2.2.1.1函数的单调性 作业 含答案 高中数学苏教版必修一
- 格式:doc
- 大小:98.00 KB
- 文档页数:5
高中数学必修一第三章函数的概念与性质必须掌握的典型题单选题1、若函数f (x )=x α的图象经过点(9,13),则f (19)=( ) A .13B .3C .9D .8答案:B分析:将(9,13)代入函数解析式,即可求出α,即可得解函数解析式,再代入求值即可.解:由题意知f (9)=13,所以9α=13,即32α=3−1,所以α=−12,所以f (x )=x −12,所以f (19)=(19)−12=3.故选:B2、已知函数f (x )的定义域为(3,5),则函数f (2x +1)的定义域为( ) A .(1,2)B .(7,11)C .(4,16)D .(3,5) 答案:A分析:根据3<2x +1<5求解即可∵f (x )的定义域为(3,5),∴3<x <5,由3<2x +1<5,得1<x <2,则函数f (2x +1)的定义域为(1,2) 故选:A.3、函数f (x )=x 2−1的单调递增区间是( ) A .(−∞,−3)B .[0,+∞) C .(−3,3)D .(−3,+∞) 答案:B分析:直接由二次函数的单调性求解即可.由f (x )=x 2−1知,函数为开口向上,对称轴为x =0的二次函数,则单调递增区间是[0,+∞). 故选:B.4、已知函数f (x )是定义在R 上的偶函数,f (x )在[0,+∞)上单调递减,且f (3)=0,则不等式(2x −5)f (x −1)<0的解集为( )A .(−2,52)∪(4,+∞)B .(4,+∞)C .(−∞,−2)∪[52,4]D .(−∞,−2) 答案:A分析:根据偶函数的性质及区间单调性可得(−∞,0)上f(x)单调递增且f(−3)=f(3)=0,进而确定f(x)的区间符号,讨论{2x −5>0f(x −1)<0 、{2x −5<0f(x −1)>0求解集即可.由题设,(−∞,0)上f(x)单调递增且f(−3)=f(3)=0, 所以(−∞,−3)、(3,+∞)上f(x)<0,(−3,3)上f(x)>0, 对于(2x −5)f(x −1)<0,当{2x −5>0f(x −1)<0 ,即{x >52x −1<−3 或{x >52x −1>3 ,可得x >4; 当{2x −5<0f(x −1)>0 ,即{x <52−3<x −1<3,可得−2<x <52; 综上,解集为(−2,52)∪(4,+∞). 故选:A5、已知幂函数f(x)=k ⋅x α的图象经过点(3,√3),则k +α等于( ) A .32B .12C .2D .3答案:A分析:由于函数为幂函数,所以k =1,再将点(3,√3)代入解析式中可求出α的值,从而可求出k +α 解:因为f(x)=k ⋅x α为幂函数,所以k =1,所以f(x)=x α, 因为幂函数的图像过点(3,√3), 所以√3=3α,解得α=12,所以k +α=1+12=32,故选:A6、已知幂函数y =x a 与y =x b 的部分图像如图所示,直线x =m 2,x =m (0<m <1)与y =x a ,y =x b 的图像分别交于A ,B ,C ,D 四点,且|AB |=|CD |,则m a +m b =( )A.1B.1C.√2D.22答案:B分析:表示出|AB|,|CD|,由幂函数的图象可得b>1>a>0,从而得(m2)a>(m2)b,m a>m b,再由|AB|=|CD|,代入化简计算,即可求解出答案.由题意,|AB|=(m2)a−(m2)b,|CD|=m a−m b,根据图象可知b>1>a>0,当0<m<1时,(m2)a> (m2)b,m a>m b,因为|AB|=|CD|,所以m2a−m2b=(m a+m b)(m a−m b)=m a−m b,因为m a−m b>0,可得m a+m b=1.故选:B,则f(x)()7、设函数f(x)=x3−1x3A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减答案:A分析:根据函数的解析式可知函数的定义域为{x|x≠0},利用定义可得出函数f(x)为奇函数,再根据函数的单调性法则,即可解出.因为函数f(x)=x3−1定义域为{x|x≠0},其关于原点对称,而f(−x)=−f(x),x3所以函数f(x)为奇函数.又因为函数y=x3在(0,+∞)上单调递增,在(−∞,0)上单调递增,而y =1x 3=x −3在(0,+∞)上单调递减,在(−∞,0)上单调递减,所以函数f(x)=x 3−1x 3在(0,+∞)上单调递增,在(−∞,0)上单调递增. 故选:A .小提示:本题主要考查利用函数的解析式研究函数的性质,属于基础题. 8、下列函数为奇函数的是( ) A .y =x 2B .y =x 3C .y =|x|D .y =√x 答案:B分析:根据奇偶函数的定义判断即可;解:对于A :y =f (x )=x 2定义域为R ,且f (−x )=(−x )2=x 2=f (x ), 所以y =x 2为偶函数,故A 错误;对于B :y =g (x )=x 3定义域为R ,且g (−x )=(−x )3=−x 3=−g (x ), 所以y =x 3为奇函数,故B 正确;对于C :y =ℎ(x )=|x |定义域为R ,且ℎ(−x )=|−x |=|x |=ℎ(x ), 所以y =|x |为偶函数,故C 错误;对于D :y =√x 定义域为[0,+∞),定义域不关于原点对称, 故y =√x 为非奇非偶函数,故D 错误; 故选:B 多选题9、下列各组函数中,两个函数是同一函数的有( ) A .f (x )=x 与g (x )=√x 33B .f (x )=x +1与g (x )=x 2−1x−1C .f (x )=|x |x 与g (x )={1,x >0−1,x <0D .f (t )=|t −1|与g (x )=|x −1| 答案:ACD分析:根据两个函数为同一函数的定义,对四个选项逐个分析可得答案.对于A ,f(x)=x ,g(x)=√x 33=x ,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故A 正确;对于B,f(x)=x+1,g(x)=x+1(x≠1),两个函数的定义域不同,所以两个函数不为同一函数,故B不正确;对于C,f(x)={1,x>0−1,x<0,g(x)={1,x>0−1,x<0,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故C正确;对于D,f(t)=|t−1|与g(x)=|x−1|的对应关系和定义域都相同,所以两个函数为同一函数,故D正确. 故选:ACD10、已知函数f(x)={x+2,x≤−1x2,−1<x<2,关于函数f(x)的结论正确的是()A.f(x)的定义域为R B.f(x)的值域为(−∞,4)C.f(1)=3D.若f(x)=3,则x的值是√3E.f(x)<1的解集为(−1,1)答案:BD解析:根据解析式判断定义域,结合单调性求出值域,分段代值即可求解方程,分段解不等式,得出不等式解集.由题意知函数f(x)的定义域为(−∞,2),故A错误;当x≤−1时,f(x)的取值范围是(−∞,1],当−1<x<2时,f(x)的取值范围是[0,4),因此f(x)的值域为(−∞,4),故B正确;当x=1时,f(1)=12=1,故C错误;当x≤−1时,x+2=3,解得x=1(舍去),当−1<x<2时,x2=3,解得x=√3或x=−√3(舍去),故D正确;当x≤−1时,x+2<1,解得x<−1,当−1<x<2时,x2<1,解得−1<x<1,因此f(x)<1的解集为(−∞,−1)∪(−1,1);故E错误.故选:BD.小提示:此题考查分段函数,涉及定义域,值域,根据函数值求自变量取值,解不等式,关键在于分段依次求解.11、已知幂函数f(x)图像经过点(4,2),则下列命题正确的有()A .函数为增函数B .函数为偶函数C .若x ≥9,则f (x )≥3D .若x 2>x 1>0,则f (x 1)+f (x 2)2>f (x 1+x 22)答案:AC解析:先代点求出幂函数的解析式f(x)=x 12,根据幂函数的性质直接可得单调性和奇偶性,由x ≥9时,可得√x ≥3可判断C ,利用(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2展开和0比即可判断D.设幂函数f(x)=x α将点(4,2)代入函数f(x)=x α得:2=4α,则α=12.所以f(x)=x 12,显然f(x)在定义域[0,+∞)上为增函数,所以A 正确.f(x)的定义域为[0,+∞),所以f(x)不具有奇偶性,所以B 不正确. 当x ≥9时,√x ≥3,即f(x)≥3,所以C 正确. 