3,∞)解析:Dx2-2x-3=(x-3)(x+1)<0,解得x∈(-∞,-1)∪(3,∞)。
答案选D。
6已知函数f(x)=x3-3x2+5x-1,则f(x)的单调递减区间为A(-∞,1)B(1,2)C(2,+∞)D(1,+∞)解析:Af'(x)=3x2-6x+5,判别式△=6-4×3×5=-560的解不存在,f(x)在R上单调递减。
答案选A。
7已知集合A={x|x2+px+q>0},其中p,q∈R,若A中至少有一个元素,则下列说法正确的是A p2-4q≤0B p2-4q>0C p2+4q≤0D p2+4q>0解析:B当A中至少有一个元素时,x2+px+q>0,即判别式△=p2-4q0.答案选B。
8已知函数f(x)=x2-2ax+a2+3a-1,若对于任意实数x,都有f(x)≥0,则a的取值范围是A(-∞,-2]∪[1,2]B(-∞,-2]∪[2,+∞)C[-1,2]D(-∞,-1]∪[2,+∞)解析:Bf(x)=x2-2ax+a2+3a-1=(x-a)2+(3a-1),当a≥2或a≤-2时,(3a-1)≤0,所以f(x)≤0,不符合条件。
2014年山东省某校高考数学二模试卷(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分).1. 已知集合A ={x ∈R||x|≤2},B ={x ∈R|x ≤1},则A ∩B =( ) A (−∞, 2] B [1, 2] C [−2, 2] D [−2, 1]2. 函数f(x)是R 上的增函数且f(a)+f(b)>f(−a)+f(−b)则( ) A a >b >0 B a −b >0 C a +b >0 D a >0,b >03. 过点(1, 0)且与直线x −2y −2=0平行的直线方程是( )A x −2y −1=0B x −2y +1=0C 2x +y −2=0D x +2y −1=04. 阅读如图所示的程序框图,如果输出i =4,那么空白的判断框中应填入的条件是( )A S <8B S <9C S <10D S <115. 样本中共有五个个体,其值分别为a ,0,1,2,3.若该样本的平均值为1,则样本方差为( )A √65 B 65C √2D 26. 设定义在R 上的函数f(x)满足f(x)⋅f(x +2)=13,若f(1)=2,则f(99)=( ) A 13 B 2 C 132D 2137. 由0,1,2,3,4这5个数字组成没有重复数字且个位上的数字不能为1的3位数共有( )A 28个B 36个C 39个D 42个8. 实数x ,y 满足{y ≥1y ≤2x −1x +y ≤b ,如果目标函数z =x −y 的最小值为−2,则实数b 的值为( )A 0B 6C 7D 89. 在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且角A =60∘,若S △ABC =15√34,且5sinB =3sinC ,则ABC 的周长等于( )A 8+√19B 14C 10+3√5D 1810. 设互不相等的平面向量组a i (i =1, 2, 3,…),满足①|a i |=1;②a i ⋅a i+1=0.若T m =a 1+a 2+...+a m (m ≥2),则|T m |的取值集合为( )A {0, √2}B {1, √3}C {1, √2, √3}D {0, 1, √2}二、填空题:把答案填在答题卷中的横线上(本大题共4小题,每小题5分,共25分). 11. 双曲线x 24−y 2m =1的焦距为4√2,则m =________. 12. 二项式(ax 2√x)5的展开式中常数项为160,则a 的值为________.13. 已知√2+23=2√23,√3+38=3√38,√4+415=4√415…,照此规律,第五个等式为________.14. 某制冷设备厂设计生产一种长方形薄板,如图所示,长方形ABCD(AB>AD)的周长为4米,沿AC折叠使B到B′位置,AB′交DC于P.研究发现当ADP的面积最大时最节能,则最节能时长方形ABCD的面积为________.二、请在下列三题中任选一题作答,如果多做,则按所做的第一题评分。
2014年高三诊断性测试数学答案(理)一、选择题: DCBBA BBDCA二、填空题:11. 3- 12.134 13.2192x - 14. 1515.①②③ 三、解答题:16.解:(1)由0⋅=m n 得22cos cos 0x x x y +-=,………… 2分即22cos cos =cos 221y x x x x x =+++ 2sin 216x π⎛⎫=++ ⎪⎝⎭, 所以()2sin 216f x x π⎛⎫=++ ⎪⎝⎭,其最小正周期为π.……………………… 6分 (2)由题意得()32A f =, 所以2)(62A k Z k πππ+∈+=,因为0A π<<,所以3A π=. ……… 8分由正弦定理得b B =,c C =,b c B C +=+2sin()4sin()36B B B ππ=-=+, ……………………… 10分 ⎪⎭⎫ ⎝⎛∈32,0πB ,1sin()( 1]62B π∴+∈,,]4,2(∈+∴c b , 所以b c +的取值范围为(2,4]. ……………………………………… 12分17.解(1) 12n n a S ,,成等差数列,∴122n n a S =+,……………… 1分当1n =时,11122a S =+,112a ∴=,………………………………… 2分 当2n ≥时,122n n S a =-,11122n n S a --=-, 两式相减得:1122n n n n n a S S a a --=-=-,12n n a a -∴=, ………… 4分 所以数列{}n a 是首项为12,公比为2的等比数列, 12122n n n a a --=⨯=. …………………………………………………… 6分(2)2122322123222222log log log log (21)(21)n n n n a a n b n n +-+-++=⨯=⨯=-+111111()212122121n b n n n n =⨯=--+-+…………………… 10分 1231111111111[1+-++)]23352121n b b b b n n ++++=---+()()( =111(1)2212n -<+.…………………………………………… 12分 解:(1)∵ 3,6,15===n M N ,ξ的可能值为0,1,2,3其分布列为315396)(C C C k P k k -⋅==ξ )3 , 2 , 1 , 0(=k ………………… 3分………………… 6分(2)依题意可知,一年中每天空气质量达到一级的概率为52156==p 一年中空气质量达到一级的天数为η则η~⎪⎭⎫ ⎝⎛52,360B , 所以14452360=⨯=ηE (天) ……………………11分 一年中空气质量达到一级的天数为144天 ……………………………… 12分19. 证明:(1)平行四边形ABCD 中,6AB =,10AD =,8BD =, 沿直线BD 将△BCD 翻折成△BC D '可知6CD =,10BC BC '==,8BD =,即222''BC C D BD =+,'C D BD ⊥. ………………………………………………… 2分 ∵平面BC D '⊥平面ABD ,平面BC D '平面ABD =BD ,C D '⊂平面BC D ',∴C D '⊥平面ABD . ……………………………… 5分(2)由(1)知C D '⊥平面ABD ,且CD BD ⊥,如图,以D 为原点,建立空间直角坐标系D xyz -. …………………… 6分 则(0,0,0)D ,(8,6,0)A ,(8,0,0)B ,'(0,0,6)C . ∵E 是线段AD 的中点, ∴(4,3,0)E ,(8,0,0)BD =-.在平面BEC '中,(4,3,0)BE =-,'(8,0,6)BC =-,设平面BEC '法向量为(,,)x y z =n , ∴ 0'0BE BC ⎧⋅=⎪⎨⋅=⎪⎩n n ,即430860x y y z -+=⎧⎨-+=⎩, 令3x =,得4,4y z ==,故(3,4,4)=n .………9分 设直线BD 与平面BEC '所成角为θ,则||3sin |cos ,|||||BD BD BD θ⋅=<>==⋅n n n ……………………………… 11分 ∴ 直线BD 与平面BEC '. …………………… 12分 20.解:(1)设椭圆C的方程为)0(12222>>=+b a b y a x则b =由2221,2c a c b a ==+,得4a =, ∴椭圆C 的方程为2211612x y +=. ………………………………… 5分 (2) 当APQ BPQ ∠=∠时,PA 、PB 的斜率之和为0,设直线PA 的斜率为k , 则PB 的斜率为k -,PA 的直线方程为3(2)y k x -=-,由 ⎪⎩⎪⎨⎧=+-=-11216 )2(322y x x k y 整理得 222(34)8(32)4(32)480k x k kx k ++-+--=, ……………………… 9分 2143)32(82kk k x +-=+ , 同理PB 的直线方程为)2(3--=-x k y ,可得22243)32(843)32(82kk k k k k x ++=+---=+ ∴2121222161248,3434k k x x x x k k--+=-=++ , (12)分214)(3)2(3)2(212121212121=--+=---++-=--=x x k x x k x x x k x k x x y y k AB , 所以AB 的斜率为定值21. …………………………………………… 13分 21.