塑料的共混——互穿网络.
- 格式:ppt
- 大小:1.43 MB
- 文档页数:15
互穿网络聚合物发展及应用综述摘要:本文首先对互穿网络聚合物做了简单的介绍,并对其特点和制备做了简单的说明。
主要综述了近十年来互穿网络聚合物研究发展及应用,并列出了一些实例。
最后对其作出了自己的看法。
关键词:互穿网络聚合物发展应用综述(一):互穿聚合物网络(IPN)简介所谓互穿聚合物网络(Interpenetrating Polymer Network , IPN),是由两种或多种相互贯穿的交联聚合物组成的共混物,其中至少有一种组分是紧邻在另一种组分存在下聚合或交联的。
它是20世纪60年代以来继接枝共聚,嵌段共聚等制备聚合物合金的又一途径。
其特点是通过化学交联施加强迫互容作用,使聚合物相互缠结形成相互贯穿的交联聚合物网络,达到抑制热力学上相分离的目的,增加两种组分间的相容性,形成比较精细的共混物结构。
制备IPN的方法有三种:分步聚合法、同步聚合法、乳液聚合法。
分布聚合法是现将一种单体单独聚合为聚合物,然后将它置于相应另外的单体中溶胀,后加入适当的引发剂,交联剂等,在适当工艺条件下形成交联聚合物网络。
同步聚合法较简单,即将2种或多种单体放入反应器中,在相应催化剂,引发剂,交联剂的存在下,在一定反应条件下使单体进行聚合反应,形成交联互穿网络。
乳液聚合法是现将聚合物1形成“种子”胶粒,然后将单体2及其引发剂,交联剂加入其中,而无需乳化剂,使单体2在聚合物1所构成的种子胶粒的表面进行聚合和交联。
【1】(二):互穿聚合物网络的应用自1951年Staudinger 在一篇英文专利中首先提到用这类材料改进塑料制品表面的光滑性,到1960年Millar J. R.首先正式提出互穿聚合物网络这个名称,再一直到现在,互穿聚合物网络有了飞速的发展。
它在定形相变材料、染整粘合剂、离子交换树脂、生物医用材料和防腐材料等正在获得应用。
做为消声和减震材料,IPN预计有良好的发展前景,尤其在胶乳互穿网络聚合物的开发和同时聚合互穿网络的应用方面潜力很大。
聚合物共混的形态
聚合物共混是指将两种或多种不同的聚合物混合在一起,通过物理或
化学方法形成一个新的材料。
共混材料可以具有比单一聚合物更好的
性能,如力学性能、热稳定性、耐磨性、透明度等。
共混材料的形态
可以分为以下几种:
1. 相分离型共混
相分离型共混是指两种或多种聚合物在混合后相互不溶,形成两个或
多个相区域。
每个相区域中都含有一种或多种聚合物,这些区域之间
通过界面结构连接起来。
相分离型共混通常需要添加一些表面活性剂
来改善不同相之间的亲和力。
2. 交替型共混
交替型共混是指两种或多种聚合物在混合后形成一个交替排列的结构。
这些聚合物按照一定的规律交替出现,形成一个类似于“条纹”的结构。
交替型共混通常需要通过特殊的制备工艺来实现。
3. 微相分离型共混
微相分离型共混是指两种或多种聚合物在混合后形成许多微小的相区域。
这些相区域的尺寸通常在10纳米到1微米之间,需要通过高分子自组装或特殊的制备工艺来实现。
微相分离型共混通常具有较好的力学性能和透明度。
4. 互穿型共混
互穿型共混是指两种或多种聚合物在混合后形成一种类似于网络结构的体系。
其中每一种聚合物都穿透了另一种聚合物的网络结构中,形成了一种类似于“交错”的结构。
互穿型共混通常需要通过特殊的制备工艺来实现。
总之,不同类型的共混材料具有不同的形态和性能表现。
选择合适的制备方法和配方可以得到理想的共混材料,并拓展其应用领域。
聚合物共混原理引言:聚合物共混是指将两种或多种聚合物混合在一起形成新的材料体系。
通过共混可以改善聚合物材料的性能,拓宽其应用领域。
聚合物共混的原理是基于相容性和互穿网状结构的形成。
本文将介绍聚合物共混的原理及其应用。
一、相容性理论:聚合物的相容性是指两种或多种聚合物在混合溶液或熔体中能形成均匀透明的体系。
相容性的形成取决于聚合物的结构和亲疏水性。
当两种聚合物具有相似的结构和亲疏水性时,它们之间的相互作用力较强,容易形成相容体系。
相反,如果两种聚合物结构差异较大或亲疏水性不一致,它们之间的相互作用力较弱,很难形成相容体系。
二、互穿网络结构理论:聚合物共混的另一个重要原理是互穿网络结构的形成。
在共混体系中,两种或多种聚合物在分子水平上相互渗透并形成互穿网络结构。
这种互穿网络结构使共混体系的力学性能得到了显著提升。
通过互穿网络结构,聚合物共混材料可以获得更高的拉伸强度、韧性和耐磨性。
三、聚合物共混的应用:聚合物共混广泛应用于各个领域,如塑料工业、橡胶工业、纺织工业等。
以下是几个常见的聚合物共混应用案例:1. 塑料共混:将两种或多种聚合物混合在一起,可以获得新的塑料材料,具有综合性能的优势。
例如,聚乙烯和聚丙烯的共混可以获得具有良好韧性和耐热性的材料。
2. 橡胶共混:橡胶共混是将两种或多种橡胶混合在一起形成新的橡胶材料。
