重积分及其应用
- 格式:doc
- 大小:62.50 KB
- 文档页数:3
重积分的积分应用和物理意义重积分是高等数学中一个重要的概念和工具。
它的出现是为了解决多元函数在空间区域内的积分问题。
在实际应用中,重积分有着广泛的应用,尤其是在物理学领域。
本文就对重积分的积分应用和物理意义进行分析。
一、重积分的积分应用1.体积和质量的计算在几何学和物理学中,体积和质量的计算都涉及到对空间中某个区域的积分。
例如,在三维空间中,某个具有规则形状的立体体积可以通过三重积分计算得出。
具体地,设空间中一个体积为V的区域为S,对其进行三重积分可以得到S的体积为:V = ∫∫∫ S dx dy dz同样的,如果在空间中某一点对应有一定质量,那么对该区域进行三重积分可以得到该区域的质量。
这时需要考虑到每个小立方体所包含的质量及其对应的体积,即:m = ∫∫∫ S ρ(x, y, z) dx dy dz其中,ρ(x, y, z)表示该点的密度。
2.力的计算在物理学中,重积分可用于计算某个物体所受的外力。
例如,平面上某个点的引力如果可以看成是均匀分布的,那么该点所受的外力可以通过对其周围区域进行二重积分得到。
具体地,如果某一点所受的引力函数的密度为ρ(x, y),则该点所受的外力F可以表示为:F = ∫∫ D ρ(x, y) dS其中,D为该点周围的区域面积,dS为微小面积元素。
3.能量的计算在物理学中,重积分还可用于计算某个系统所具有的能量。
例如,某个三维物体所具有的动能可以通过对其质点进行积分计算得到。
具体地,设空间中某个物体的速度场为V(x, y, z),则其动能可以表示为:E = 1/2 * m * ∫∫∫ S [V(x, y, z)]^2 dx dy dz其中,m为该物体的总质量。
二、重积分的物理意义重积分在物理学中有着广泛的应用,它可以帮助我们理解物理现象的本质和规律。
以下就以几个例子来说明重积分的物理意义。
1.空间电荷密度在电学中,空间电荷密度常常需要进行积分计算。
例如,在计算某一电场强度时,我们需要考虑到空间中每个点的电荷密度对该点电场强度的影响。
重积分的计算方法及应用重积分是多元函数积分的一种形式,应用广泛。
本文将介绍重积分的计算方法和应用。
一、重积分的计算方法1. 重积分的定义重积分是对多元函数在一个具有面积的区域上进行的积分,它可以看作是对一个平面上的区域进行积分。
假设在二元函数f(x,y)的定义域D上选择了一个面积为S的区域R,那么多元函数f(x,y)在区域R上的重积分为∬Rf(x,y)dxdy。
2. 重积分的计算方法重积分的计算方法与一元函数积分类似,可以使用曲线积分或者换元法进行求解。
特别的,对于二元函数f(x,y),可以通过极坐标系进行重积分的计算,在极坐标系中,面积可以用rdrdθ表示,积分公式为f(x,y)dxdy=rdrdθ∫∫Rf(rcosθ,rsinθ)drdθ。
如果要计算三元函数的重积分,则需要使用球坐标系,积分公式为f(x,y,z)dxdydz=r^2sinθdrdθdϕ∫∫∫Rf(x,y,z)r^2sinθdxdydz。
二、重积分的应用重积分在实际生活中有许多应用,比如:1. 计算物体的质量和重心物体的质量可以看作是物体密度分布的加权平均值,因此可以使用重积分的概念来计算物体的质量。
同样的,对于一个平面图形,可以通过将图形分割为若干个小面积来计算它的面积和重心。
2. 计算物体的体积重积分还可以用于计算物体的体积。
假设在三元函数f(x,y,z)的定义域D上选择了一个体积为V的区域S,那么多元函数f(x,y,z)在区域S上的重积分为∭Sf(x,y,z)dxdydz。
3. 计算动量和角动量在物理学中,物体的动量和角动量可以通过积分的方式计算。
物体的动量可以看作是物体质量与运动速度的乘积,因此可以通过对速度的积分来计算动量。
同样的,物体的角动量可以看作是物体质量、运动速度和距离的乘积,因此可以通过对速度和距离的积分来计算角动量。
4. 计算电荷量和电场强度在电磁学中,电荷量可以通过积分来计算。
同样的,电场强度也可以通过积分来计算。
重积分应用与计算重积分是微积分中一项重要的概念,它广泛应用于各个科学领域,特别是物理学、工程学和经济学等。
重积分的计算方法包括二重积分和三重积分,通过对多元函数进行积分,可以解决许多实际问题。
本文将介绍重积分的应用,并重点讨论其计算方法。