解:(1)222122222(2)(e 1)()()()e e ex x x x x x a x x a x x a g x f x f x -------=-=-=, 设a x x x h --=2)(2, 44a ∆=+①当1a <-时,0,∆<函数()g x 有一个零点:10.x = …………… 1分 ②当1a =-时,0,∆=函数()g x 有两个零点:120, 1.x x == ……… 2分 ③当0a =时,0,∆>函数()g x 有两个零点:120, 2.x x == ………… 3分 ④当1,0a a >-≠时,0,∆>函数()g x 有三个零点:1230,11x x x ===+ ………………………………… 4分(2)222(22)e (2)e 2(1)2().e e nx nx n nx nxx n x x a nx n x a n f x -----+++⋅-'==…… 5分 设2()2(1)2n g x nx n x a n =-+++⋅-,()n g x 的图像是开口向下的抛物线. 由题意对任意,N n *∈()0n g x =有两个不等实数根12,x x ,且()[]121,4,1,4.x x ∈∉则对任意,N n *∈(1)(4)0n n g g <,即6(1)(8)0n a n a n ⎡⎤⋅+⋅⋅--<⎢⎥⎣⎦, ………………………………………… 7分 又任意,N n *∈68n -关于n 递增,681n->-, 故min 61(8),186 2.a a n-<<--<<-=所以a 的取值范围是()1,2.- ……………………………………………… 9分(3)由(2)知, 存在,R x ∈22(1)2()0e k kx kx k x a k f x -+++⋅-'=<,又函数()k f x 在R 上是单调函数,故函数()k f x 在R 上是单调减函数, ………………… 10分从而2224(1)4(2)4(1)0,k k k ka k a k ∆=++-=++≤即21(1).a k ≤-+…11分 所以2222222214()4(1)41(1).m k m m m a m m k k -⎡⎤∆=++≤+-+=⎢⎥⎣⎦ 由,,,N k m k m *∈<知0.m ∆< …………………………………13分即对任意,R x ∈22(1)2()0e k kx kx k x a k f x -+++⋅-'=< 故函数()m f x 在R 上是减函数.……………………………………14分。
2014年高考山东卷理科数学真题及参考答案新东方在线举国瞩目的2014高考数学科目的考试已结束,新东方在线高考名师团队第一时间对2014高考数学真题进行了解析,希望能对考生、家长有所帮助,也希望对2015高考考生提供借鉴。
以下是济南新东方高考名师团队老师提供的2014高考山东卷理科数学真题及参考答案,供广大考生参考。
一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,选择符合题目要求的选项。
1.已知i R b a ,,∈是虚数单位,若i a -与bi +2互为共轭复数,则=+2)(bi a (A )i 45- (B) i 45+ (C) i 43- (D) i 43+答案:D解析:a i -与2bi +互为共轭复数,()()2222,124434a b a bi i i i i∴==∴+=+=++=+2.设集合},]2,0[,2{},21{∈==<-=x y y B x x A x则=B A(A) [0,2] (B) (1,3) (C) [1,3) (D) (1,4) 答案:C 解析:[][][)12212132,0,21,41,3x x x x y x y A B -<∴-<-<∴-<<=∈∴∈∴⋂=Q Q3.函数1)(log 1)(22-=x x f 的定义域为(A))210(, (B) )2(∞+,(C) ),2()210(+∞ , (D) )2[]210(∞+,, 答案:C解析:()22log 10x ->2log 1x ∴>或2log 1x ∴<-2x ∴> 或102x ∴<>。
4. 用反证法证明命题“设,,R b a ∈则方程02=++b ax x 至少有一个实根”时要做的假设是(A)方程02=++b ax x 没有实根 (B)方程02=++b ax x 至多有一个实根 (C)方程02=++b ax x 至多有两个实根 (D)方程02=++b ax x 恰好有两个实根 5.已知实数y x ,满足)10(<<<a a a y x ,则下列关系式恒成立的是 (A)111122+>+y x (B) )1ln()1ln(22+>+y x (C) y x sin sin > (D) 33y x > 答案:D 解析:,01x y a a a x y<<<∴>Q ,排除A,B ,对于C ,sin x 是周期函数,排除C 。
盛年不重来,一日难再晨。
及时宜自勉,岁月不待人。
2014·山东卷(理科数学)1.[2014·山东卷] 已知a ,b ∈R ,i 是虚数单位,若a -i 与2+b i 互为共轭复数,则(a +b i)2=( )A .5-4iB .5+4iC .3-4iD .3+4i1.D [解析] 因为a -i 与2+b i 互为共轭复数,所以a =2,b =1,所以(a +b i)2=(2+i)2=3+4i.故选D. 2.,[2014·山东卷] 设集合A ={x ||x -1|<2},B ={y |y =2x ,x ∈[0,2]},则A ∩B =( ) A .[0,2] B .(1,3) C .[1,3) D .(1,4)2.C [解析] 根据已知得,集合A ={x |-1<x <3},B ={y |1≤y ≤4},所以A ∩B ={x |1≤x <3}.故选C.3.,[2014·山东卷] 函数f (x )=1(log 2x )2-1的定义域为( )A.⎝⎛⎭⎫0,12 B .(2,+∞) C. ⎝⎛⎭⎫0,12∪(2,+∞) D. ⎝⎛⎦⎤0,12∪[2,+∞) 3.C [解析] 根据题意得,⎩⎪⎨⎪⎧x >0,(log 2)2-1>0,解得⎩⎪⎨⎪⎧x >0,x >2或x <12.故选C. 4.[2014·山东卷] 用反证法证明命题“设a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是( )A. 方程x 2+ax +b =0没有实根B. 方程x 2+ax +b =0至多有一个实根C. 方程x 2+ax +b =0至多有两个实根D. 方程x 2+ax +b =0恰好有两个实根4.A [解析] “方程x 2+ax +b =0至少有一个实根”等价于“方程x 2+ax +b =0有一个实根或两个实根”,所以该命题的否定是“方程x 2+ax +b =0没有实根”.故选A.5.,,[2014·山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A. 1x 2+1>1y 2+1B. ln(x 2+1)>ln(y 2+1)C. sin x >sin yD. x 3>y 35.D [解析] 因为a x <a y (0<a <1),所以x >y ,所以sin x >sin y ,ln(x 2+1)>ln(y 2+1),1x 2+1>1y 2+1都不一定正确,故选D.6.[2014·山东卷] 直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( )A. 2 2B. 4 2C. 2D. 46.D [解析] 直线y =4x 与曲线y =x 3在第一象限的交点坐标是(2,8),所以两者围成的封闭图形的面积为⎠⎛02(4x -x 3)d x =⎝⎛⎪⎪⎭⎫2x 2-14x 420=4,故选D.7.[2014·山东卷] 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组.下图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )图11A. 6B. 8C. 12D. 187.C [解析] 因为第一组与第二组一共有20人,并且根据图像知第一组与第二组的人数比是0.24∶0.16=3∶2,所以第一组有20×35=12.又因为第一组与第三组的人数比是0.24∶0.36=2∶3 ,所以第三组一共有12÷23=18.因为第三组中没有疗效的有6人,所以第三组中有疗效的人数是18-6=12.8.[2014·山东卷] 已知函数f (x )=|x -2|+1,g (x )=kx ,若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )A. ⎝⎛⎭⎫0,12B. ⎝⎛⎭⎫12,1 C. (1,2) D. (2,+∞) 8.B [解析] 画出函数f (x )的图像,如图所示.若方程f (x )=g (x )有两个不相等的实数,则函数f (x ),g (x )有两个交点,则k >12,且k <1.故选B.9.[2014·山东卷] 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -1≤0,2x -y -3≥0,当目标函数z =ax +by (a >0,b >0)在该约束条件下取到最小值2 5时,a 2+b 2的最小值为( )A. 5B. 4C. 5D. 29.B [解析] 画出约束条件表示的可行域(如图所示).显然,当目标函数z =ax +by 过点A (2,1)时,z 取得最小值,即2 5=2a +b ,所以2 5-2a =b ,所以a 2+b 2=a 2+(2 5-2a )2=5a 2-8 5a +20,构造函数m (a )=5a 2-8 5a +20(5>a >0),利用二次函数求最值,显然函数m (a )=5a 2-85a +20的最小值是4×5×20-(85)24×5=4,即a 2+b 2的最小值为4.故选B.10.,[2014·山东卷] 已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b 2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为( ) A. x ±2y =0 B. 2x ±y =0 C. x ±2y =0 D. 2x ±y =010.A [解析] 椭圆C 1的离心率e 1=a 2-b 2a ,双曲线C 2的离心率e 2=a 2+b 2a .由e 1e 2=a 2-b 2a ·a 2+b 2a =1-⎝⎛⎭⎫b a 2×1+⎝⎛⎭⎫b a 2=32,解得⎝⎛⎭⎫b a 2=12,所以b a =22,所以双曲线C 2的渐近线方程是y =±22x .故选A.11.