宽光谱响应光催化剂分解水研究获进展
- 格式:doc
- 大小:28.00 KB
- 文档页数:7
饮用水中有机污染物光催化降解研究进展本文综述了TiO2光催化技术在饮用水有机物污染物降解处理中的应用研究进展,分析了存在的问题,展望了饮用水中有机污染物光催化降解材料研究的发展方向。
标签:光催化;饮用水;有机污染物1、引言饮用水污染对人类健康带来了严峻的挑战,据世界卫生组织(WHO)调查表明,全球有80%的疾病和50%的儿童死亡都与饮用水水质不良有关。
饮用水中的有机污染物主要来源于水源中天然存在的有机物(NOM)、人工合成有机物(SOC)、消毒副产物(DBPs)等,具有致癌、致畸和致突变等作用,威胁着饮用水安全,危害人类健康,因而有必要大力开展饮用水深度处理技术研发,有效去除饮用水中难降解有机污染物[1-4]。
光催化氧化技术作为一种新型环境保护技术,具有无二次污染,能耗低、反应快、操作简单、效率高等优点,逐渐成为饮用水深度处理中的研究热点。
TiO2因其无毒、廉价、稳定、来源丰富、氧化能力强及可以重复利用等特点[5-7],使其成为最具潜力的绿色环保型光催化材料。
TiO2在光催化反应过程中,产生具有强氧化性的羟基自由基(·OH)及活性氧类(HO2·和O2·-),能有效降解饮用水中的天然有机物、人工合成有机物、消毒有机副产物等,并将其矿化为H2O、CO2和相应的无机离子(Cl-、Br-、SO42-、NO3-等),使饮用水达到深度净化效果[8-10]。
2、饮用水中天然有机物光催化降解研究天然存在的有机物主要为腐殖质(腐殖酸、富里酸和胡敏酸)。
它是饮用水消毒副产物的主要前体,其含量高低决定了饮用水中消毒副产物水平的高低。
He等[11]采用TiO2催化剂在光反應器中进行实验,在自然阳光照射下,探讨了催化剂负载量、PH值、初始浓度和光照时间等条件对腐殖酸(HA)去除效果的影响,结果表明,TiO2在自然阳光照射下可有效去除水中腐殖酸(HA)。
刘文等[12]以P-25型纳米TiO2作为催化剂,对富里酸(FA)进行了光催化氧化的实验研究,测得当FA初始浓度为9.42mg/L,TiO2投加量为0.3g/L,PH=7.00,光照40min时,FA的去除率达到98%。
2017年第36卷第2期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·397·化工进展α-Fe2O3光电催化分解水制备氢气研究进展王开放,刘光,高旭升,贺冬莹,李晋平(太原理工大学精细化工研究所,山西太原 030024)摘要:光电化学池可以将太阳能以氢气的形式储存起来,其中稳定、廉价的催化剂是关键。
α-Fe2O3具有合适的禁带宽度,较高的理论光-电转化效率,光稳定性好,在地壳中的储量丰富,被认为是最具有发展前景的光电催化材料之一;但是它的导电性差、光生电荷寿命短、氧化反应过电位高,严重阻碍了其发展。
本文首先介绍了光电催化理论,然后重点综述了近些年α-Fe2O3纳米结构的制备技术,以及针对其不足所采用的改性方法,包括通过元素掺杂来增强α-Fe2O3的导电性,表面处理来降低氧化反应过电势或陷阱浓度,与其他材料复合来增加光生电压或催化剂表面积,最后对α-Fe2O3作为光阳极催化剂分解水制氢未来的发展前景作出展望,指出多种手段的有效结合是提高其光电流密度的重要途径。
关键词:赤铁矿;太阳能;光电催化;水解;氢气中图分类号:O614.81;O644.16;TQ116.2 文献标志码:A 文章编号:1000–6613(2017)02–0397–13 DOI:10.16085/j.issn.1000-6613.2017.02.001Hematite photoanodes for solar water splittingWANG Kaifang,LIU Guang,GAO Xusheng,HE dongying,LI Jinping (Research Institute of Fine Chemicals,Taiyuan University of Technology,Taiyuan 030024,Shanxi,China)Abstract:Photoelectrochemical