当若0<x 1<x 2时, (f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2=x 1+x 2+2√x 1x 24−x 1+x 22=2√x 1x 2−x 1−x 24=−(√x 1−√x 2)24<0.即f (x 1)+f (x 2)2<f (x 1+x 22)成立,所以D 不正确.故选:AC小提示:关键点睛:本题主要考查了幂函数的性质,解答本题的关键是由(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2,化简得到−(√x 1−√x 2)24,从而判断出选项D 的正误,属于中档题.填空题12、已知函数f(x),g(x)分别是定义在R 上的偶函数和奇函数,f(x)+g(x)=2⋅3x ,则函数f(x)=_____. 答案:3x +3−x分析:由已知可得f(−x)+g(−x)=2⋅3−x ,结合两函数的奇偶性可得f (x )−g (x )=2⋅3−x ,利用方程组的思想即可求出f (x ).解:因为f(x)+g(x)=2⋅3x ,所以f(−x)+g(−x)=2⋅3−x ,又f(x),g(x)分别是定义在R 上的偶函数和奇函数,所以f (−x )=f (x ),g (−x )=−g (x ); 所以f(−x)+g(−x)=f (x )−g (x )=2⋅3−x,则{f (x )+g (x )=2⋅3x f (x )−g (x )=2⋅3−x,两式相加得,2f (x )=2⋅3x +2⋅3−x ,所以f (x )=3x +3−x . 故答案为:3x +3−x . 小提示:关键点睛:本题的关键是由函数的奇偶性得到f (x )−g (x )=2⋅3−x ,从而可求出函数的解析式. 13、函数y =log 0.4(−x 2+3x +4)的值域是________. 答案:[−2,+∞)解析:先求出函数的定义域为(−1,4),设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),根据二次函数的性质求出单调性和值域,结合对数函数的单调性,以及利用复合函数的单调性即可求出y =log 0.4(−x 2+3x +4)的单调性,从而可求出值域.解:由题可知,函数y =log 0.4(−x 2+3x +4), 则−x 2+3x +4>0,解得:−1<x <4, 所以函数的定义域为(−1,4), 设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),则x ∈(−1,32)时,f (x )为增函数,x ∈(32,4)时,f (x )为减函数,可知当x =32时,f (x )有最大值为254,而f (−1)=f (4)=0,所以0<f (x )≤254,而对数函数y =log 0.4x 在定义域内为减函数, 由复合函数的单调性可知,函数y =log 0.4(−x 2+3x +4)在区间(−1,32)上为减函数,在(32,4)上为增函数,∴y ≥log 0.4254=−2,∴函数y =log 0.4(−x 2+3x +4)的值域为[−2,+∞). 所以答案是:[−2,+∞).小提示:关键点点睛:本题考查对数型复合函数的值域问题,考查对数函数的单调性和二次函数的单调性,利用“同增异减”求出复合函数的单调性是解题的关键,考查了数学运算能力.14、已知函数f (x )=x 2−4x +3,g (x )=mx +3−2m ,若对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立,则实数m 的取值范围为______. 答案:(−∞,−2]∪[2,+∞)分析:求出函数f (x )在[0,4]上的值域A ,再分情况求出g (x )在[0,4]上的值域,利用它们值域的包含关系即可列式求解.“对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立”等价于“函数f (x )在[0,4]上 的值域包含于g (x )在[0,4]上的值域”,函数f (x )=(x −2)2−1,当x ∈[0,4]时,f(x)min =f(2)=−1,f(x)max =f(0)=f(4) =3,即f (x )在[0,4]的值域A =[−1,3],当m =0时,g(x)=3,不符合题意,当m >0时,g (x )在[0,4]上单调递增,其值域B 1=[3−2m,3+2m],于是有A ⊆B 1,即有{3−2m ≤−13+2m ≥3,解得m ≥2,则m ≥2,当m <0时,g (x )在[0,4]上单调递减,其值域B 2=[3+2m,3−2m],于是有A ⊆B 2,即有{3+2m ≤−13−2m ≥3,解得m ≤−2,则m ≤−2, 综上得:m ≤−2或m ≥2,所以实数m 的取值范围为(−∞,−2]∪[2,+∞). 所以答案是:(−∞,−2]∪[2,+∞) 解答题15、已知二次函数f (x )=ax 2−2x (a >0) (1)若f (x )在[0,2]的最大值为4,求a 的值;(2)若对任意实数t,总存在x1,x2∈[t,t+1],使得|f(x1)−f(x2)|≥2.求a的取值范围.答案:(1)2;(2)[8,+∞).分析:由解析式可知f(x)为开口方向向上,对称轴为x=1a的二次函数;(1)分别在1a ≥2和0<1a<2两种情况下,根据函数单调性可确定最大值点,由最大值构造方程求得结果;(2)将问题转化为f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,分别在1a ≤t、1a≥t+1、t<1a≤t+12和t+12<1a<t+1,根据f(x)单调性可得f(x)max−f(x)min,将f(x)max−f(x)min看做关于t的函数,利用恒成立的思想可求得结果.由f(x)解析式知:f(x)为开口方向向上,对称轴为x=1a的二次函数,(1)当1a ≥2,即0<a≤12时,f(x)在[0,2]上单调递减,∴f(x)max=f(0)=0,不合题意;当0<1a <2,即a>12时,f(x)在[0,1a]上单调递减,在[1a,2]上单调递增,∴f(x)max=max{f(0),f(2)},又f(0)=0,f(2)=4a−4,f(x)在[0,2]的最大值为4,∴f(x)max=f(2)=4a−4=4,解得:a=2;综上所述:a=2.(2)若对任意实数t,总存在x1,x2∈[t,t+1],使得|f(x1)−f(x2)|≥2,则f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,①当1a≤t时,f(x)在[t,t+1]上单调递增,∴f(x)max−f(x)min=f(t+1)−f(t)=2at+a−2≥2,当t≥1a时,y=2at+a−2单调递增,∴(2at+a−2)min=2a⋅1a+a−2=a,∴a≥2;②当1a ≥t+1,即t≤1a−1时,f(x)在[t,t+1]上单调递减,∴f(x)max−f(x)min=f(t)−f(t+1)=−2at−a+2≥2,当t≤1a−1时,y=−2at−a+2单调递减,∴(−2at−a+2)min=−2a(1a−1)−a+2=a,∴a≥2;③当t<1a ≤t+12,即1a−12≤t<1a时,f(x)在[t,1a]上单调递减,在[1a,t+1]上单调递增,∴f(x)max−f(x)min=f(t+1)−f(1a )=a(t+1)2−2(t+1)+1a≥2,当1a −12≤t<1a时,又a>0,12<1a+12≤t+1<1a+1,令m=t+1,则y=am2−2m+1a 在[1a+12,1a+1)上单调递增,∴a(1a +12)2−2(1a+12)+1a≥2,解得:a≥8;④当t+12<1a<t+1,即1a−1<t<1a−12时,f(x)在[t,1a]上单调递减,在[1a,t+1]上单调递增,∴f(x)max−f(x)min=f(t)−f(1a )=at2−2t+1a≥2,当1a −1<t<1a−12时,y=at2−2t+1a在(1a−1,1a−12)上单调递减,∴a(1a −12)2−2(1a−12)+1a≥2,解得:a≥8;综上所述:a的取值范围为[8,+∞).小提示:关键点点睛:本题考查根据二次函数最值求解参数值、恒成立问题的求解,本题解题关键是能够将问题转化为f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,从而通过对于函数单调性的讨论得到最值.。