[2014·山东卷] 执行如图12所示的程序框图,若输入的x 的值为1,则输出的n 的值为____.图1211.3 [解析] x =1满足不等式,执行循环后,x =2,n =1;x =2满足不等式,执行循环后,x =3,n =2;x =3满足不等式,执行循环后,x =4,n =3;x =4不满足不等式,结束循环,输出的n 的值为3.12.,[2014·山东卷] 在△ABC 中,已知·=tan A ,当A =π6时,△ABC 的面积为______.12.16 [解析] 因为AB ·AC =||·||cos A =tan A ,且A =π6,所以||·||=23,所以△ABC 的面积S =12||·||sin A =12×23×sin π6=16. 13.[2014·山东卷] 三棱锥P ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE 的体积为V 1,P ABC 的体积为V 2,则V 1V 2=________.13.14 [解析] 如图所示,由于D ,E 分别是边PB 与PC 的中点,所以S △BDE =14S △PBC .又因为三棱锥A BDE 与三棱锥A PBC 的高长度相等,所以V 1V 2=14.14.,[2014·山东卷] 若⎝⎛⎭⎫ax 2+bx 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________. 14.2[解析] T r +1=C r 6(ax 2)6-r ·⎝⎛⎭⎫b x r=C r 6a 6-r ·b r x 12-3r ,令12-3r =3,得r =3,所以C 36a 6-3b 3=20,即a 3b 3=1,所以ab =1,所以a 2+b 2≥2ab =2,当且仅当a =b ,且ab =1时,等号成立.故a 2+b 2的最小值是2.15.[2014·山东卷] 已知函数y =f (x )(x ∈R ),对函数y =g (x )(x ∈I ),定义g (x )关于f (x )的“对称函数”为函数y =h (x )(x ∈I ),y =h (x )满足:对任意x ∈I ,两个点(x ,h (x )),(x ,g (x ))关于点(x ,f (x ))对称.若h (x )是g (x )=4-x 2关于f (x )=3x +b 的“对称函数”,且h (x )>g (x )恒成立,则实数b 的取值范围是________.15.(210,+∞) [解析] g (x )的图像表示圆的一部分,即x 2+y 2=4(y ≥0).当直线y =3x +b 与半圆相切时,满足h (x )>g (x ),根据圆心(0,0)到直线y =3x +b 的距离是圆的半径求得|b |9+1=2,解得b =210或b =-210(舍去),要使h (x )>g (x )恒成立,则b >210,即实数b 的取值范围是(210,+∞).16.,[2014·山东卷] 已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a ·b ,且y =f (x )的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2. (1)求m ,n 的值;(2)将y =f (x )的图像向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图像,若y =g (x )图像上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.16.解:(1)由题意知,f (x )=a·b =m sin 2x +n cos 2x .因为y =f (x )的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2,所以⎩⎨⎧3=m sin π6+n cos π6,-2=m sin 4π3+n cos 4π3,即⎩⎨⎧3=12m +32n ,-2=-32m -12n ,解得m =3,n =1.(2)由(1)知f (x )=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6.由题意知,g (x )=f (x +φ)=2sin ⎝⎛⎭⎫2x +2φ+π6.设y =g (x )的图像上符合题意的最高点为(x 0,2).由题意知,x 20+1=1,所以x 0=0, 即到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g (x )得,sin ⎝⎛⎭⎫2φ+π6=1.因为0<φ<π,所以φ=π6.因此,g (x )=2sin ⎝⎛⎭⎫2x +π2=2cos 2x .由2k π-π≤2x ≤2k π,k ∈Z 得k π-π2≤x ≤k π,k ∈Z ,所以函数y =g (x )的单调递增区间为⎣⎡⎦⎤k π-π2,k π,k ∈Z .17.,[2014·山东卷] 如图13所示,在四棱柱ABCD A 1B 1C 1D 1中,底面ABCD 是等腰梯形,∠DAB =60°,AB =2CD =2,M 是线段AB 的中点.图13(1)求证:C 1M ∥平面A 1ADD 1;(2)若CD 1垂直于平面ABCD 且CD 1=3,求平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值. 17.解:(1)证明:因为四边形ABCD 是等腰梯形,且AB=2CD,所以AB∥DC,又M是AB的中点,所以CD∥MA且CD=MA.连接AD1.因为在四棱柱ABCD A1B1C1D1中,CD∥C1D1,CD=C1D1,所以C1D1∥MA,C1D1=MA,所以四边形AMC1D1为平行四边形,因此,C1M∥D1A.又C1M⊄平面A1ADD1,D1A⊂平面A1ADD1,所以C1M∥平面A1ADD1.(2)方法一:连接AC,MC.由(1)知,CD∥AM且CD=AM,所以四边形AMCD为平行四边形,所以BC=AD=MC.由题意∠ABC=∠DAB=60°,所以△MBC为正三角形,因此AB=2BC=2,CA=3,因此CA⊥CB.设C为坐标原点,建立如图所示的空间直角坐标系C xyz. 所以A(3,0,0),B(0,1,0),D1(0,0,3).因此M ⎝⎛⎭⎫32,12,0,所以=⎝⎛⎭⎫-32,-12,3,==⎝⎛⎭⎫-32,12,0. 设平面C 1D 1M 的一个法向量n =(x ,y ,z ), 由得⎩⎨⎧3x -y =0,3x +y -2 3z =0,可得平面C 1D 1M 的一个法向量n =(1,3,1). 又=(0,0,3)为平面ABCD 的一个法向量. 因此cos 〈,n 〉==55, 所以平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值为55. 方法二:由(1)知,平面D 1C 1M ∩平面ABCD =AB ,点过C 向AB 引垂线交AB 于点N ,连接D 1N .由CD 1⊥平面ABCD ,可得D 1N ⊥AB ,因此∠D 1NC 为二面角C 1 AB C 的平面角. 在Rt △BNC 中,BC =1,∠NBC =60°, 可得CN =32, 所以ND 1=CD 21+CN 2=152. 在Rt △D 1CN 中,cos ∠D 1NC =CN D 1N =32152=55,所以平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值为55. 18.,[2014·山东卷] 乒乓球台面被网分隔成甲、乙两部分,如图14所示,甲上有两个不相交的区域A ,B ,乙被划分为两个不相交的区域C ,D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其他情况记0分.对落点在A 上的来球,队员小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在A ,B 上各一次,小明的两次回球互不影响.求:(1)小明两次回球的落点中恰有一次的落点在乙上的概率; (2)两次回球结束后,小明得分之和ξ的分布列与数学期望.图1418.解:(1)记A i 为事件“小明对落点在A 上的来球回球的得分为i 分”(i =0,1,3), 则P (A 3)=12,P (A 1)=13,P (A 0)=1-12-13=16;记B i 为事件“小明对落点在B 上的来球回球的得分为i 分”(i =0,1,3), 则P (B 3)=15,P (B 1)=35,P (B 0)=1-15-35=15.记D 为事件“小明两次回球的落点中恰有1次的落点在乙上”.由题意,D =A 3B 0+A 1B 0+A 0B 1+A 0B 3, 由事件的独立性和互斥性,P (D )=P (A 3B 0+A 1B 0+A 0B 1+A 0B 3) =P (A 3B 0)+P (A 1B 0)+P (A 0B 1)+P (A 0B 3) =P (A 3)P (B 0)+P (A 1)P (B 0)+P (A 0)·P (B 1)+P (A 0)P (B 3) =12×15+13×15+16×35+16×15 =310, 所以小明两次回球的落点中恰有1次的落点在乙上的概率为310.由题意,随机变量ξ可能的取值为0,1,2,3,4,6. (2)由事件的独立性和互斥性,得 P (ξ=0)=P (A 0B 0)=16×15=130,P (ξ=1)=P (A 1B 0+A 0B 1)=P (A 1B 0)+P (A 0B 1)=13×15+16×35=16,P (ξ=2)=P (A 1B 1)=13×35=15,P (ξ=3)=P (A 3B 0+A 0B 3)=P (A 3B 0)+P (A 0B 3)=12×15+16×15=215,P (ξ=4)=P (A 3B 1+A 1B 3)=P (A 3B 1)+P (A 1B 3)=12×35+13×15=1130,P (ξ=6)=P (A 3B 3)=12×15=110.可得随机变量ξ所以数学期望Eξ=0×130+1×16+2×15+3×215+4×1130+6×110=9130.19.,,[2014·山东卷] 已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -14n a n a n +1,求数列{b n }的前n 项和T n .19.