通过橡胶共混可以改善橡胶的加工性和力学性能。
例如,丁腈橡胶和丁苯橡胶的共混可以获得具有优异耐油性和耐磨性的橡胶材料。
3. 纺织品共混:纺织品共混是将不同纤维材料混纺在一起形成新的纺织品。
通过纺织品共混可以获得具有多种性能的纺织品,如抗菌性、防燃性等。
4. 聚合物复合材料:聚合物复合材料是将聚合物与其他材料(如纤维增强材料、填料等)混合在一起形成新的材料体系。
聚合物复合材料具有较高的强度、刚度和耐磨性,广泛应用于航空航天、汽车制造等领域。
结论:聚合物共混是一种将两种或多种聚合物混合在一起形成新的材料体系的方法。
PC/ABS合金材料简介已阅:154 2009-8-26 15:09:30PC与ABS共混物可以综合PC和ABS的优良性能,一方面可以提高ABS的耐热性、抗冲击和拉伸强度,另一方面可以降低PC成本和熔体粘度,提高流动性,改善加工性能,减少制品内应力和冲击强度对制品厚度的敏感性。
可用于成型大面积或薄壁长流程制品。
广泛应用于机械零件、电器部件、帽盔及生产汽车车身等要求兼有优良抗冲击性和刚性的制品。
如汽车内外部件、家电(电视、电话机等)、电脑及周边设备、办公自动化设备外壳、通讯器材等多个领域。
选用不同类型的ABS树脂与聚碳酸酯形成的PC/ABS合金,能得到适用于不同领域所需的材料。
PC/ABS合金改性的研究已阅:201 2009-8-26 15:00:58PC/ABS合金是一种性能优良的复合材料,被广泛应用于电子电器外壳件。
由于手机类电器外壳趋向于超薄、超轻,其所用PC/ABS合金材料要求具有良好的力学性能和较高的性价比。
然而PC、ABS有限的相容性,影响了PC/ABS共混材料的力学性能,改善PC/ABS复合体系中微团间相容性有利于提高复合材料的整体力学性能。
ABS-g-MAH与PC、ABS经双螺杆挤出机反应共混,制备了PC/ABS复合材料。
力学性能测试显示复合材料的缺口冲击强度由32.18KJ/m~2增强到41.92KJ /m~2;拉伸强度达到53.05MPa,增幅为3.61%。
力学性能提高表明马来酸酐接枝ABS提高了PC/ABS共混体系的相容性。
适量相容剂的作用不仪使复合材料的韧性得到提高,同时增强了材料的拉伸性能。
EVA与PC、ABS共混制备了PC/ABS/弹性体复合材料。
对复合材料力学性能研究表明,添加5份弹性体EVA显著增加了PC/ABS合金的抗冲击性能,合金的缺口冲击强度提高到48.4KJ /m~2,增幅达50.4%。
经共混EVA在PC/ABS合金中形成了粒径为0.2~0.4μm的弹性核,且弹性核在树脂基体中分散均匀,大小均一。
述 评PU/PA互穿网络聚合物权 衡1,易有彬2,朱建华2(1.西安工程科技学院纺织与材料学院,陕西西安710048;2.宁波润禾化学工业有限公司研发中心,浙江宁波315600)摘 要:介绍了水性聚氨酯/聚丙烯酸酯互穿网络聚合物(PUA)的制备方法和制备工艺,总结了PUA复合乳液的结构和性能,讨论了它们的影响因素,阐述了分析了PUA在纺织品涂料印花中的应用性能。
关键词:改性聚氨酯/聚丙烯酸酯分散体互穿网络涂料印花关键词:涂料印花;改性;聚氨酯;聚丙烯酸酯中图分类号:TS194.443 文献标识码:A 文章编号:1000-4017(2006)16-0048-06PU/PA interpenetrating net w ork poly m erQU AN H eng1,Y I Y ou b i n2,ZHU Jian hua21X i'an Uni versity of Engineer i ng Science and T echno logy,X i'an710048,China;2N i ngbo Runhe Che m is try Industry Co.,L t d.,N i ngbo315600,ChinaAbstrac t:Prepa ration of aqueous po lyure thane po lyacrylate inte rpenetrat ing network po l y me r(PUA)was in troduced.The structure and pe rfor m ance o f PUA co po ly m e r emu ls i o n was summa rized too.T he p roperty o f PUA app lied to p igmen t p rint i n g o f textiles was ana lyzed fina lly.K ey word s:p ig m en t p rint i n g;mod ificat i o n;po lyure thane;po lyacry l a te0 前言将具有不同化学组成和性能的高分子,通过一定手段复合,使之优势互补,是研制新型材料并扩大其应用范围的有效途径。