cell is able to turn sunlight into stored energy conveniently in the form of hydrogen,and the stable and low-cost photoanode catalyst is crucial in this device. Hematite is considered as one of the most promising photoanode catalysts due to its suitable band gap,high theoretical solar to hydrogen efficiency,chemical stability under illumination and rich storage in earth.However,the poor conductivity,short photo-generated charge carrier lifetime and high turn-on voltage have limited the performance improvement of hematite severely. This review introduces the basic mechanism of photoelectrocatalysis and energy band excitation,then it summarizes the synthesis of nanostructure α-Fe2O3 and the improvements on the photoelectrocatalysis property of hematite in recent years,including conductivity enhancement by element doping,oxygen evolution overpotential or trap concentration reduction by surface treatment,and photo-induced voltage or specific area increase by coupling with other materials. The future developing perspectives of hematite are also presented,and multi-modified technologies are considered as important ways to improve the photocurrent density.Key words:hematite;solar energy;photoelectrocatalysis;hydrolysis;hydrogen随着全球经济的不断发展,人类对能源的需求量持续扩大,全球能源的消耗仍然是以化石能源为主,但是化石燃料储量有限、生成周期长,难以满足持续大量的需求,而且常规能源的广泛应用所引起的环境问题日益凸显。
光催化水分解制氢技术的研究进展随着全球能源需求的不断增长以及环境问题的日益突显,清洁能源的开发和利用成为了人类关注的焦点。
氢能作为一种清洁、高能量密度的能源媒介,备受研究者的关注。
然而,有效、经济地制备氢气仍然是一个具有挑战性的问题。
光催化水分解制氢技术作为一种可持续、环保的制氢方法,正在获得越来越多的关注和研究。
光催化水分解制氢是利用光催化材料吸收太阳能,并将其转化为化学能的过程。
实现光催化水分解制氢主要涉及两个关键步骤:水溶液中的光生载流子的产生和将光生载流子转化为氢气和氧气的催化反应。
在这个过程中,催化剂起到了至关重要的作用。
当前,以半导体材料为基础的催化剂是光催化水分解制氢技术的主要研究方向之一。
例如,二氧化钛(TiO2)是广泛研究的光催化剂之一。
然而,纯二氧化钛表现出较大的能带间隙,仅能吸收紫外光,限制了其在可见光范围内的应用。
为了拓宽光吸收范围,研究人员进行了多种改性。
例如,通过离子掺杂或负载适量的金属纳米颗粒等方法,改善材料的光催化性能。