解: (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)由题意可知,b n =(-1)n -14n a n a n +1=(-1)n-14n(2n -1)(2n +1)=(-1)n -1⎝⎛⎭⎫12n -1+12n +1.当n 为偶数时,T n =⎝⎛⎭⎫1+13-⎝⎛⎭⎫13+15+…+⎝⎛12n -3+⎭⎫12n -1-⎝⎛⎭⎫12n -1+12n +1 =1-12n +1=2n2n +1. 当n 为奇数时,T n =⎝⎛⎭⎫1+13-⎝⎛⎭⎫13+15+…-⎝⎛⎭⎫12n -3+12n -1+⎝⎛⎭⎫12n -1+12n +1 =1+12n +1=2n +22n +1. 所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.⎝ ⎛⎭⎪⎫或T n=2n +1+(-1)n -12n +120.[2014·山东卷] 设函数f (x )=e x x 2-k ⎝⎛⎭⎫2x +ln x (k 为常数,e =2.718 28…是自然对数的底数). (1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围. 20.解:(1)函数y =f (x )的定义域为(0,+∞),f ′(x )=x 2e x -2x e x x 4-k ⎝⎛⎭⎫-2x 2+1x=x e x -2e x x 3-k (x -2)x 2=(x -2)(e x -kx )x 3.由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减;x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增. 所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)由(1)知,当k ≤0时,函数f (x )在(0,2)内单调递减,故f (x )在(0,2)内不存在极值点; 当k >0时,设函数g (x )=e x -kx ,x ∈(0,+∞). 因为g ′(x )=e x -k =e x -e ln k , 当0<k ≤1时,当x ∈(0,2)时,g ′(x )=e x -k >0,y =g (x )单调递增, 故f (x )在(0,2)内不存在两个极值点.当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减; x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增. 所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ). 函数f (x )在(0,2)内存在两个极值点. 当且仅当⎩⎪⎨⎪⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k <2,解得e<k <e 22.综上所述,函数f (x )在(0,2)内存在两个极值点时,k 的取值范围为⎝⎛⎭⎫e ,e 22. 21.,,[2014·山东卷] 已知抛物线C :y 2=2px (p >0)的焦点为F ,A 为C 上异于原点的任意一点,过点A的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有|F A |=|FD |.当点A 的横坐标为3时,△ADF 为正三角形.(1)求C 的方程.(2)若直线l 1∥l ,且l 1和C 有且只有一个公共点E . ①证明直线AE 过定点,并求出定点坐标.②△ABE 的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.21.解:(1)由题意知F ⎝⎛⎭⎫p 2,0. 设D (t ,0)(t >0),则FD 的中点为⎝⎛⎭⎫p +2t 4,0.因为|F A |=|FD |,由抛物线的定义知3+p2=⎪⎪⎪⎪t -p 2, 解得t =3+p 或t =-3(舍去). 由p +2t4=3,解得p =2,所以抛物线C 的方程为y 2=4x . (2)①证明:由(1)知F (1,0).设A (x 0,y 0)(x 0y 0≠0),D (x D ,0)(x D >0). 因为|F A |=|FD |,则|x D -1|=x 0+1,由x D >0得x D =x 0+2,故D (x 0+2,0).故直线AB 的斜率k AB =-y 02. 因为直线l 1和直线AB 平行,设直线l 1的方程为y =-y 02x +b , 代入抛物线方程得y 2+8y 0y -8b y 0=0, 由题意Δ=64y 20+32b y 0=0,得b =-2y 0. 设E (x E ,y E ),则y E =-4y 0,x E =4y 20. 当y 20≠4时,k AE =y E -y 0x E -x 0=-4y 0+y 04y 20-y 204=4y 0y 20-4, 可得直线AE 的方程为y -y 0=4y 0y 20-4(x -x 0), 由y 20=4x 0,整理可得y =4y 0y 20-4(x -1), 直线AE 恒过点F (1,0).当y 20=4时,直线AE 的方程为x =1,过点F (1,0). 所以直线AE 过定点F (1,0).②由①知,直线AE 过焦点F (1,0),所以|AE |=|AF |+|FE |=(x 0+1)+⎝⎛⎭⎫1x 0+1=x 0+1x 0+2. 设直线AE 的方程为x =my +1,因为点A (x 0,y 0)在直线AE 上,故m =x 0-1y 0. 设B (x 1,y 1).直线AB 的方程为y -y 0=-y 02(x -x 0), 由y 0≠0,得x =-2y 0y +2+x 0. 代入抛物线方程得y 2+8y 0y -8-4x 0=0, 所以y 0+y 1=-8y 0, 可求得y 1=-y 0-8y 0,x 1=4x 0+x 0+4. 所以点B 到直线AE 的距离为d =⎪⎪⎪⎪4x 0+x 0+4+m ⎝⎛⎭⎫y 0+8y 0-11+m 2=4(x 0+1)x 0=4⎝⎛⎭⎫x 0+1x 0, 则△ABE 的面积S =12×4⎝⎛⎭⎫x 0+1x 0x 0+1x 0+2≥16, 当且仅当1x 0=x 0,即x 0=1时,等号成立. 所以△ABE 的面积的最小值为16.。
2014年普通高等学校招生全国统一考试(山东卷)数学(理科)第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2014年山东,理1,5分】已知,a b R ∈,i 是虚数单位,若i a -与2i b +互为共轭复数,则2i a b +=()( ) (A )54i - (B )54i + (C )34i - (D )34i + 【答案】D【解析】i a -与2i b +互为共轭复数,()()2222,1i 2i 44i i 34i a b a b ∴==∴+=+=++=+,故选D . (2)【2014年山东,理2,5分】设集合{12}A x x =-<,{2,[0,2]}x B y y x ==∈,则AB =( )(A )[0,2] (B)(1,3) (C)[1,3) (D )(1,4) 【答案】C【解析】12x -<,212x ∴-<-<,13x ∴-<<,2x y =,[]0,2x ∈,[]1,4y ∴∈,[)1,3A B ∴=,故选C . (3)【2014年山东,理3,5分】函数()f x )(A )1(0)2, (B )(2)+∞, (C )1(0)(2,)2+∞, (D )1(0][2)2+∞,, 【答案】C【解析】()22log 10x ->2log 1x ∴>或2log 1x ∴<-2x ∴> 或102x ∴<<,故选C .(4)【2014年山东,理4,5分】用反证法证明命题“设,a b R ∈,则方程20x ax b ++=至少有一个实根”时要做的假设是( )(A )方程20x ax b ++=没有实根 (B )方程20x ax b ++=至多有一个实根 (C)方程20x ax b ++=至多有两个实根 (D )方程20x ax b ++=恰好有两个实根 【答案】A【解析】反证法证明问题时,反设实际是命题的否定,∴用反证法证明命题“设a ,b 为实数,则方程20x ax b ++=至少有一个实根”时,要做的假设是:方程20x ax b ++=没有实根,故选A .(5)【2014年山东,理5,5分】已知实数,x y 满足(01)x y a a a <<<,则下列关系式恒成立的是( )(A)221111x y >++ (B )22ln(1)ln(1)x y +>+ (C )sin sin x y > (D )33x y > 【答案】D【解析】,01x y a a a x y <<<∴>,排除A,B,对于C ,sin x 是周期函数,排除C ,故选D .(6)【2014年山东,理6,5分】直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积为() (A )(B ) (C)2 (D ) 4 【答案】D【解析】34x x =,()()()3244220x x x x x x x -=-=+-=,解得直线和曲线的交点为0x =,2x =,2x =-,第一象限面积()232401428444x x dx xx -=-=-=⎰,故选D .(7)【2014年山东,理7,5分】为了研究某药厂的疗效,选取若干名志愿者进行临床 试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( ) (A )6 (B )8 (C)12 (D )18 【答案】C【解析】第一组与第二组频率之和为0.240.160.4+=,200.450÷=,500.3618⨯=,18612-=,故选C .(8)【2014年山东,理8,5分】已知函数()21f x x =-+,()g x kx =.