高中数学苏教版教材目录(必修+选修)苏教版-----------------------------------必修1-----------------------------------第1章集合1.1集合的含义及其表示1.2子集、全集、补集1.3交集、并集第2章函数2.1函数的概念2.1.1函数的概念和图象2.1.2函数的表示方法2.2函数的简单性质2.2.1函数的单调性2.2.2函数的奇偶性2.3映射的概念第3章指数函数、对数函数和幂函数3.1指数函数3.1.1分数指数幂3.1.2指数函数3.2对数函数3.2.1对数3.2.2对数函数3.3幂函数3.4函数的应用3.4.1函数与方程3.4.2函数模型及其应用-----------------------------------必修2-----------------------------------第1章立体几何初步1.1空间几何体1.1.1棱柱、棱锥和棱台1.1.2圆柱、圆锥、圆台和球1.1.3中心投影和平行投影1.1.4直观图画法1.2点、线、面之间的位置关系1.2.1平面的基本性质1.2.2空间两条直线的位置关系1.平行直线2.异面直线1.2.3直线与平面的位置关系1.直线与平面平行2.直线与平面垂直1.2.4平面与平面的位置关系1.两平面平行2.平面垂直1.3空间几何体的表面积和体积1.3.1空间几何体的表面积1.3.2空间几何体的体积第2章平面解析几何初步2.1直线与方程2.1.1直线的斜率2.1.2直线的方程1.点斜式2.两点式3.一般式2.1.3两条直线的平行与垂直2.1.4两条直线的交点2.1.5平面上两点间的距离2.1.6点到直线的距离2.2圆与方程2.2.1圆的方程2.2.2直线与圆的位置关系2.2.3圆与圆的位置关系2.3空间直角坐标系2.3.1空间直角坐标系2.3.2空间两点间的距离-----------------------------------必修3-----------------------------------第1章算法初步1.1算法的意义1.2流程图1.2.1顺序结构1.2.2选择结构1.2.3循环结构1.3基本算法语句1.3.1赋值语句1.3.2输入、输出语句1.3.3条件语句1.3.4循环语句1.4算法案例第2章统计2.1抽样方法2.1.1简单随机抽样1.抽签法2.随机数表法2.1.2系统抽样2.1.3分层抽样2.2总体分布的估计2.2.1频率分布表2.2.2频率分布直方图与折线图2.2.3茎叶图2.3总体特征数的估计2.3.1平均数及其估计2.3.2方差与标准差2.4线性回归方程第3章概率3.1随机事件及其概率3.1.1随机现象3.1.2随机事件的概率3.2古典概型3.3几何概型3.4互斥事件-----------------------------------必修4-----------------------------------第1章三角函数1.1任意角、弧度1.1.1任意角1.1.2弧度制1.2任意角的三角函数1.2.1任意角的三角函数1.2.2同角三角函数关系1.2.3三角函数的诱导公式1.3三角函数的图象和性质1.3.1三角函数的周期性1.3.2三角函数的图象与性质1.3.3函数y=Asin(ωx+ψ)的图象1.3.4三角函数的应用第2章平面向量2.1向量的概念及表示2.2向量的线性运算2.2.1向量的加法2.2.2向量的减法2.2.3向量的数乘2.3向量的坐标表示2.3.1平面向量基本定理2.3.2平面向量的坐标运算2.4向量的数量积2.5向量的应用第3章三角恒等变换3.1两角和与差的三角函数3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切 3.2二倍角的三角函数 3.3几个三角恒等式-----------------------------------必修5----------------------------------- 第1章 解三角形 1.1正弦定理 1.2余弦定理1.3正弦定理、余弦定理的应用 第2章 数列 2.1数列2.2等差数列2.2.1等差数列的概念2.2.2等差数列的通项公式2.2.3等差数列的前n 项和2.3等比数列2.3.1等比数列的概念2.3.2等比数列的通项公式2.3.3等比数列的前n 项和 第3章 不等式 3.1不等关系3.2一元二次不等式3.3二元一次不等式组与简单的线性规划问题3.3.1二元一次不等式表示的平面区域3.3.2二元一次不等式组表示的平面区域3.3.3简单的线性规划问题3.4基本不等式2b a ab +≤)0,0(≥≥b a 3.4.1基本不等式的证明3.4.2基本不等式的应用-----------------------------------选修1-1----------------------------------- 第1章 常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的共同性质 第3章 导数及其应用3.1导数的概念3.1.1平均变化率3.1.2瞬时变化率——导数3.2导数的运算3.2.1常见函数的导数3.2.2函数的和、差、积、商的导数 3.3导数在研究函数中的应用3.3.1单调性3.3.2极大值和极小值3.3.3最大值和最小值3.4导数在实际生活中的应用-----------------------------------选修1-2----------------------------------- 第1章 统计案例 1.1独立性检验 1.2回归分析第2章 推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏 2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明 第3章 数系的扩充与复数的引入 3.1数系的扩充3.2复数的四则运算 3.3复数的几何意义 第4章 框图 4.1流程图 4.2结构图-----------------------------------选修2-1----------------------------------- 第1章 常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的统一定义2.6曲线与方程2.6.1曲线与方程2.6.2求曲线的方程2.6.3曲线的交点 第3章 空间向量与立体几何3.1空间向量及其运算3.1.1空间向量及其线性运算3.1.2共面向量定理3.1.3空间向量基本定理3.1.4空间向量的坐标表示3.1.5空间向量的数量积3.2空间向量的应用3.2.1直线的方向向量与平面的法向量3.2.2空间线面关系的判定3.2.3空间的角的计算-----------------------------------选修2-2-----------------------------------第一章导数及其应用1.1导数的概念1.1.1平均变化率1.1.2瞬时变化率——导数1.2导数的运算1.2.1常见函数的导数1.2.2函数的和、差、积、商的导数1.2.3简单复合函数的导数1.3导数在研究函数中的应用1.3.1单调性1.3.2极大值和极小值1.3.3最大值和最小值1.4导数在实际生活中的应用1.5定积分1.5.1曲边梯形的面积1.5.2定积分1.5.3微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义-----------------------------------选修2-3-----------------------------------第一章计数原理1.1两个基本原理1.2排列1.3组合1.4计数应用题1.5二项式定理1.5.1二项式定理1.5.2二项式系数的性质及用第二章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性2.3.1条件概率2.3.2事件的独立性2.4二项分布2.5随机变量的均值与方差2.5.1离散型随机变量的均值2.5.2离散型随机变量的方差与标准差2.6正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4-1-----------------------------------1.1 相似三角形的进一步认识1.1.1平行线分线段成比例定理1.1.2相似三角形1.2 圆的进一步认识1.2.1圆周角定理1.2.2圆的切线1.2.3圆中比例线段1.2.4圆内接四边形1.3 圆锥截线1.3.1球的性质1.3.2圆柱的截线1.3.3圆锥的截线学习总结报告-----------------------------------选修4-2-----------------------------------2.1 二阶矩阵与平面向量2.1.1矩阵的概念2.1.2二阶矩阵与平面列向量的乘法2.2 几种常见的平面变换2.2.1恒等变换2.2.2伸压变换2.2.3反射变换2.2.4旋转变换2.2.5投影变换2.2.6切变变换2.3 变换的复合与矩阵的乘法2.3.1矩阵乘法的概念2.3.2矩阵乘法的简单性质2.4 逆变换与逆矩阵2.4.1逆矩阵的概念2.4.2二阶矩阵与二元一次方程组2.5 特征值与特征向量2.6 矩阵的简单应用学习总结报告-----------------------------------选修4-4-----------------------------------4.1 