此外,一些新型的材料催化剂也受到了广泛研究。
例如,铁基或钼基催化剂在光催化制氢研究中显示出良好的催化活性和稳定性。
这些新型催化剂不仅能够有效地利用可见光,而且其优异的光电催化性能在提高效率和抑制光生电子-空穴对的复合方面具有优势。
除了光催化剂的研究外,反应条件的优化也是光催化水分解制氢领域的重要研究方向之一。
反应的温度、光照强度、溶液酸碱度等都对催化剂的性能和氢气生成速率有着重要影响。
因此,通过合理调控这些反应条件,可以提高光催化水分解制氢的效率。
光催化水分解制氢技术的研究进展不仅依赖于催化剂的设计和合成,还需要对光催化机理进行深入研究。
实验和计算相结合的方法被广泛应用于光催化机理的研究。
通过实验手段,研究人员可以发现反应中的中间体和活性物种,并理解光催化反应过程中的能量传递。
同时,计算手段可以对催化剂的结构和性质进行模拟和预测,为催化剂的设计提供指导。
光催化氧化技术在水处理中的应用及研究进展摘要:介绍了光催化氧化的机理,就TiO2固定化制备、改性、光催化氧化在降解废水中有机污染物、无机污染物以及饮用水处理中的研究进展进行了阐述,提出了今后的发展方向。
关键词:纳米二氧化钛,光催化氧化,水处理,研究进展光催化氧化技术是一种新兴的水处理技术。
1972年,Fu- jishima和Honda[1]报道了在光电池中光辐射TiO2可持续发生水的氧化还原反应,标志着光催化氧化水处理时代的开始。
1976年, Carey等[2]在光催化降解水中污染物方面进行了开拓性的工作。
此后,光催化氧化技术得到迅速发展。
光催化技术具有反应条件温和、能耗低、操作简便、能矿化绝大多数有机物、可减少二次污染及可以用太阳光作为反应光源等突出优点,在难降解有机物、水体微污染等处理中具有其他传统水处理工艺所无法比拟的优势,是一种极具发展前途的水处理技术,对太阳能的利用和环境保护有着重大意义。
1TiO2光催化剂的特性及光催化氧化机理TiO2有锐钛矿型、金红石型和板钛矿型三种晶型。
同样条件下,锐钛矿型的催化活性较好。
在众多光催化剂中,TiO2是目前公认的最有效的半导体催化剂,其特点有:化学性质稳定,能有效吸收太阳光谱中弱紫外辐射部分,氧化还原性极强,耐酸碱和光化学腐蚀,价廉无毒。
目前对光催化的机理研究尚不成熟,一般认为光催化氧化法是以N型半导体的能带理论为基础。
TiO2属于N型半导体,其能带是不连续的,在充满电子的低能价带(VB) 和空的高能导带(CB)之间存在一个禁带,带隙能为3.2 eV,光催化所需入射光最大波长为387.5 nm。
当λ≤387.5 nm 的光波辐射照射TiO2时,处于价带的电子被激发跃迁到导带,生成高活性电子(e-),同时在价带上产生相应的空穴(h+),从而形成具有高度活性的电子/空穴对,并在电场作用下分离,向粒子表面迁移,既可直接将吸附的有机物分子氧化,也可与吸附在TiO2表面的羟基或水分子反应生成氧化性很强的活性物质氢氧自由基·OH。
催化降解水中有机污染物的TiO2纳米管改性方法研究进展摘要:针对TiO2光催化材料在处理难降解有机物方面引起了水处理领域的研究热潮,本论文结合TiO2光催化材料的结构与性质,系统地论述了金属离子掺杂、表面贵金属修饰、非金属掺杂、表面光敏化和半导体复合等方法对TiO2纳米管改性的研究进展,评价了改性后TiO2纳米管改性的特点以及应用范围,对比了不同改性方法的优缺点,可为建立新的TiO2纳米管改性方法提供一定参考依据。
关键词:TiO2纳米管金属离子掺杂表面贵金属修饰表面光敏化随着环境问题和能源问题的日益严峻,TiO2纳米科技在新型能源的应用和水环境问题治理方面都展现出了独特的优势,尤其是作为环境友好型的高效光催化材料,在处理难降解有机物方面引起了水处理领域的研究热潮。
纳米TiO2材料尺寸小、比表面积大,表现出许多特殊的纳米效应,使纳米TiO2具有更强的氧化和还原能力。
纳米TiO2粒子的微小粒径能使光生载流子更容易通过扩散而迁移到表面,有利于电子-空穴的传递,促进氧化还原反应。
在众多的TiO2纳米材料中,具有有序纳米结构的纳米管表现出更大的优势,相对于呈无规则堆积的无序纳米颗粒和多孔结构而言,纳米管阵列结构比表面积大、吸附能力强、光电转换效率高,表现出更加出色的光催化活性[1],作为一种绿色高效的环保功能材料前景广阔。