若方程()()f x g x =有两个不相等的实根,则实数k 的取值范围是( )(A )102(,) (B )112(,) (C )12(,) (D )2+∞(,) 【答案】B【解析】画出()f x 的图象最低点是()2,1,()g x kx =过原点和()2,1时斜率最小为12,斜率最大时()g x 的斜率与()1f x x =-的斜率一致,故选B . (9)【2014年山东,理9,5分】已知,x y 满足的约束条件10230x y x y --≤⎧⎨--≥⎩,当目标函数()0,0z ax by a b =+>>在该约束条件下取得最小值25时,22a b +的最小值为( )(A )5 (B )4 (C)5 (D )2【答案】B【解析】10230x y x y --≤⎧⎨--≥⎩求得交点为()2,1,则225a b +=,即圆心()0,0到直线2250a b +-=的距离的平方2225245⎛⎫== ⎪ ⎪⎝⎭,故选B . (10)【2014年山东,理10,5分】已知0,0a b >>,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x ya b-=,1C 与2C 的离心率之积为3,则2C 的渐近线方程为( ) (A )20x y ±= (B )20x y ±= (C )20x y ±= (D)20x y ±= 【答案】A【解析】2222122c a b e a a -==,2222222c a b e a a +==,()44244124344a b e e a b a -∴==∴=,2b a ∴=±,故选A . 第II 卷(共100分)二、填空题:本大题共5小题,每小题5分(11)【2014年山东,理11,5分】执行下面的程序框图,若输入的x 的值为1,则输出的n 的值为 . 【答案】3【解析】根据判断条件2430x x -+≤,得13x ≤≤,输入1x =,第一次判断后循环,12,11x x n n =+==+=; 第二次判断后循环,13,12x x n n =+==+=; 第三次判断后循环,14,13x x n n =+==+=; 第四次判断不满足条件,退出循环,输出3n =.(12)【2014年山东,理12,5分】在ABC 中,已知tan AB AC A ⋅=,当6A π=时,ABC 的面积为 . 【答案】16【解析】由条件可知cos tan AB AC cb A A ⋅==,当6A π=,23bc =,11sin 26ABC S bc A ∆==.(13)【2014年山东,理13,5分】三棱锥P ABC -中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE -的体积为1V ,P ABC -的体积为2V ,则12V V = .【答案】14【解析】分别过,E C 向平面做高12,h h ,由E 为PC 的中点得1212h h =,由D 为PB 的中点得12ABD ABP S S ∆∆=,所以1212111:334ABD ABP V V S h S h ∆∆=⋅=⋅=.(14)【2014年山东,理14,5分】若46b ax x ⎛⎫+ ⎪⎝⎭的展开式中3x 项的系数为20,则22a b +的最小值为 .【答案】2【解析】将62)(xb ax +展开,得到612316r r r r r T C a b x --+=,令1233,3r r -==得.由333620C a b =,得1ab =, 所以2222a b ab +≥=.(15)【2014年山东,理15,5分】已知函数()()y f x x R =∈,对函数()()y g x x I =∈,定义()g x 关于()f x 的“对称函数"为函数()()y h x x I =∈,()y h x =满足:对任意x I ∈,两个点()()()(),,,x h x x g x 关于点()(),x f x 对称,若()h x 是()g x =()3f x x b =+的“对称函数”,且()()h x g x >恒成立,则实数b 的取值范围是 .【答案】b >【解析】根据图像分析得,当()3f x x b =+与()g x在第二象限相切时,b =()()h x g x >恒成立得b >三、解答题:本大题共6题,共75分.(16)【2014年山东,理16,12分】已知向量()(),cos2,sin 2,a m x b x n ==,函数()f x a b =⋅,且()y f x =的图像过点12π⎛ ⎝和点2,23π⎛⎫- ⎪⎝⎭. (1)求,m n 的值;(2)将()y f x =的图像向左平移()0ϕϕπ<<个单位后得到函数()y g x =的图像,若()y g x =图像上各最高点到点()0,3的距离的最小值为1,求()y g x =的单调递增区间.解:(1)已知()sin 2cos2f x a b m x n x =⋅=+,)(x f 过点2(3),(,2)123ππ-,()sin cos 1266f m n πππ∴=+ 244()sin cos 2333f m n πππ=+=-,12122m ⎧+=⎪⎪∴⎨⎪=-⎪⎩1m n ⎧=⎪⎨=⎪⎩ (2)()2cos22sin(2)6f x x x x π+=+,()f x 左移ϕ后得到()2sin(22)6g x x πϕ=++. 设()g x 的对称轴为0x x =,11d =+解得00x =,(0)2g ∴=,解得6πϕ=.()2sin(2)2sin(2)2cos2362g x x x x πππ∴=++=+=.222,k x k k z πππ∴-+≤≤∈.,2k x k k z πππ-+≤≤∈.()f x ∴的单调增区间为[,],2k k k z πππ-+∈.(17)【2014年山东,理17,12分】如图,在四棱柱1111ABCD A B C D -中, 底面ABCD 是等腰梯形,60DAB ∠=,22AB CD ==,M 是线段AB 的中点.(1)求证:111//C M A ADD 平面;(2)若1CD 垂直于平面ABCD 且1CD ,求平面11C D M 和平面ABCD 所成的角(锐角) 的余弦值. 解:(1)连接1AD ,1111ABCD A B C D -为四棱柱,11//CD C D ∴,//CD AM ∴,CD AM =,11//AM C D ∴,11AM C D =,11AMC D ∴为平行四边形,11//AD MC ∴,又111C M A ADD ⊄平面,B 1C 1D 1A 1DCBM A111AD A ADD ⊂平面,111//AD A ADD ∴平面.(2)解法一:11//AB A B ,1111//A B C D ,1111D C M ABC D ∴面与共面,作CN AB ⊥,连接1D N ,则1D NC ∠即为所求二面角,在ABCD 中,1,2,60DC AB DAB ==∠=CN ∴= 在1Rt D CN ∆中,1CD =CN =1D N ∴= 解法二:作CP AB ⊥于p 点以C 为原点,CD 为x 轴,CP 为y 轴,1CD 为z 轴建立空间坐标系,111((2C D M ∴-,1111(1,0,0),(2C D D M ∴==设平面11C D M 的法向量为111(,,)n x y z =,11110102x x y =⎧⎪∴⎨+-=⎪⎩,1(0,2,1)n ∴=, 显然平面ABCD 的法向量为2(1,0,0)n =,121212cos ,5n n n n n n ⋅∴<>==,显然二面角为锐角, 所以平面11CD M 和平面ABCD 所成角的余弦值为55,11cos NC D CN D N ∴∠====.(18)【2014年山东,理18,12分】乒乓球台面被球网分成甲、乙两部分.如图,甲上有两个不相交的区域A ,B ,乙被划分为两个不相交的区域C ,D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在,A B 上各一次,小明的两次回球互不影响.求:(1)小明两次回球的落点中恰有一次的落点在乙上的概率;(2)两次回球结束后,小明得分之和ξ的分布列与数学期望. 解:(1)设恰有一次的落点在乙上这一事件为A ,51143()656510P A =⨯+⨯=.(2)ξ的可能取值为012346,,,,,,111(0)6530P ξ==⨯=;11131(1)35656P ξ==⨯+⨯=;131(2)355P ξ==⨯=;11112(3)256515P ξ==⨯+⨯=;131111(4)253530P ξ==⨯+⨯=;111(6)2510P ξ==⨯=. ξ∴的分布列为:()012346306515301030E ξ∴=⨯+⨯+⨯+⨯+⨯+⨯=. (19)【2014年山东,理19,12分】已知等差数列{}n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.(1)求数列{}n a 的通项公式; (2)令114(1)n n n n nb a a -+=-,求数列{}n b 的前n 项和n T . 解:(1)1121412,,2,46d S a S a d S a d ===+=+,1S ,2S ,成等比,2214S S S ∴=,解得11,21n a a n =∴=-. (2)111411(1)(1)()2121n n n n n n b a a n n --+=-=-+-+,当n 为偶数时, 111111111(1)()()()()3355723212121n T n n n n =+-+++-++-+---+,1212121n nT n n ∴=-=++,当n 为奇数时,111111111(1)()()()()3355723212121n T n n n n =+-+++--+++---+12212121n n T n n +∴=+=++,2,2122,21n nn n T n n n ⎧⎪⎪+∴=⎨+⎪⎪+⎩为偶数为奇数. (20)【2014年山东,理20,12分】设函数()22(ln )x e f x k x x x=-+(k 为常数, 2.71828e =是自然对数的底数).(1)当0k ≤时,求函数()f x 的单调区间;(2)若函数()f x 在()0,2内存在两个极值点,求k 的取值范围.