直角坐标系4.1.1直角坐标系4.1.2极坐标系4.1.3球坐标系与柱坐标系4.2 曲线的极坐标方程4.2.1曲线的极坐标方程的意义4.2.2常见曲线的极坐标方程4.3 平面坐标系中几种常见变换4.3.1平面直角坐标系中的平移变换4.3.2平面直角坐标系中的伸缩变换4.4 参数方程4.4.1参数方程的意义4.4.2参数方程与普通方程的互化4.4.3参数方程的应用4.4.4平摆线与圆的渐开线学习总结报告-----------------------------------选修4-5-----------------------------------5.1 不等式的基本性质5.2 含有绝对值的不等式5.2.1含有绝对值的不等式的解法5.2.2含有绝对值的不等式的证明5.3 不等式的证明5.3.1比较法5.3.2综合法和分析法5.3.3反证法5.3.4放缩法5.4 几个著名的不等式5.4.1柯西不等式5.4.2排序不等式5.4.3算术-几何平均值不等式5.5 运用不等式求最大(小)值5.5.1运用算术-几何平均值不等式求最大(小)值5.5.2运用柯西不等式求最大(小)值5.6 运用数学归纳法证明不等式学习总结报告感谢您使用本店文档您的满意是我们的永恒的追求!(本句可删)------------------------------------------------------------------------------------------------------------。
高一数学(苏教版)必修一午间小练:函数的单调性与最值(1)1.已知23()34,4f x x x =-+若()f x 的定义域和值域都是[],a b ,则a b += . 2.如图,一矩形铁皮的长为8cm ,宽为5cm ,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,则小正方形的边长为 时,盒子容积最大?。
3.函数2()(1)2f x x =--的递增区间是___________________ . 4.函数2()41f x x x =-++([]1,1x ∈-)的最大值等于 .5.已知y=f(x)是定义在(-2,2)上的增函数,若f(m-1)<f(1-2m),则实数m 的取值范围为 .6.已知函数2()45f x x x =-+在区间[),a +∞上单调递增,则a 的取值范围是___________.7.若函数2()(1)3f x kx k x =+-+是偶函数,则()f x 的递减区间是 .8.若二次函数()f x 满足(2)(2)f x f x +=-,且()(0)(1)f a f f ≤<,则实数a 的取值范围是_________.9.已知定义在R 上的奇函数)(x f ,当0>x 时,x x x f 2)(2+-=(1)求函数)(x f 在R 上的解析式;(2)若函数)(x f 在区间[]2,1--a 上单调递增,求实数a 的取值范围。
10.已知增函数()21x bax x f ++=是定义在(-1,1)上的奇函数,其中R b ∈,a 为正整数,且满足54)2(<f . ⑴求函数()x f 的解析式;⑵求满足0)()2(2<+-t f t t f 的t 的范围;参考答案1.5 【解析】试题分析:该二次函数开口向上,对称轴为2=x ,最小值为1)(min =x f ,所以可分3种情况:(1)当对称轴2=x 在区间[],a b 的左侧时,函数在区间[],a b 上单调递增,所以此时(舍)或即⎪⎩⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧==≥3444,)()(2b a b b f a a f ba a ; (2) 当对称轴2=x 在区间[],ab 的右侧时,函数在区间[],a b 上单调递减,所以此时(舍)即⎪⎪⎩⎪⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧==≤3434,)()(2b a a b f b a f b a b ; (3) 当对称轴2=x 在区间[],a b 内时,函数在区间[]2,a 上单调递减,在区间(]b ,2上单调递增,所以此时b a 2,函数在区间[],a b 内的最小1值为1,也是值域的最小值a ,所以1=a ,同时可知函数值域的最大值一定大于2.通过计算可知247)3()1()( ===f f a f ,所以可知函数在b x =时取得最大值b ,即b b f =)(.所以4=b . 通过验证可知,函数23()34,4f x x x =-+在区间[]41,内的值域为[]4,1. 综上可知:5=+b a .考点:二次函数对称轴与区间的位置关系. 2.1 【解析】盒子容积为:y=(8-2x )•(5-2x )•x=4x 3-26x 2+40x ,所以,当x=1时,函数y 取得最大值18;所以,小正方形的边长为1cm ,盒子容积最大,最大值为18cm 3.. 考点:函数模型的选择与应用.. 3.[1,+∞) 【解析】试题分析:()223f x x x =--,由一元二次函数的单调性可知,开口向上,递增区间在对称轴右侧,递增区间为[1,+∞). 考点:一元二次函数的单调性. 4.4 【解析】试题分析:因为对称轴为2[1,1]x =∉-,所以函数在[-1,1]上单调递增,因此当1x =时,函数取最大值4.考点:二次函数最值 5.12,23⎛⎫-⎪⎝⎭【解析】试题分析: 由题意得21122m m -<-<-<,解得211,,32m m m -<<>-,所以实数m的取值范围为12,23⎛⎫- ⎪⎝⎭考点:抽象函数单调性 6.2a ≥ 【解析】试题分析:因为2()45f x x x =-+=2(2)1x -+,所以函数()f x 的对称轴为2x =.因为函数()f x 在区间[),a +∞上单调递增,所以2a ≥. 考点:二次函数单调性. 7.(],0-∞ 【解析】 试题分析:()f x 是偶函数,()()f x f x ∴-=,即22()(1)()3(1)3k x k x kx k x -+--+=+-+,即22(1)3(1)3kx k x kx k x --+=+-+,(1)1k k ∴--=-,∴1k =,即2()3f x x =+。
高中数学如何学好,必修一函数的单调性与最值(习题)很多同学给老师留言说,函数的概念我懂,可是就是不会做题,高中数学必修一函数章节那个点,一定要把函数的基础学扎实了,然后利用技巧方法去解关于函数的单调性与最值这个点,不管是函数那个点都要学好基础。
大部分同学都能掌握必修一函数章节内容,重点还在于抽象函数的定义域,这就需要同学们仔细思考,回顾函数概念才能弄懂的;函数值域的求法,重点掌握换元法和方程组法、数形结合法,这些方法是最基础的。
另外对于函数的单调性和奇偶性,单调性的证明方法和奇偶性的判断,这些都需要理解到位。
下面肖老师讲解高中数学如何学好,必修一函数函数的单调性与最值的习题,让大家更好的去理解函数章节。
一、函数单调性的应用(高频考点)函数单调性结合函数的图象以及函数其他性质的应用已成为近几年高考命题的一个新的增长点,常以选择、填空题的形式出现.高考对函数单调性的考查主要有以下三个命题角度:(1)比较两个函数值或两个自变量的大小;(2)解函数不等式;(3)求参数的值或取值范围.角度一比较两个函数值或两个自变量的大小角度二解函数不等式角度三求参数的值或取值范围数形结合思想求函数最值(1)本题利用了数形结合的思想,解答本题首先利用分类讨论思想写出函数g(x)的表达式,然后再作出g(x)的图象,利用图象求出b -a的最大值.(2)数形结合的数学思想包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.根据以上必修一函数的单调性与最值习题,对必修一函数的单调性与最值知识点有所了解了吧!希望能够帮助到你。
如果对必修一函数知识点还有疑惑还是不懂,可以咨询老师。
老师对帮助大家如何学好高中数学必修一内容。