然而,针对TiO2带隙宽,光响应范围窄,量子效率低的固有缺陷,学者研究提出了一系列改性修饰手段来提高TiO2纳米管的光学性能。
主要包括离子掺杂、表面贵金属修饰、光敏化和半导体复合等改性修饰技术。
1 TiO2光催化材料的结构性质TiO2俗称钛白粉,其安全无毒、性质稳定,是一种无机白色颜料,并广泛应用于光触媒、化妆品等行业。
TiO2的基本结构是氧钛八面体-[TiO6],由于Ti-O八面体连接形式的不同,出现了三种不同的晶型结构:即四方晶系的锐钛矿相和金红石相及斜方晶系的板钛矿[2]。
三种晶型结构热稳定有所不同,加热情况下锐钛矿相和板钛矿相向金红石相发生不可逆转变,而金红石相具有较高的热稳定性。
催化电解水国内外研究现状和发展动态催化电解水技术是一种将水分子分解成氢气和氧气的化学反应,该技
术主要用于制备清洁、可再生的氢燃料。
近年来,催化电解水技术得到了
广泛的关注和研究,在国内外都有不断的发展和创新。
国内方面,催化电解水技术在材料科学、化学、物理和能源等领域的
研究已经取得了一定的进展。
近年来,国内多家高校和研究机构开始逐步
关注该技术的研究和发展,包括清华大学、中国科学院等一批国内著名高
校和研究机构,主要涉及的方向包括催化剂的制备与表征、催化反应机理
研究、电解水装置的开发与优化等。
国外方面,催化电解水技术的研究进展更加迅速,在多个国家和地区
开展了大量的相关研究。
主要集中在美国、德国、日本、英国等发达国家
和地区。
这些国家和地区主要的研究方向包括催化剂的设计和合成、电解
水反应机理的研究、电极材料的制备与表征、水分解的动力学过程研究等。
总体上来说,目前催化电解水技术的研究在国内外都取得了一定的进
展和成果,推动着相关行业的发展,未来也有望成为清洁能源领域的重要
技术。
光催化降解水体有机污染物的研究进展一、本文概述随着工业化的快速发展和人口的不断增长,水体污染问题日益严重,其中有机污染物是主要的污染源之一。
有机污染物不仅会对生态环境造成破坏,还会对人类健康产生严重威胁。
因此,寻找一种高效、环保的治理方法显得尤为重要。
光催化技术作为一种新兴的水体净化技术,以其独特的优势在有机污染物降解领域受到了广泛关注。
本文旨在综述光催化降解水体有机污染物的最新研究进展,分析各种光催化剂的性能和应用,探讨光催化技术的机理和影响因素,以期为未来光催化技术在环境治理领域的应用提供理论支持和实践指导。
本文将对光催化技术的基本原理进行简要介绍,包括光催化剂的种类、光催化反应过程以及影响光催化效率的因素等。
然后,重点综述近年来光催化降解水体有机污染物的研究进展,包括新型光催化剂的开发、光催化反应条件的优化、光催化与其他技术的联合应用等方面。
还将对光催化技术在实际应用中所面临的挑战和问题进行探讨,如光催化剂的稳定性、光催化反应的动力学问题等。
本文将对光催化技术的未来发展方向进行展望,以期为该领域的研究人员提供有益的参考和启示。
二、光催化降解技术基础光催化降解技术是一种利用光催化剂在光照条件下,产生具有强氧化性的活性物种(如羟基自由基等),从而实现对有机污染物的降解和矿化的高级氧化技术。
这一技术自上世纪70年代被发现以来,因其高效、环保的特性,已成为水体有机污染物治理的热门研究领域。
光催化降解技术的核心在于光催化剂的选择和设计。
常用的光催化剂包括二氧化钛(TiO2)、氧化锌(ZnO)、硫化镉(CdS)等半导体材料。
这些材料在光照下能够吸收光能,产生电子-空穴对,进而生成活性物种。
其中,TiO2因其化学稳定性好、光催化活性高、无毒无害等优点,成为最常用的光催化剂之一。
光催化降解技术的另一个重要方面是光照条件的选择。
紫外线(UV)光具有较高的能量,能够激发光催化剂产生更多的活性物种,因此常被用于光催化降解实验。
光催化材料最新研究进展1.简介当今世界正面临着能源短缺和环境污染的严峻挑战,解决这两大问题是人类社会实现可持续发展的迫切需要。
中国既是能源短缺国,又是能源消耗大国。
近年来,伴随社会经济的快速发展,中国石油对外依存度不断攀升,已经严重影响国家经济健康发展和社会稳定,并威胁到国家能源安全。