解:(1)2'423221(2)()()()(0)x x x e x xe x e kx f x k x x x x x⋅---=--+=>,当0k ≤时,0kx ≤,0x e kx ->, 令()0f x =,则2x =.∴当()0,2x ∈时,()f x 单调递减;当()2,x ∈+∞时,()f x 单调递增.(2)令()x g x e kx =-,则()x g x e k =-,x e k ∴=,ln x k =.'(0)10g k =-<,(0)10g =>,()2'22(2)0,2202e g e k g e k k =->=->∴<,()ln ln ln 0ln 1k g k e k k k k e =-<∴>∴>,综上:e 的取值范围为2,2e e (). (21)【2014年山东,理21,14分】已知抛物线2:2(0C y px p =>)的焦点为F ,A 为C 上异 于原点的任意一点,过点A 的直线l 交于另一点B ,交x 轴的正半轴于点D ,且有FA FD =,当点A 的横坐标为3时,AD F∆为正三角形. (1)求C 的方程;(2)若直线1//l l ,且1l 和C 有且只有一个公共点E .(ⅰ)证明直线AE 过定点,并求出定点坐标;(ⅱ)ABE ∆的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.解:(1)由题意知,02p F ⎛⎫ ⎪⎝⎭.设(),0D t ()0t >,则FD 的中点为2,04p t +⎛⎫⎪⎝⎭.因为FA FD =, 由抛物线的定义知:322p p t +=-,解得3t p =+或3t =-(舍去).由234p t+=,解得2p =.所以抛物线C 的方程为24y x =.(2)(ⅰ)由(1)知()1,0F .设()00,A x y ()000x y ≠,(),0D D x ()0D x >,因为FA FD =,则011D x x -=+, 由0D x >得02D x x =+,故()02,0D x +.故直线1l 和直线AB 平行,设直线1l 的方程为02y y x b =-+,代入抛物线方程得:200880b y y y y +-=,由题意20064320b y y ∆=+=,得02b y =-.设(),E E E x y , 则204E x y =,04E y y =-.当204y ≠时,00022002044444E AE E y y y y y k y x x y y +-==-=---,可得直线AE 的方程为: ()0002044y y y x x y -=--,由2004y x =,整理可得:()020414y y x y =--,直线AE 恒过点()1,0F .当24y =时,直线AE 的方程为1x =,过点()1,0F .所以直线AE 过定点()1,0F . (ⅱ)由(ⅰ)知直线AE 过焦点()1,0F ,所以()000011112AE AF FE x x x x ⎛⎫=+=+++=++ ⎪⎝⎭.设直线AE 的方程为1x my =+,因为点()00,A x y 在直线AE 上,故001x m y -=.设()11,B x y ,直线AB 的方程为()0002y y y x x -=--,由于00y ≠,可得0022x x y =-++,代入抛物线方程得:2008840y y x y +--=.所以0108y y y +=-,可求得1008y y y =--,10044x x x =++.所以点B 到直线AE的距离为:414x d ⎫+===, 则ABE ∆的面积001142162S x x ⎫⎛⎫=⨯++≥ ⎪⎝⎭,当且仅当001x x =,即01x =时等号成立.所以ABE ∆的面积的最小值为16.。
高三(理科)数学月段检测试题时间:120分钟 满分:150分 2013 --10一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{1,}A a =,{1,2,3}B =.则"3"""a A B =⊆是的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.已知()f x 的定义域为(1,0)-,则函数(21)f x +的定义域为 A.(1,1)- B.1(1,)2-- C.(1,0)- D.1(,1)23.不等式1x x>的解集为 A.(1,1)- B.(,1)(1,)-∞-+∞ C. (1,0)(1,)-+∞ D. (1,0)(0,1)-4.设()f x 是定义在R 上的奇函数,当20()2x f x x x ≤=-时,则(1)f =A.—3B.—1C.1D.35.已知命题p 1:函数22xxy -=-在R 上为增函数,p 2:函数22xxy -=+在R 上为减函数,则在命题1:122:123:12,,()q p p q p p q p p ⌝∨∧∨和4:12()q p p ⌝∨中,真命题是 A.13,q q B.23,q q C.14,q q D.24,q q6.下列函数()f x 中,满足对任意12,(0,),x x ∈+∞当12x x <时都有12()()f x f x >的是 A.1()f x x=B.2()(1)f x x =-C.()xf x e = D.()ln(1)f x x =+ 7. 已知图1是函数()y f x =的图象,则图2中的图象对应的函数可能是A .(||)y f x =B .|()|y f x =C .(||)y f x =-D .(||)y f x =--8.函数()ln x f x x e =+的零点所在的区间是A (10,e)B (1,1e ) C (1,e ) D (,e ∞)9、曲线2y x=与直线1y x =-及4x =所围成的封闭图形的面积为A. 2ln 2B. 2ln 2-C. 4ln 2-D. 42ln 2- 10、若函数1)1(2131)(23+-+-=x a ax x x f 在区间()4,1内为减函数,在区间()∝+,6为增函数,则实数a 的取值范围是A. (]2,∝-B.[]7,5C. []6,4D. (][)∝+⋃∝-,75,.11.已知函数32(),f x x ax bx c =+++下列结论中①00()0x R f x ∃∈=, ②函数()f x 的图象是中心对称图形 ③若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减 ④若0x 是()f x 的极值点,则0()0f x '=. 正确的个数有 A.1 B.2 C.3 D.412. 对任意实数a,b定义运算""*如下{)()(b a b a a bb a ≤>=*,则函数x x x f 221log )23(log )(*-= 的值域为A. [)∝+,0B. (]o ,∝-C. ⎥⎦⎤ ⎝⎛0,32log 2D. ⎪⎭⎫ ⎝⎛∝+,32log 2 二、填空题:本大题共4小题,每小题4分,共16分.将答案填写在题中横线上。
2014年山东省烟台市高考数学二模试卷(理科)一、选择题:本大题共10小题;每小题5分,共50分.每小题给出四个选项,只有一个选项符合题目要求,把正确选项的代号涂在答题卡上.1. 已知集合A={x||x−2|>2},B={x|x∈N},则(∁U A)∩B=()A {1, 2, 3}B {0, 1, 2, 3}C {0, 1, 2, 3, 4}D {1, 2, 3, 4}2. 若复数z满足(2+i)z=5(其中i为虚数单位),则z的共轭复数z¯对应的点位于()A 第一象限B 第二象限C 第三象限D 第四象限3. 某班有60名学生,一次考试后数学成绩ξ∼N(110, 102),若P(100≤ξ≤110)=0.35,则估计该班学生数学成绩在120分以上的人数为()A 10B 9C 8D 74. 已知a,b∈R,ab≠0,则“a>0,b>0”是“a+b2≥√ab”的()A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件5. 定义[a1a2a3a4]=a1a4−a2a3,若f(x)=[sin(π−x)√3cos(π+x)1],则f(x)的图象向右平移π3个单位得到的函数解析式为()A y=2sin(x−2π3) B y=2sin(x+π3) C y=2cosx D y=2sinx6. 一个几何体的三视图如图所示,则这个几何体的体积是()A 2π3 B 4π3C 8π3D 16π37. 已知圆C的方程为x2+y2−2x=0,若以直线y=kx−2上任意一点为圆心,以l为半径的圆与圆C没有公共点,则k的整数值是()A −1B 0C 1D 28. 函数f(x)=sinxln(x+2)的图象可能是()A B C D9. 若在曲线f(x, y)=0上两个不同点处的切线重合,则称这条切线为曲线f(x, y)=0的“自公切线”.下列方程: ①y =e x −l ; ②y =x 2−|x|; ③|x|+l =√4−y 2 ④y =|x|+2|x|对应的曲线中存在“自公切线”的有( ) A ①② B ②③ C ②④ D ③④10. 已知双曲线x 2a 2−y 2b 2=1(a >0, b >0)左、右焦点分别为F 1(−c, 0),F 2(c, 0),若双曲线右支上存在点P 使得a sin∠PF 1F 2=csin∠PF 2F 1,则该双曲线离心率的取值范围为( )A (0, √2−1)B (√2−1, 1)C (1, √2+1)D (√2+1, +∞)二、填空题:本大题共有5个小题,每小题5分,共25分,请将正确答案填在答题卡相应位置.11. 如图方茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为l5,乙组数据的平均数为16.8,则x +y 的值为________.12. 直线y =x 与抛物线y =2x −x 2所围成封闭图形的面积为________.13.已知数列{a n }中a 1=1,a n+1=a n +n ,若利用如图所示的程序框图计算该数列的第8项,则判断框内的条件是________.14. 已知关于x 的二项式(√x √x 3)n 展开式的二项式系数之和为32,常数项为80,则a 的值为________.15. 