第2课时函数的平均变化率与最值必备知识基础练1.已知函数f (x )=1x 在[1,2]上的最大值为A ,最小值为B ,则A -B 等于()A.12B.-12C.1D.-12.函数f (x )=-2x +1(x ∈[-2,2])的最小值、最大值分别为()A.3,5B.-3,5C.1,5D.5,-33.已知f (x )=x 2-ax +a2在[0,1]上的最大值为g (a ),则g (a )的最小值为()A.0B.12C.1D.24.函数y =f (x )的定义域为[-4,6],且在区间[-4,-2]上递减,在区间[-2,6]上递增,且f (-4)<f (6),则函数f (x )的最小值是________,最大值是________.5.质点运动规律为s =t 2+3,则在时间(3,3+Δt )内的平均速度为________,在t =3处的瞬时速度为________.6.利用函数的平均变化率证明函数y =3x +2在区间[0,5]上是减函数.关键能力综合练7.已知函数f (x )=kx 2-4x +8在[5,10]上单调递减,且f (x )在[5,10]上的最小值为-32,则实数k 的值为()A.-45B.0C.0或-45D.0或178.(多选)下列函数中,值域是[0,+∞)的是()A.y =|x |B.y =3-x C.y =x2D.y =-x 2+49.(多选)设c <0,f (x )是区间[a ,b ]上的减函数,下列结论中正确的是()A.f (x )在区间[a ,b ]上有最小值f (a )B.1f (x )在[a ,b ]上有最小值f (a )C.f (x )-c 在[a ,b ]上有最小值f (b )-c D.cf (x )在[a ,b ]上有最小值cf (a )10.已知曲线y =1x -1上两点A (2,-12),B (2+Δx ,-12+Δy ),当Δx =1时,直线AB 的斜率为________.11.当0≤x ≤2时,a <-x 2+2x 恒成立,则实数a 的取值范围是________.12.已知函数f (x )=x +4x.(1)试证明函数f (x )在(0,2)上单调递减;(2)求函数f (x )在[12,4]上的值域.核心素养升级练13.向一杯子中匀速注水时,杯中水面高度h 随时间t 变化的函数h =f (t )的大致图象如图所示,则杯子的形状可能是()14.对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,则x 的取值范围是()A.1<x <3B.x <1或x >3C.1<x <2D.x <1或x >215.求二次函数f (x )=x 2-2ax +2在[2,4]上的最小值.第2课时函数的平均变化率与最值必备知识基础练1.解析:函数f (x )=1x 在[1,2]上是减函数,所以x =1时,f (x )的最大值为1,即A=1,x =2时,f (x )的最小值为12,即B =12,则A -B =1-12=12.答案:A2.解析:因为f (x )=-2x +1在[-2,2]是减函数,所以当x =2时,函数的最小值为-3,当x =-2时,函数的最大值为5.答案:B3.解析:因为f (x )=x 2-ax +a 2图象的开口向上,对称轴为x =a 2,①当a 2≤12,即a ≤1时,此时函数取得最大值g (a )=f (1)=1-a2,②当a 2>12,即a >1时,此时函数取得最大值g (a )=f (0)=a2,故g (a 1-a2,a ≤1a >1,故当a =1时,g (a )取得最小值12.答案:B4.解析:因为函数y =f (x )在区间[-4,-2]上递减,在区间[-2,6]上递增,所以f (x )的最小值是f (-2),又因为f (-4)<f (6),所以f (x )的最大值是f (6).答案:f (-2)f (6)5.解析:根据平均变化率的公式f (x +Δt )-f (x )Δx,则在时间(3,3+Δt )内的平均速度为v -=(3+Δt )2+3-(32+3)3+Δt -3=6+Δt ,当t =3时的瞬时速度为6.答案:6+Δt66.解析:证明:设0≤x 1,x 2≤5,且x 1≠x 2,则f (x 2)-f (x 1)=3x 2+2-3x 1+2=3(x 1-x 2)(x 1+2)(x 2+2),所以Δf Δx =-3(x 1+2)(x 2+2),又由0≤x 1,x 2≤5,且x 1≠x 2,则x 1+2>0,x 2+2>0,所以ΔfΔx<0,则函数y =3x +2在[0,5]上是减函数.关键能力综合练7.解析:由函数f (x )=kx 2-4x +8在[5,10]上单调递减可知,当x =10时,函数有最小值,即100k -40+8=-32,解得k =0,当k =0时,f (x )=-4x +8,函数单调递减,满足题意.答案:B8.解析:y =|x |的值域是[0,+∞);y =3-x 的值域是R ;y =x 2的值域是[0,+∞);y =-x 2+4的值域是(-∞,4].答案:AC9.解析:A 中,f (x )是区间[a ,b ]上的减函数,在区间[a ,b ]上有最小值f (b ),A 错误;B 中,f (x )是区间[a ,b ]上的减函数,而函数1f (x )在[a ,b ]上单调性无法确定,其最小值无法确定,B 错误;C 中,f (x )是区间[a ,b ]上的减函数,f (x )-c 在区间[a ,b ]上也是减函数,其最小值为f (b )-c ,C 正确;D 中,f (x )是区间[a ,b ]上的减函数,且c <0,则cf (x )在区间[a ,b ]上是增函数,则在[a ,b ]上有最小值cf (a ),D 正确.答案:CD10.解析:Δy =12+Δx -1-(-12)=-Δx2(2+Δx ),k AB =ΔyΔx =-12(2+Δx ),当Δx =1时,k AB =-16.答案:-1611.解析:a <-x 2+2x 恒成立,即a 小于函数f (x )=-x 2+2x ,x ∈[0,2]的最小值,而f (x )=-x 2+2x ,x ∈[0,2]的最小值为0,所以a <0.答案:(-∞,0)12.解析:(1)证明:任取x 1,x 2∈(0,2)且x 1<x 2,则f (x 1)-f (x 2)=(x 1+4x 1)-(x 2+4x 2)=(x 1-x 2)+(4x 1-4x 2)=(x 1-x 2)+4(x 2-x 1)x 1x 2=(x 1-x 2)(1-4x 1x 2),又0<x 1<x 2<2,所以x 1-x 2<0,0<x 1x 2<4,1-4x 1x 2<0,所以(x 1-x 2则f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),故函数f (x )=x +4x在x ∈(0,2)上单调递减.(2)任取x 1,x 2∈[2,+∞)且x 1<x 2,由(1)可知,f (x 1)-f (x 2)=(x 1-x 2)(1-4x 1x 2)<0,即f (x )在[2,+∞)上单调递增,又f (x )在(0,2)上单调递减,其中f (12)=172,f (2)=4,f (4)=5,所以f (x )在区间[12,4]上的值域为[4,172].核心素养升级练13.解析:由图象可知,高度与时间都是线性关系,所以排除C、D;当t ∈[0,t 1]时,高度匀速增长,当t ∈[t 1,t 2]时,高度也是匀速增长的,但t ∈[0,t 1]时的增长速率小于t ∈[t 1,t 2]时的增长速率,所以只有A 满足.答案:A14.解析:对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,设g (a )=(x -2)a +x 2-4x +4,即g (a )>0在a ∈[-1,1]上恒成立.g (a )在a ∈[-1,1]上是关于a 的一次函数或常数函数,其图象为一条线段,则只需线段的两个端点在x 轴上方,(-1)=x 2-5x +6>0(1)=x 2-3x +2>0,解得x >3或x <1.答案:B15.解析:∵函数图象的对称轴是x =a ,∴当a <2时,f (x )在[2,4]上是增函数,∴f (x )min =f (2)=6-4a ,当a >4时,f (x )在[2,4]上是减函数,∴f (x )min =f (4)=18-8a ,当2≤a ≤4时,f (x )min =f (a )=2-a 2,设f (x )在[2,4]上的最小值为g (a ),∴g (a a ,a <2,a 2,2≤a ≤4,a ,a >4.。