同时,石油等化石能源的过度消耗导致污染物大量排放,加剧了环境污染,尤其是我国近年来雾霾天气的频繁出现,严重影响了人民的生活和身体健康,开发和利用太阳能是解决这一难题的有效方法之一。
我国太阳能资源十分丰富,每年可供开发利用的太阳能约 1.6X1O15W,大约是2010年中国能源消耗的500 倍。
从长远看,太阳能的有效开发与利用对优化中国能源结构具有重大意义。
然而太阳能存在能量密度低、分布不均匀、昼夜/季节变化大、不易储存等缺点。
如图 1 所示,光催化技术可以将太阳能转换为氢能。
氢能能量密度高、清洁环保、使用方便,被认为是一种理想的能源载体。
目前氢能的利用技术逐渐趋于成熟,以氢气为燃料的燃料电池已开始实用化,氢气汽车和氢气汽轮机等一些“绿色能源”产品已开始投入市场。
氢利用技术的成熟提高了对制氢技术快速发展的要求。
高效、低成本、大规模制氢技术的开发成为了氢经济”时代的迫切需求。
自20世纪70年代日本科学家利用TiO2光催化分解水产生氢气和氧气以来,光催化材料一直是国内外研究的热点之一。
光催化太阳能制氢方法是一种成本低廉、集光转换与能量存储于一体的方法,该领域的研究越来越受到各国的广泛关注。
国际上光催化材料研究竞争十分激烈。
光催化材料不仅具有分解水制氢的功能,而且具有环境净化功能。
利用光催化材料净化空气和水已成为当今世界引人注目的高新环境净化技术。
太阳能转换效率是制约光催化技术走向实用化的关键因素之一,光催化材料的光响应范围决定了太阳能转换氢能的最大理论转化效率。
光催化领域经过40余年的发展和积累,正孕育着重大突破,光催化太阳能转换效率不断提高,光催化技术正处于迈向大规模应用的关键阶段,国际竞争十分激烈。
光催化降解废水的新型材料开发废水处理是环境保护领域的重要课题之一。
传统的废水处理方法往往耗时费力,且无法完全去除有害物质。
随着科技的进步,一种新型材料在废水处理领域崭露头角——光催化材料。
光催化材料利用光能携带电子,通过激发光子使废水中有害物质发生催化分解,从而达到去除废水污染物的效果。
一、光催化材料的基本原理和应用示例光催化材料是指能够吸收可见光或紫外光,将光能转化为化学能,并加速废水中有害物质的降解。
其中最为常见的是钛酸盐光催化材料。
这种材料具有高度的光吸收和催化活性,可应用于废水中众多有机和无机物质的降解。
以有机物降解为例,当光线照射到光催化材料上时,钛酸盐表面活化氧化剂(如氢氧自由基),通过一系列催化反应将有机物质分解成无害的CO2和H2O。
这一过程利用了光催化材料的催化性能,达到了高效去除有机物的目的。
除了有机物的降解,光催化材料在无机物的处理中也发挥着重要作用。
比如,利用光催化材料降解废水中的重金属离子污染物,可以将其转化为稳定的金属氧化物。
这种方法不仅能够去除废水中的有害物质,还能将其转化为无害且易于回收利用的材料。
二、光催化材料的研究进展光催化材料的研究近年来取得了许多重要进展。
科学家们通过改变材料结构和成分,提高光催化材料的催化活性和稳定性。
一方面,科学家研究了不同材料的光催化性能,并发现某些结构独特的纳米材料具有较高的催化活性。
比如,氧化锌纳米线具有高比表面积和极佳的载流子传输性能,可以提高废水处理效率。
另外,一些研究者采用纳米多孔材料,如金属有机骨架(MOFs)和二维材料(如石墨烯),来增加材料的可见光吸收和光电转化效率。
另一方面,科学家还开发了一些新颖的光催化材料。
例如,一种名为过渡金属氧化物/氧化石墨烯复合材料,其具有高催化活性和稳定性。
此外,一些研究人员还尝试将稀土元素引入材料中,以提高材料的光催化性能。
三、光催化材料在实际废水处理中的应用随着光催化材料研究的深入,其在实际废水处理中的应用也逐渐扩大。
受新冠肺炎疫情等影响,全球传统化石能源供应日趋紧张,绿色清洁新型能源的转型发展也越来越紧迫,氢能作为目前最具潜力的清洁能源,在交通、储能、建筑和分布式发电等领域都有着广阔的应用前景,是助力中国“双碳”目标和全球能源生产消费革命、构建低碳高效能源体系的重要抓手。
太阳能是全球分布最广泛均匀的清洁能源,利用太阳能分解水制氢可从源头阻断碳排放,这种绿色环保的技术将会在未来的氢能生产中占据主力位置,是解决能源危机和改善环境的最佳选择之一。