已知函数f(x)=e x −e −x ,实数x ,y 满足f(x 2−2x)+f(2y −y 2)≥0,若点M(1, 2),N(x, y),则当1≤x ≤4时,OM →⋅ON →的最大值为________(其中O 为坐标原点)三、解答题.本大题共6个小题,共75分.解答时要求写出必要的文字说明、证明过程或推理步骤.16. 己知函数f(x)=√3sinxcosx +sin 2x +12(x ∈R)(1)当x ∈[−π12, 5π12]时,求函数f(x)的最小值和最大值;(2)设△ABC 的内角A ,B ,C 的对应边分别为a ,b ,c ,且c =√3,f(C)=2,若向量m →=(1, a)与向量n →=(2, b)共线,求a ,b 的值.17. 第十二届全国人民代表大会第二次会议和政协第十二届全国委员会第二次会议,2014年3月在北京召开.为了做好两会期间的接待服务工作,中国人民大学学生实践活动中心从7名学生会干部(其中男生4人,女生3人)中选3人参加两会的志愿者服务活动. (1)所选3人中女生人数为ξ,求ξ的分布列及数学期望: (2)在男生甲被选中的情况下,求女生乙也被选中的概率.18. 已知等比数列{a n }的前n 项和S n 满足:S 4−S 1=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式; (2)若数列{a n }为递增数列,b n =1log 2a n ⋅log 2a n+2,T n =b 1+b 2+...+b n ,问是否存在最小正整数n 使得T n >12成立?若存在,试确定n 的值,不存在说明理由.19. 在如图所示的多面体中,EF ⊥平面AEB ,AE ⊥EB ,AD // EF ,EF // BC .BC =2AD =4,EF =3,AE =BE =2,G 为BC 的中点. (1)求证:AB // 平面DEG ; (2)求证:BD ⊥EG ;(3)求二面角C −DF −E 的正弦值.20.已知椭圆C 1和抛物线C 2有公共焦点F(1, 0),C 1的中心和C 2的顶点都在坐标原点,过点M(4, 0)的直线l 与抛物线C 2分别相交于A ,B 两点. (1)如图所示,若AM →=14MB →,求直线l 的方程;(2)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.21. 已知函数f(x)=lnx+12ax2−(a+1)x(a∈R).(1)当a=1时,求曲线y=f(x)在点(1, f(1))处的切线方程;(2)当a>0时,若f(x)在区间[1, e]上的最小值为−2,求a的值;(3)若对任意x1,x2∈(0, +∞),x1<x2,且f(x1)+x1<f(x2)+x2恒成立,求a的取值范围.2014年山东省烟台市高考数学二模试卷(理科)答案1. C2. A3. B4. C5. D6. C7. A8. A9. C10. C11. 1312. 1613. n≤7?14. 215. 1216. 解:(1)∵ 函数f(x)=√3sinxcosx+sin2x+12(x∈R)∴ f(x)=√32sin2x+1−cos2x2+12=√32sin2x−12cos2x+1=sin(2x−π6)+1,∵ −π12≤x≤5π12,∴ −π3≤2x−π6≤2π3,∴ −√32≤sin(2z−π6)≤1,从而1−√32≤sin(2x−π6)+1≤2,则f(x)的最小值是1−√32,最大值是2; (2)∵ f(C)=sin(2C −π6)+1=2,则sin(2C −π6)=1, ∵ 0<C <π,∴ −π6<2C −π6<11π6,∴ 2C −π6=π2,解得C =π3.∵ 向量m →=(1, a)与向量n →=(2, b)共线, ∴ b −2a =0, 即b =2a ①由余弦定理得,c 2=a 2+b 2−2abcos π3, 即a 2+b 2−ab =3 ② 由①②解得a =1,b =2.17. 解:(1)ξ得可能取值为 0,1,2,3 由题意P(ξ=0)=C 43C 73=435,P(ξ=1)=C 42C 31C 73=1835, P(ξ=2)=C 41C 32C 73=1235,P(ξ=3)=C 40C 33C 73=135…∴ ξ的分布列、期望分别为:Eξ=0×435+1×1835+2×1235+3×135=97 …(2)设在男生甲被选中的情况下,女生乙也被选中的事件为C男生甲被选中的种数为C 62=15,男生甲被选中,女生乙也被选中的种数为C 51=5 … ∴ P(C)=515=13.∴ 在男生甲被选中的情况下,女生乙也被选中的概率为13. … 18. 解:(1)设等比数列{a n }的首项为a 1,公比为q , 依题意,有2(a 3+2)=a 2+a 4, 由S 4−S 1=28可得a 2+a 3+a 4=28 得a 3=8∴ a 2+a 4=20 …∴ {a 1q +a 1q 3=20a 3=a 1q 2=8 解之得{q =2a 1=2或{q =12a 1=32 …所以a n =2n 或a n =(12)n−6 … (2)∵ 数列a n 单调递增,∴ q =2,a 1=2∴ a n =2n b n =1log 22n ⋅log22n+2=1n(n+2)=12(1n −1n+2)…∴ T n =12(1−13+12−14+13−15+⋯+1n −1n+2 =12(32−1n+1−1n+2)=34−2n+32n 2+6n+4.…假设存在,则有34−2n+32n 2+6n+4>12,整理得:n 2−n −4>0 解得n >1+√172或n <1−√172(不合题意舍去) …又∵ n 为正整数,∴ n 的最小值为3.…19. (1)证明:∵ AD // EF ,EF // BC ,∴ AD // BC ,∵ BC =2AD ,G 为BC 的中点,∴ AD // BG ,且AD =BG ,∴ 四边形ABCD 是平行四边形,∴ AB // DG因为AB 不在平面DEG 中,DG 在平面DEG 内,∴ AB // 平面DEG . (2)证明:∵ EF ⊥平面AEB ,AE ⊂平面AEB ,BE ⊂平面AEB , ∴ EF ⊥AE ,EF ⊥BE ,∵ AE ⊥EB ,∴ EB 、EF 、EA 两两垂直.以点E 为坐标原点,EB 、EF 、EA 所在直线分别为x 、y 、z 轴建立空间直角坐标系, 由已知得:A(0, 0, 2),B(2, 0, 0),C(2, 4, 0),D(0, 2, 2),F(0, 3, 0),G(2, 2, 0). ∵ EG →=(2,2,0),BD →=(−2,2,2),∴ BD →⋅EG →=−2×2+2×2+2×0=0 ∴ BD ⊥EG .(3)解:由已知得EB →=(2,0,0)是平面EFDA 的法向量,设平面DCF 的法向量为n →=(x,y,z)∵ FD →=(0,−1,2),FC →=(2,1,0),∴ {−y +2z =02x +y =0,令z =1,得x =−1,y =2,即n →=(−1,2,1).设二面角C −DF −E 的大小为θ, 则cosθ=|n →||EB →|˙=−√66,∴ sinθ=√306∴ 二面角C −DF −E 的正弦值为√306. 20. 解:(1)由题意,抛物线C 2的焦点F(1, 0),则p =2.所以方程为:y 2=4x .…设直线方程为x =my +4,并设A(y 124, y 1),B(y 224, y 2),因为AM →=14MB →,所以y 1=−14y 2联立{x =my +4y 2=4x ,可得y 2−4my −16=0,有y 1+y 2=4m ,y 1y 2=−16,因为y 1=−14y 2,所以解得:y 1=−2,y 2=8,m =32, 所以直线方程为:2x −3y −8=0 … (2)求得对称点P(81+m 2, −8m 1+m 2),…代入抛物线中可得:m =±1,直线l 方程为x =±y +4,考 虑到对称性不妨取x =y +4,椭圆设为x 2λ+y 2λ−1=1(λ>1)联立直线和椭圆并消元整理(2λ−1)y 2+8(λ−1)y +λ2+17λ−16=0,… 因为椭圆与直线有交点,所以△=64(λ−1)2+4(λ−1)(λ−16)(2λ−1)≥0, 解得λ≥172…即a 2≥172,所以a ≥√342所以长轴长的最小值为√34. …21. 解:(1)当a =1时,f(x)=lnx +12x 2−2x ,f′(x)=1x +x −2. ∵ f′(1)=0,f(1)=−32. ∴ 切线方程是y =−32.(2)函数f(x)=lnx +12ax 2−(a +1)x(a ∈R)的定义域是(0, +∞).当a >0时,f′(x)=1x +ax −(a +1)=ax 2−(a+1)x+1x=(x−1)(ax−1)x.令f′(x)=0,解得x =1或x =1a .当0<1a ≤1,即a ≥1时,f(x)在[1, e]上单调递增,∴ f(x)在[1, e]上的最小值是f(1)=−12a −1=−2,解得a =2;当1<1a <e 时,f(x)在[1, e]上的最小值是f(1a ),∴ −lna −12a −1=−2,即lna +12a =1. 令ℎ(a)=lna +12a ,ℎ′(a)=1a −12a 2=2a−12a 2=0,可得a ∈(1e ,12)函数ℎ(a)单调递减,a ∈(12,1)函数ℎ(a)单调递增.而ℎ(1e)=−1+e2<1,不合题意.当1a≥e 时,f(x)在[1, e]上单调递减,∴ f(x)在[1, e]上的最小值是f(e)=1+12ae 2−(a +1)e =−2,解得a =6−2e2e−e 2<0,不合题意.综上可得:a =2.(3)设g(x)=f(x)+x ,则g(x)=lnx +12ax 2−ax ,∵ 对任意x 1,x 2∈(0, +∞),x 1<x 2,且f(x 1)+x 1<f(x 2)+x 2恒成立, ∴ 只要g(x)在(0, +∞)上单调递增即可. 而g′(x)=ax −a +1x =ax 2−ax+1x.当a =0时,g ′(x)=1x >0,此时g(x)在(0, +∞)上单调递增;当a ≠0时,只需g′(x)≥0在(0, +∞)上恒成立,只要ax 2−ax +1≥0, 则需要{a >0△=a 2−4a ≤0,解得0<a ≤4.综上a 的取值范围是:0≤a ≤4.。
数学理一参考答案及评分标准一、选择题
CABDD CAACC
二、填空题
11.13 12.