(新课标)2018-2019学年度苏教版高中数学必修一2.2.1 函数的单调性(二) 课时目标 1.理解函数的最大(小)值的概念及其几何意义.2.体会函数的最大(小)值与单调性之间的关系.3.会求一些简单函数的最大(小)值.1.函数的最值设y =f(x)的定义域为A.(1)最大值:如果存在x 0∈A ,使得对于任意的x ∈A ,都有__________,那么称f(x 0)为y =f(x)的最大值,记为______=f(x 0).(2)最小值:如果存在x 0∈A ,使得对于任意的x ∈A ,都有f(x)≥f(x 0),那么称f(x 0)为y =f(x)的最小值,记为________=f(x 0).2.函数最值与单调性的联系(1)若函数y =f(x)在区间[a ,b]上单调递增,则f(x)的最大值为______,最小值为______.(2)若函数y =f(x)在区间[a ,b]上单调递减,则f(x)的最大值为______,最小值为______.一、填空题1.若函数f(x)=x 2+2(a -1)x +2在区间(-∞,4)上是减函数,则实数a 的取值范围是________.2.已知函数y =x +2x -1,下列说法正确的是________.(填序号)①有最小值12,无最大值;②有最大值12,无最小值; ③有最小值12,最大值2; ④无最大值,也无最小值.3.已知函数y =x 2-2x +3在区间[0,m]上有最大值3,最小值2,则m 的取值范围是________.4.如果函数f(x)=x 2+bx +c 对任意的实数x ,都有f(1+x)=f(-x),那么f(-2),f(0),f(2)的大小关系为________.5.函数y =|x -3|-|x +1|的________.(填序号)①最小值是0,最大值是4;②最小值是-4,最大值是0;③最小值是-4,最大值是4;④没有最大值也没有最小值.6.函数f(x)=11-x (1-x )的最大值是________. 7.函数y =2|x|+1的值域是________. 8.函数y =-x 2+6x +9在区间[a ,b](a<b<3)有最大值9,最小值-7,则a =________,b =__________.9.若y =-2x,x ∈[-4,-1],则函数y 的最大值为________. 二、解答题10.已知函数f(x)=x 2-2x +2.(1)求f(x)在区间[12,3]上的最大值和最小值; (2)若g(x)=f(x)-mx 在[2,4]上是单调函数,求m 的取值范围.11.若二次函数满足f(x+1)-f(x)=2x且f(0)=1.(1)求f(x)的解析式;(2)若在区间[-1,1]上不等式f(x)>2x+m恒成立,求实数m的取值范围.能力提升12.已知函数f(x)=3-2|x|,g(x)=x2-2x,构造函数F(x),定义如下:当f(x)≥g(x)时,F(x)=g(x);当f(x)<g(x)时,F(x)=f(x),那么F(x)________.(填序号)①有最大值3,最小值-1;②有最大值3,无最小值;③有最大值7-27,无最小值;④无最大值,也无最小值.13.已知函数f(x)=ax2-|x|+2a-1,其中a≥0,a∈R.(1)若a=1,作函数f(x)的图象;(2)设f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式.1.函数的最大(小)值(1)定义中M 首先是一个函数值,它是值域中的一个元素,如函数f(x)=-x 2(x ∈R)的最大值为0,有f(0)=0,注意对“存在”的理解.(2)对于定义域内任意元素,都有f(x)≤M 或f(x)≥M 成立,“任意”是说对每一个值都必须满足不等式.拓展 对于函数y =f(x)的最值,可简记如下:最大值:y max 或f(x)max ;最小值:y min 或f(x)min .2.函数的最值与值域、单调性之间的联系(1)对一个函数来说,其值域是确定的,但它不一定有最值,如函数y =1x.如果有最值,则最值一定是值域中的一个元素.(2)若函数f(x)在闭区间[a ,b]上单调,则f(x)的最值必在区间端点处取得.即最大值是f(a)或f(b),最小值是f(b)或f(a).3.二次函数在闭区间上的最值探求二次函数在给定区间上的最值问题,一般要先作出y =f(x)的草图,然后根据图象的增减性进行研究.特别要注意二次函数的对称轴与所给区间的位置关系,它是求解二次函数在已知区间上最值问题的主要依据,并且最大(小)值不一定在顶点处取得.第2课时 函数的最大(小)值知识梳理1.(1)f(x)≤f(x 0) y max (2)y min2.(1)f(b) f(a) (2)f(a) f(b)作业设计1.(-∞,-3]解析 由二次函数的性质,可知4≤-(a -1),解得a ≤-3.2.①解析 ∵y =x +2x -1在定义域[12,+∞)上是增函数, ∴y ≥f(12)=12,即函数最小值为12,无最大值. 3.[1,2]解析 由y =x 2-2x +3=(x -1)2+2知,当x =1时,y 的最小值为2,当y =3时,x 2-2x +3=3,解得x =0或x =2. 由y =x 2-2x +3的图象知,当m ∈[1,2]时,能保证y 的最大值为3,最小值为2.4.f(0)<f(2)<f(-2)解析 依题意,由f(1+x)=f(-x)知,二次函数的对称轴为x =12, 因为f(x)=x 2+bx +c 开口向上,且f(0)=f(1),f(-2)=f(3),由函数f(x)的图象可知,[12,+∞)为f(x)的增区间, 所以f(1)<f(2)<f(3),即f(0)<f(2)<f(-2).5.③解析 y =|x -3|-|x +1|=⎩⎪⎨⎪⎧ -4 (x ≥3)-2x +2 (-1≤x<3)4 (x<-1).因为[-1,3)是函数y =-2x +2的减区间,所以-4≤y ≤4,综上可知③正确.6.43解析 f(x)=1(x -12)2+34≤43. 7.(0,2]解析 观察可知y>0,当|x|取最小值时,y 有最大值, 所以当x =0时,y 的最大值为2,即0<y ≤2, 故函数y 的值域为(0,2].8.-2 0解析 y =-(x -3)2+18,∵a<b<3,∴函数y 在区间[a ,b]上单调递增,即-b 2+6b +9=9, 得b =0(b =6不合题意,舍去)-a 2+6a +9=-7,得a =-2(a =8不合题意,舍去).9.2解析 函数y =-2x在[-4,-1]上是单调递增函数, 故y max =-2-1=2. 10.解 (1)∵f(x)=x 2-2x +2=(x -1)2+1,x ∈[12,3], ∴f(x)的最小值是f(1)=1,又f(12)=54,f(3)=5, 所以,f(x)的最大值是f(3)=5,即f(x)在区间[12,3]上的最大值是5,最小值是1. (2)∵g(x)=f(x)-mx =x 2-(m +2)x +2,∴m +22≤2或m +22≥4,即m ≤2或m ≥6. 故m 的取值范围是(-∞,2]∪[6,+∞).11.解 (1)设f(x)=ax 2+bx +c(a ≠0),由f(0)=1,∴c =1, ∴f(x)=ax 2+bx +1.∵f(x +1)-f(x)=2x ,∴2ax +a +b =2x ,∴⎩⎪⎨⎪⎧ 2a =2a +b =0,∴⎩⎪⎨⎪⎧a =1b =-1,∴f(x)=x 2-x +1. (2)由题意:x 2-x +1>2x +m 在[-1,1]上恒成立, 即x 2-3x +1-m>0在[-1,1]上恒成立.令g(x)=x 2-3x +1-m =(x -32)2-54-m , 其对称轴为x =32, ∴g(x)在区间[-1,1]上是减函数,∴g(x)min =g(1)=1-3+1-m>0,∴m<-1.12.③解析 画图得到F(x)的图象:射线AC 、抛物线AB 及射线BD 三段,联立方程组⎩⎪⎨⎪⎧ y =2x +3,y =x 2-2x , 得x A =2-7,代入得F(x)的最大值为7-27, 由图可得F(x)无最小值. 13.解 (1)当a =1时,f(x)=x 2-|x|+1=⎩⎪⎨⎪⎧ x 2+x +1, x<0x 2-x +1, x ≥0. 作图(如右所示)(2)当x ∈[1,2]时,f(x)=ax 2-x +2a -1.若a =0,则f(x)=-x -1在区间[1,2]上是减函数, g(a)=f(2)=-3.若a>0,则f(x)=a(x -12a )2+2a -14a -1, f(x)图象的对称轴是直线x =12a. 当0<12a <1,即a>12时,f(x)在区间[1,2]上是增函数, g(a)=f(1)=3a -2.当1≤12a ≤2,即14≤a ≤12时, g(a)=f(12a )=2a -14a-1, 当12a >2,即0<a<14时,f(x)在区间[1,2]上是减函数, g(a)=f(2)=6a -3. 综上可得g(a)=⎩⎪⎨⎪⎧ 6a -3, 0≤a<142a -14a -1, 14≤a ≤123a -2, a>12。
2.2二次函数的图象及性质一、考点突破1. 求二次函数的解析式;2. 求二次函数的值域或最值及一元二次方程、一元二次不等式的综合应用;二、重难点提示1. 理解二次函数三种解析式的特征及应用;2. 分析二次函数要抓住几个关键环节:开口方向、对称轴、顶点,函数的定义域;3. 充分应用数形结合思想把握二次函数的性质。
1. 二次函数的定义与解析式(1)二次函数的定义形如:f(x)=ax2+bx+c(a≠0)的函数叫做二次函数。
(2)二次函数解析式的三种形式①一般式:f(x)=ax2+bx+c(a≠0);②顶点式:f(x)=a(x-m)2+n(a≠0);③零点式:f(x)=a(x-x1)(x-x2)(a≠0);3. 与二次函数有关的不等式恒成立问题①ax2+bx+c>0,a≠0恒成立的充要条件是2>-<0,40a b ac②ax 2+bx +c <0,a ≠0恒成立的充要条件是20,40a b ac <-<例题1 已知函数f (x )=x 2+2ax +3,x ∈[-4,6]。