太阳能分解水制氢技术目前研究较多的主要有光催化法制氢、光热分解法制氢和光电化学法制氢,其中,光催化法制氢体系简单、催化剂来源广泛、成本较低,可有效捕获、转换和储存太阳能,被认为是现阶段最具应用发展前景的太阳能制氢技术之一。
光催化剂是光催化分解水制氢体系的核心,通过太阳光激发光催化剂价带(VB)上的电子并跃迁至导带(CB),产生光生电子及空穴,光生电子空穴对分离并迅速转移至光催化剂表面,电子与H+发生还原反应生成H2,空穴则氧化水产生O2。
然而,传统的光催化剂中的电子可能会与空穴发生表面或体相复合,导致光催化反应效率降低,且存在太阳光利用率不高等问题。
若要保证光生电子与空穴的分离效率以及光利用率,使反应尽可能地向生成H2的方向进行,寻找新型高效的光催化剂材料显得尤为重要。
其中,设计制备金属有机框架(MOFs)光催化材料催化分解水制氢是近年热门研究方向之一。
MOFs主要代表类型有:以Zn、Co等过渡金属与咪唑类有机物配位而成的ZIF系列、以Fe、Cr等过渡金属或镧系金属与芳香羧酸类配体配位而成的MIL系列,以及主要以Zr金属与对苯二甲酸配位而成的UiO系列等。
这些MOFs材料在光催化分解水制氢的相关应用研究正逐年上升,但单一MOFs光催化材料仍存在光生电子空穴对分离率较低、稳定性较差等问题,在一定程度上降低了其制氢效率的进一步提升。
美国能源科学部认为太阳能转换氢能效率达到10%以上,太阳能光催化分解水制氢才能实现初步工业化,而MOFs光催化活性离该目标还有一定差距。
太阳能光催化分解水制氢是实现太阳能光-化学转化的重要反应,被认为是化学领域的一个“圣杯”式的反应。
光催化水分解反应主要涉及质子还原和水氧化两个半反应,其中水氧化是涉及多电子转移、热力学爬坡的反应,被认为是实现上述太阳能光化学转化的速控步。
太阳能光催化转化涉及如何实现太阳能宽光谱利用、如何实现高效的光生电荷分离以及表面的催化转化等关键科学问题,然而随着半导体催化剂吸收带边的红移,其驱动光生电荷分离以及水分解(还原、氧化)的能力就随之变弱。
因此,太阳光的充分利用与光生电荷的高效分离常常不易兼得,要实现宽光谱响应的光催化剂高效水氧化过程是一个非常具有挑战性的难题。
近日,中国科学院大连化学物理研究所催化基础国家重点实验室及洁净能源国家实验室中科院院士李灿和“百人计划”学者章福祥研究员负责的宽光谱响应半导体光催化分解水研究取得新进展:通过对宽光谱捕光材料Ta3N5(Eg:2.1eV,吸收带边可至600nm)与高效氧化助催化剂CoOx之间的界面进行MgO纳米层修饰。
以上进展不仅改善了CoOx与其界面接触和分散状态,而且还对半导体Ta3N5表面起到钝化保护作用,使光催化体系在可见光长波段500?600nm激发条件下的分解水放氧量子效率(AQE),由文献最高值5.2%提升至目前的11.3%。
相关研究结果在线发表在《德国应用化学》期刊上。
该研究工作获得基金委重大基金、科技部“973”项目以及中科院“百人计划”人才项目资助。
助催化剂可有效促进光生电荷分离和催化转化,李灿研究团队在
国际上明确提出了双助催化剂策略(Acc.Chem.Res.2013,46,2355)。
最近几年,为了攻克宽光谱响应光催化剂上水氧化这一科学难题,他们发展了高温负载廉价助催化剂CoOx的策略,在LaTiO2N(Eg:2.1eV)上取得了比传统贵金属IrO2和RuO2助催化剂更高的放氧性能
(J.Am.Chem.Soc.2012,134,8348-8351.),随后又成功地将这种CoOx 负载策略拓展到了新开发的宽光谱响应的氮掺杂氧化物
Sr5Ta4O15-xNx和MgTa2O6?xNx材料体系上
(J.Mater.Chem.2013,12,5651;mun.2014,50,14415)。
该研究进一步利用MgO纳米层调变宽光谱响应半导体Ta3N5与助催化剂CoOx之间的界面性质,通过改变半导体材料表面的亲疏水性,改善了助催化剂的纳米分散以及界面间电荷的转移,取得了目前宽光谱响应光催化剂上分解水放氧反应的最高量子效率,为发展高效的光催化体系提供了新策略。
ldjwja超细磨粉机/。