16
13. 7?n ≤ 14.2 15.12 三、解答题 16. 解:31cos 21()sin 2222
x f x x -=++31sin 2cos 2122x x =-+ sin(2)16
x π=-+ …………3分 ∵51212x ππ-≤≤,∴22363
x πππ-≤-≤, ∴3sin(2)126
x π-≤-≤,从而31sin(2)1226x π-≤-+≤ 则)(x f 的最小值是312-
,最大值是2 …………6分 (2)()sin(2)126f C C π=-
+=,则πsin(2C -)=16, ∵0C π<<,∴112666C πππ-
<-<, ∴262C π
π
-=,解得3C π
=. …………8分
∵向量(1,)a =m 与向量(2,)b =n 共线,∴20b a -=,
即2b a = ① …………9分 由余弦定理得,222πc =a +b -2abcos 3
,即22a +b -ab =3 ② 由①②解得a =1,b =2. …………12分
17.解:(1)ξ得可能取值为 0,1,2,3
由题意P (ξ=0)=3437435C C =, P (ξ=1)=2143371835
C C C =, P (ξ=2)=1243371235C C C = P (ξ=3)=034337135
C C C = …………4分 ∴ξ的分布列、期望分别为:
ξ 0 1 2 3 p 435 1835 1235 135
E ξ=0×435+1×1835+2 ×1235+3×135=97
…………8分 (2)设在男生甲被选中的情况下,女生乙也被选中的事件为C
男生甲被选中的种数为2615C =,男生甲被选中,女生乙也被选中的
种数为155C = …………10分
∴P (C )=152651153
C C == 在男生甲被选中的情况下,女生乙也被选中的概率为
13
……12分 18.解:(1)设等比数列{}n a 的首项为1a ,公比为q ,
依题意,有423)22a a a +=+(, 由4128S S -=可得,28432=++a a a 得20,8423=+∴=a a a ……3分
⎪⎩⎪⎨⎧===+∴820213311q a a q a q a 解之得11122232
q q a a ⎧==⎧⎪⎨⎨=⎩⎪=⎩或 ………………5分 所以n n a 2=或6)21
(-=n n a ………………6分
(2)因为数列{}n a 单调递增,n n a a q 2,2,21=∴=∴=∴
22211111()log 2log 2(2)22
n n n b n n n n +===-⋅++,……………………7分 所以11111111(1)2324352
n T n n =
-+-+-++-+ 21311323()22124264
n n n n n +=--=-++++.……………………9分 假设存在,则有2323142642n n n +->++,整理得:240n n --> 解得11711722
n n +-><或(不合题意舍去) ………………11分 又因为n 为正整数,所以n 的最小值为3. ………………………………12分
19. 解:(1)证明://,//,//AD EF EF BC AD BC ∴,
2,//,BC AD G BC AD BG AD BG =∴=为的中点,且.
//.ABGD AB DG ∴∴四边形是平行四边形, …………2分
,,//.AB DEG DG DEG AB DEG ⊄⊂∴平面平面平面…………4分
(2)证明:EF AEB AE AEB BE AEB ∴⊥⊂⊂平面,平面,平面,
,,,,,EF AE EF BE AE EB EB EF EA ∴⊥⊥⊥∴两两垂直.……6分
以点E 为坐标原点,,,,,EB EF EA x y z 分别为轴,建立空间直角坐标系如图所示,由已知得
(002),(200),(240),(022),(030),(220).A B C D F G ,,,,,,,,,,,,
(220),(22,2),=-2222200.EG BD EG BD ∴==-⋅⨯+⨯+⨯=,,,故
BD EG ∴⊥ ………………………8分
(3)由已知可得(2,0,0)EB =是平面EFDA 的一个法向量.
设平面DCF 的一个法向量为()=x,y,z n ,
(0-1,2(210)FD FC ==,),,,,
20,11, 2.(1,2,1).20
y z z x y x y -+=⎧∴==-==-⎨+=⎩n 令得即……………10分 设二面角C FD E --的大小为θ, 则2630cos cos ,,sin .6626
n EB θθ-=<>==-=…………11分 30.6C DF E ∴--二面角的正弦值为
………………………12分 20.解:(1)由题知抛物线方程为24y x = 。
………………………2分
设直线方程为4x my =+,并设221212(,),(,)44
y y A y B y 因为14AM MB =,所以1214
y y =-
联立244
y x x my ⎧=⎨=+⎩,可得24160y my --=,有12211
21644y y y y y y m =-⎧⎪=-⎨⎪+=⎩ ………………………4分 解得:1232,8,2
y y m =-==,所以直线方程为:2380x y --= …6分 (2)可求得对称点22
88(,)11m P m m -++, ………………………8分 代入抛物线中可得:1m =±,直线l 方程为4x y =±+,考虑到对称性不妨取4x y =+,椭圆设为2
2
1(1)1x y λλλ+=>-联立直线和椭圆并消元整理22(21)8(1)17160y y λλλλ-+--+-=, ………………10分
因为椭圆与直线有交点,所以0∆≥,
即:264(1)4(1)(16)(21)0λλλλ-+---≥,解得
17(02
λλ≥≤删除) ………12分 即21734,22
a a ≥≥ ∴长轴长的最小值为34. ………………………13分
21. 解:(1)当1=a 时,21)(',221ln )(2-+=-+=x x
x f x x x x f . 因为3
'(1)0,(1)2f f ==-. ………………2分 所以切线方程是3.2y =- …………………………3分
(2)函数21()ln (1)2
f x x ax a x =+-+的定义域是),(∞+0.
当0>a 时,21(1)1'()(1)(0)ax a x f x ax a x x x
-++=+-+=> 令0)('=x f ,即2(1)1(1)(1)'()0ax a x x ax f x x x
-++--===, 所以1x =或a x 1=
. ……………………6分 当110≤<
a ,即1≥a 时,)(x f 在[1,e]上单调递增, 所以)(x f 在[1,e ]上的最小值是1(1)122
f a =--=-,解得2a =; …………7分 当e a <<11时,)(x f 在[1,e]上的最小值是11()ln 122f a a a =---=-,即1l n 12a a
+=令1()ln 2h a a a =+,'221121()0,22a h a a a a
-=-==可得, 111,)1)22a a e ∈∈(递减,(,递增,而1e ()112h e =-+<,1(1)12
h =<,不合题意; …………9分 当e a
≥1时,)(x f 在[1,e ]上单调递减, 所以)(x f 在[1,e ]上的最小值是21()1e (1)e 22f e a a =+-+=-,解得262e 02e e a -=<-,不合题意
所以2a =.
(3)设()()g x f x x =+,则21()ln 2
g x x ax ax =+-, 只要)(x g 在),(∞+0上单调递增即可. …………………………11分 而211'()ax ax g x ax a x x
-+=-+= 当0=a 时,01)('>=x x g ,此时)(x g 在),
(∞+0上单调递增; ……………………12分
当0≠a 时,只需0)('≥x g 在),(∞+0上恒成立,因为),0(+∞∈x ,只要210ax ax -+≥,
则需要0>a , ………………………………13分
对于函数21y ax ax =-+,过定点(0,1),对称轴102
x =>,只需240a a ∆=-≤, 即04a <≤. 综上04a ≤≤. ……………………14分。