(1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数;(3)当a =1时,求f (|x |)的单调区间。
思路分析:对于(1)和(2)可根据对称轴与区间的关系直接求解,对于(3),应先将函数化为分段函数,再求单调区间,注意函数定义域的限制作用。
答案:解:(1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6],∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35;(2)由于函数f (x )的图象开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4;(3)当a =1时,f (x )=x 2+2x +3,∴f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=⎪⎩⎪⎨⎧-∈+-∈++]0,6[32]6,0(3222x x x x x x ,, ∴f (|x |)的单调递增区间是(0,6]。
[学业水平训练]一、填空题1.函数y =-2x的单调增区间为________. 解析:由函数y =-2x的图象可知增区间为(-∞ ,0) ,(0 ,+∞). 答案:(-∞ ,0) ,(0 ,+∞)2.函数y =⎩⎪⎨⎪⎧xx ≥0x 2 x <0的单调增区间为________;单调减区间为________. 解析:当x ≥0时 ,y =x 为增函数;当x <0时 ,y =x 2为减函数.答案:[0 ,+∞) (-∞ ,0)3.假设f (x )=(2k +1)x +b 在(-∞ ,+∞)上是减函数 ,那么k 的取值范围是________.解析:由题意2k +1<0 ,∴k <-12. 答案:(-∞ ,-12) 4.函数f (x )=2x 2-mx +3 ,当x ∈[2 ,+∞)时是增函数 ,当x ∈(-∞ ,2]时是减函数 ,那么f (1)=________.解析:f (x )=2(x -m 4)2+3-m 28 ,由题意m 4=2 ,∴m =8.∴f (1)=2×12-8×1+3=-3. 答案:-35.函数y =f (x )是R 上的增函数 ,且f (m +3)≤f (5), 那么实数m 的取值范围是________. 解析:由函数单调性可知 ,由f (m +3)≤f (5)有m +3≤5 ,故m ≤2.答案:(-∞ ,2]6.函数f (x )为R 上的单调减函数 ,假设f (a 2+2a -1)=f (3-a ) ,那么a =________. 解析:由题意 ,f (a 2+2a -1)=f (3-a ) ,那么a 2+2a -1=3-a .∴a 2+3a -4=0 ,∴a =1或-4.答案:-4或1二、解答题7.证明:函数f (x )=-x 在定义域上是单调减函数.证明:易知f (x )=-x 的定义域为[0 ,+∞).设x 1 ,x 2是[0 ,+∞)内的任意两个实数 ,且x 1<x 2 ,那么f (x 2)-f (x 1)=-x 2-(-x 1)=x 1-x 2= (x 1-x 2 ) (x 1+x 2 )x 1+x 2=x 1-x 2x 1+x 2 .∵x 1-x 2<0 ,x 1+x 2>0 ,∴f (x 2)-f (x 1)<0 ,即f (x 1)>f (x 2) ,∴f (x )=-x 在[0 ,+∞)上是单调减函数.8.f (x )是定义在[-1 ,1]上的增函数 ,且f (x -1)<f (2x -1) ,求x 的取值范围.解:由题意得⎩⎪⎨⎪⎧-1≤x -1≤1 -1≤2x -1≤1 x -1<2x -1.即⎩⎪⎨⎪⎧0≤x ≤2 0≤x ≤1 x >0 ∴0<x ≤1 ,∴x 的取值范围是(0 ,1].[(高|考)水平训练]一、填空题1.以下函数中 ,满足 "对任意x 1 ,x 2∈(0 ,+∞) ,都有f (x 1 )-f (x 2 )x 1-x 2>0〞的是________(填序号).①f (x )=2x; ②f (x )=-3x +1; ③f (x )=x 2+4x +3; ④f (x )=x +1x. 解析:由题意f (x )在(0 ,+∞)上为增函数 ,函数f (x )=2x及f (x )=-3x +1在(0 ,+∞)上都为减函数 ,函数f (x )=x +1x在(0 ,1)上递减 ,在(1 ,+∞)上递增 ,函数f (x )=x 2+4x +3在(-∞ ,-2)上递减 ,在(-2 ,+∞)上递增 ,故在(0 ,+∞)上也为增函数.满足条件的只有③.答案:③2.假设函数f (x )是定义在R 上的增函数 ,当a +b >0时给出以下四个关系:①f (a )+f (b )<f (-a )+f (-b );②f (a )+f (b )>f (-a )+f (-b );③f (a )+f (-a )>f (b )+f (-b );④f (a )+f (-a )<f (b )+f (-b ).其中正确的关系序号为________.解析:∵a +b >0 ,即a >-b ,b >-a ,又∵f (x )是R 上的增函数 ,∴f (a )>f (-b ) ,f (b )>f (-a ).∴f (a )+f (b )>f (-a )+f (-b ).答案:②二、解答题3.求函数y =2-x 2的单调区间.解:由2-x 2≥0 ,解得-2≤x ≤2 ,即函数y =2-x 2的定义域是[-2 ,2]. 又函数y =2-x 2由简单函数y =t 和t =2-x 2复合而成 ,且函数y =t 在t ∈[0 ,+∞)单调递增 ,t =2-x 2在x ∈(-∞ ,0]单调递增 ,在x ∈[0 ,+∞)单调递减 ,所以当x ∈[-2 ,0]时 ,函数y =t 和t =2-x 2都是增函数 ,故此时原函数也是增函数;当x ∈[0 ,2]时 ,函数y =t 是增函数 ,t =2-x 2是减函数 ,故此时原函数是减函数.综上所述 ,函数y =2-x 2的单调增区间是[-2 ,0] ,单调减区间是[0 ,2]. 4.在1 kg 的水中参加适量的糖 ,当你增加糖的质量时 ,糖水会越来越甜.从数学的角度看 ,设糖的质量为x kg(x >0) ,那么糖水的浓度为f (x )=x 1+x,随着x 的增大 ,f (x )也随之增大 ,你能加以证明吗 ?证明:设0<x1<x2,f(x1)-f(x2)=x11+x1-x21+x2=(1-11+x1)-(1-11+x2)=x1-x2(1+x1 ) (1+x2 ).由0<x1<x2得x1-x2<0 ,又1+x1>0 ,1+x2>0 ,∴x1-x2(1+x1 ) (1+x2 )<0 ,∴f(x1)<f(x2) ,从而f(x)=x1+x在(0 ,+∞)上单调递增 ,即随着x的增大 ,f(x)的值也随之增大.。
函数的单调性说课稿各位评委:大家好,我是来,今天我说课的题目是函数的单调性,本节课选自江苏教育出版社高中课程标准实验教科书(必修1)第二章《函数概念和基本初等函数Ⅰ》§2.1.3函数简单性质的第一课时。
下面我将从以下几个方面进行阐述:首先,我对本节教材进行简要分析。
一、说教材1、教材的地位和作用:从单调性知识本身来讲。
学生对于函数单调性的学习共分为三个阶段,第一阶段是在初中学习了一次函数、二次函数、反比例函数图像的基础上对增减性有一个初步的感性认识;第二阶段是本节学习函数单调性的严格定义,从数和形两个方面理解单调性的概念;第三阶段则是在高三利用导数工具研究函数的单调性。
本节内容既是初中学习的延续和深化,又为高三的学习奠定基础,有着承上启下的作用.从函数角度来讲。
在单调性的学习中,学生要经历直观感受图像、用文字描述定义和用数学符号语言严格定义的过程,这些为学生进一步学习函数的其它性质提供了方法参考。
从学科角度来讲。
函数的单调性是理解导数的几何意义、解决优化问题等其它数学知识的重要基础,是解决数学问题的常用工具,也是培养学生逻辑推理能力和渗透数形结合思想的重要素材,所以本节内容的重要性是不言而喻的。
2、说教学的重点和难点我认为对于函数的单调性,学生的认知困难主要有:概念要求用准确的数学符号语言去刻画图像的“上升”与“下降”,这种由形到数、从直观到抽象的过渡对高一学生来说比较困难。
此外,单调性的证明是学生在函数学习中首次接触到代数论证内容,而且学生在代数方面的推理论证能力是比较薄弱的。
根据以上的分析和教学大纲要求,我认为本节课的教学重点是函数单调性的概念、判断和证明;而如何引导学生归纳并抽象出函数单调性的定义以及如何根据定义证明函数的单调性是本节课的难点。
二、说目标基于以上对教材的认识,根据新课程标准的基本理念,考虑到学生已有的认知结构和心理特征。
制定如下教学目标:⑴知识与技能:让学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图像和单调性定义判断、证明函数单调性的方法.。
课后巩固·提能
一、填空题
1.下列说法正确的序号是_______.