一、重积分的应用1. 质量和质心重积分可以用于计算物体的质量和质心。
对于一个二维物体,其质量可以通过计算其面积的重积分来得到。
例如,一个有界闭区域D的质量可以表示为:m = ∬D ρ(x,y) dA其中,ρ(x,y)表示单位面积上的密度函数。
质心的坐标可以由下式给出:(x_c, y_c) = (∬D xρ(x,y) dA, ∬D yρ(x,y) dA)类似地,对于一个三维物体,质量和质心的计算也可以通过重积分来实现。
2. 总量和平均值重积分可以用于计算一个区域内某个量的总量和平均值。
例如,在物理学中,可以通过对速度场进行重积分来计算液体或气体的总质量流量。
在经济学中,可以通过对产量或消费量的重积分来计算总产量或总消费量。
对于一个二维区域D,某个量f(x,y)的总量可以表示为:Q = ∬D f(x,y) dA平均值可以表示为:f_avg = (1/area(D)) * ∬D f(x,y) dA其中,area(D)表示D的面积。
3. 概率和期望值在概率论中,重积分可以用于计算概率和期望值。
对于一个二维区域D上的离散随机变量,其概率函数可以表示为p(x,y),概率p(x,y)在区域D上的积分即为该随机变量落在D内的概率。
期望值可以表示为:E[f(x,y)] = ∬D f(x,y) * p(x,y) dA其中,f(x,y)是随机变量的函数。
二、重积分的计算方法1. 二重积分二重积分用于计算平面二维区域上的积分。
常用的计算方法包括直角坐标系下的面积法和极坐标系下的极坐标法。
面积法:设D为平面上的有界闭区域,f(x,y)为定义在D上的连续函数。
则D上f的二重积分可以表示为:∬D f(x,y) dA = ∫[a,b]∫[c,d] f(x,y) dx dy其中,[a,b]和[c,d]分别为D在x轴和y轴上的投影区间。
第九章(二) 重积分的应用重积分的应用十分广泛。
尤其是在几何和物理两方面。
几何方面的应用有利用二重积分求平面图形的面积;求曲面面积;利用三重积分求立体体积。
物理方面的应用有求质量;求重心;求转动惯量;求引力等。
在研究生入学考试中,该内容是《高等数学一》和《高等数学二》的考试内容。
通过这一章节的学习,我们认为应到达如下要求:1、掌握重积分的几何和物理意义,并能应用于实际计算。
2、对于重积分的应用领域和常见应用问题有全面的了解,并能利用重积分解决应用问题。
3、具备空间想象能力,娴熟的重积分计算技巧和将理论转化为应用的能力。
一、知识网络图⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧求引力求转动慣量求重心求质量物理应用求曲面面积求立体体积求平面图形面积几何应用重积分的应用 二、典型错误分析例1. 求如下平面区域D 的面积,其中D 由直线x y x ==,2及曲线1=xy 所围成。
如图: y[错解]89)2(2212221=-===⎰⎰⎰⎰⎰dy y dx dy d S y Dσ[分析]平面图形的面积可以利用二重积分来计算,这一点并没有错。
问题在于区域D ,假设先按x 积分,再按y 积分,则应注意到区域D 因此划分为两个部分,在这两个部分,x 、y 的积分限并不相同,因此此题假设先积x, 后积y ,则应分两部分分别积分,再相加。
[正确解] 2ln 2322112121-=+==⎰⎰⎰⎰⎰⎰yyDdx dy dx dy d S σ 例 2..设平面薄片所占的闭区域D 是由螺线θγ2=上一段弧)20(πθ≤≤与直线2πθ=所围成,它的面密度为22),(y x y x +=ρ,求该薄片的质量。
[错解] 24023420320220πθθθσρπθπ====⎰⎰⎰⎰⎰d r dr r d d MD[分析] 平面物体的质量是以面密度函数为被积函数的二重积分,因此解法的第一步是正确的。
注意到积分区域的边界有圆弧,而被积函数为22),(y x y x +=ρ,因此积分的计算采用极坐标系算,这一点也是正确的。
关于重积分、曲线积分、曲面积分的对称性定理的应用1.介绍重积分、曲线积分以及曲面积分:重积分是指一种定义在实数空间D上的数字积分,它用于将实数函数f (x)分成N个子区域Ii,每个子区域以左端点Ai和右端点Bi表示,映射到另一个实数区间[a,b]。
每个子区域对应一个多项式。