(1)定义在(a,b)上的函数f(x),若存在x1,x2∈(a,b),使得x1<x2时有f(x1)<
f(x2),那么f(x)在(a,b)上是单调增函数;
(2)定义在(a,b)上的函数f(x),若有无穷多对x1,x2∈(a,b),使得x1<x2时有
f(x1)<f(x2),那么f(x)在(a,b)上是单调增函数;
(3)若f(x)在区间I上是单调增函数且f(x1)<f(x2)(x1,x2∈I),那么x1<x2. 2.已知函数f(x)=4x2-kx-8在[5,20]上具有单调性,则实数k的取值范围是_______.
3.探究函数f(x)=x+4
x
,x∈(-∞,0)的最大值,并确定取得最大值时x的值,列表如下:
请观察表中y值随x值变化的特点,则函数f(x)=x+
x
,x∈(-∞,0)在区间______上为单调递增函数.
4.已知函数f(x)是R上的增函数,A(0,-1),B(3,1)是其图象上的两点,那么
-1<f(x+1)<1的解集的补集是______.
5.已知函数f(x)=
2
2
x4x,x0
4x x,x0
⎧+≥
⎪
⎨
-
⎪⎩
,
<,
若f(2-a)>f(a),则a的取值范围为______.
6.函数y=-x2+2|x|的单调减区间为______.
7.已知函数f(x)是(-∞,+∞)上的减函数,则f(a2+1)与f(a)的大小关系是______.
二、解答题
8.已知函数f(x)=x|x-2|.作出函数f(x)的图象,并写出函数的单调递增区间.
9.已知函数f(x)=x2-6x在区间[a-1,3a](a-1<3a)上不单调,求a的取值范围.
,x∈[2,+∞).(1)证明:函数f(x)在定义域[2,+∞) 10.已知函数f(x)=x+4
x
上是单调递增函数;
(2)解关于实数m的不等式f(m-1)≤f(4).
答案解析
1.【解析】由函数单调性的定义知必须是“对任意的x1,x2”,因此(1),(2)不正确,由单调性的定义可知(3)正确.
答案:(3)
2.【解析】由题意知,对称轴不在区间[5,20]内,即k
8≤5或k
8
≥20,解得
k≤40或k≥160.
答案:(-≦,40]∪[160,+≦)
3.【解析】经观察,表中y值随x值变化的特点,再考虑函数的定义域,可知函数f(x)在区间(-≦,-2)上单调递增.
答案:(-≦,-2)
4.【解析】≧-1<f(x+1)<1,即f(0)<f(x+1)<f(3),又≧函数f(x)是R上的增函数,≨0<x+1<3,解得-1<x<2,
其补集所对应的范围是x≤-1或x≥2.
答案:(-≦,-1]∪[2,+≦)
【误区警示】注意:最后求得的-1<x<2不要误认为即所求补集.
5.【解题指南】先分析函数的单调性,再解不等式.
【解析】通过分析函数的单调性(或作出函数f(x)的图象)知函数f(x)为(-≦, +≦)上的单调增函数,f(2-a)>f(a)时,有2-a>a 解得a<1.
答案:a<1
【举一反三】本题条件不变,求f(2-a)>0时,a的取值范围是______.
【解析】由题意知,f(0)=0,故f(2-a)>f(0),函数f(x)为(-≦,+≦)上的单调增函数.
所以2-a>0,可解得a<2.
答案:a<2
6.【解析】作出函数图象,如图,由函数的图象可得函数的单调减区间为[-1,0],[1,+≦).
答案:[-1,0],[1,+≦)
【变式备选】函数
_________.
【解析】由-7+8x-x 2≥0得1≤x ≤7,≨函数的定义域是[1,7],令u=-7+8x-x 2,1≤x ≤7,则函数u 在x ∈[1,4]上单调递增,在x ∈[4,7]上单调递减,又
u ∈[0,9]上单调递增,由复合函数“同增异减”得函数
的单调减区间是[4,7]. 答案:[4,7]
7.【解析】≧a 2+1-a=(a-12
)2+34
>0, ≨a 2+1>a ,又f(x)是(-≦,+≦)上的减函数, ≨f(a 2+1)<f(a). 答案:f(a 2+1)<f(a)
8.【解析】≧f(x)=x|x-2|=()()x x 2,x 2x 2x ,x 2-≥⎧⎪⎨-⎪⎩,<,
可作图象如图,
由图象可知,函数的单调递增区间为(-≦,1],[2,+≦). 9.【解析】≧函数f(x)=x 2-6x=(x-3)2-9, ≨对称轴x=3,
又≧f(x)在[a-1,3a ]上不单调, ≨a-1<3<3a,解得1<a<4,
又≧a-1<3a,≨a >1
2
-≨a ∈(1,4). 10.【解析】(1)任取x 1、x 2,且2≤x 1<x 2,则f(x 1)-f(x 2)=(x 1+14x )-(x 2+24x )=(x 1-x 2)+12
44()x x - =(x 1-x 2)+()2112
4x x x x - =(x 1-x 2)(1-124
x x ) =(x 1-x 2)
()1212
x x 4x x -,
≧2≤x 1<x 2,≨x 1-x 2<0,x 1x 2>4, ≨f(x 1)-f(x 2)<0,即f(x 1)<f(x 2),
≨函数f(x)在定义域[2,+≦)上是单调递增函数. (2)由(1)知函数f(x)在[2,+≦)上单调递增, 又≧f(m-1)≤f(4),≨2≤m-1≤4,解得3≤m ≤5. ≨所求不等式的解集是[3,5].。