用重积分表示f(x):$∫_{a}^{b}f(x)dx=∑_{i=1}^{n}∫_{a_{i}}^{b_{i}}p_{i}(x)dx$曲线积分是指定义在曲线上的积分,它将曲线S拆分成N个子区域,每个子区域以左端点Ai和右端点Bi表示,映射到另一个曲线S'。
每个子区域对应一个多项式。
用曲线积分表示f(s):$∮_{S}f(s)ds=∑_{i=1}^{n}∮_{A_{i}}^{B_{i}}p_{i}(s)ds$曲面积分是指定义在曲面上的积分,它将曲面S拆分成N个子区域,每个子区域以左端点Ai和右端点Bi表示,映射到另一个曲面S'。
每个子区域对应一个多项式。
用曲面积分表示f(s):$∮_{S}f(s)ds=∑_{i=1}^{n}∬_{A_{i}}^{B_{i}}p_{i}(s)ds$2.介绍重积分、曲线积分以及曲面积分的对称性定理:重积分的对称性定理(Gauss-Tchebycheff定理)指出,如果在[a,b]内取重积分方式进行积分,那么拆分区域的数量N与取得重积分精度的平方成正比。
另一方面,重积分非线性变换法指出,无论子区域的大小都可以把它们转换为数字积分所使用的矩形子区域。
曲线积分的对称性定理(Sommerfeld-Wilson定理)指出,将积分拆分为子区域的数量N与得出的精确积分的平方和成正比。
另一方面,拉格朗日-积分法指出,将曲线拆分为N个子区域,同样可以将它们转换为数字积分所使用的矩形子区域。
曲面积分的对称性定理(Green-Steiner定理)指出,将积分拆分为子区域的数量N与得出的精确积分的次数成正比。
重积分的计算方法及应用重积分是数学中的一个重要分支,它在科学、工程和社会学中都有广泛应用。
重积分可以用于计算空间中的体积、质心、惯性矩以及流量等问题,其计算方法和应用十分繁多。
本文将深入探讨重积分的计算方法及应用。
一、重积分的概念重积分是对多元函数在一个特定区域内的积分,通常表示为:$I=\iiint_{\Omega}f(x,y,z)dxdydz$其中,$\Omega$为三维空间中的一个区域,$f(x,y,z)$为在该区域内的三元实函数。
计算重积分时,可以将区域$\Omega$分成许多小块,然后用Riemann和或迭代积分的方法将小块内的函数积分起来。
此外,还可以利用极坐标、球坐标等坐标系来简化计算。
二、重积分的计算方法1. 利用Riemann和计算重积分Riemann和法是比较基本的计算重积分的方法,它将积分区域$\Omega$分成若干小块,然后在每个小块上用矩形的面积逼近函数值。
具体来说,可以按照以下步骤计算重积分:(1)将积分区域$\Omega$分成$n$个小块:$\Omega_1,\Omega_2,\cdots,\Omega_n$。
(2)在每个小块$\Omega_i$内选择一个点$(x_i,y_i,z_i)$,作为该小块的代表点。
(3)计算每个小块$\Omega_i$上的函数值$f(x_i,y_i,z_i)$。
(4)计算每个小块$\Omega_i$的体积:$V_i=\Delta x\Deltay\Delta z$。
(5)将每个小块的函数值$f(x_i,y_i,z_i)$与体积$V_i$相乘,得到小块的贡献值:$f(x_i,y_i,z_i)V_i$。
(6)将所有小块的贡献值相加得到积分:$I=\sum\limits_{i=1}^nf(x_i,y_i,z_i)V_i$。
2. 利用迭代积分计算重积分迭代积分是计算重积分的一种方法,它将三维积分转化为一系列二维积分或一维积分。
具体来说,可以按照以下步骤计算重积分:(1)将积分区域$\Omega$用某种方法描述出来,例如:$0\leqslant z\leqslant \sqrt{x^2+y^2},\quad 0\leqslant x\leqslant 1,\quad 0\leqslant y\leqslant 1$(2)选择一个自变量,例如$x$,将积分区域$\Omega$分成若干个垂直于$x$轴的小块,每个小块的底面为一个矩形,顶面为一个曲面。
重积分及其应用:
⎰⎰⎰⎰⎰⎰
⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰
⎰⎰⎰⎰++-=++=++==>===
=
==
⎪
⎪⎭
⎫
⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+==='
D
z D
y D
x z y x D
y D
x D
D
y D
x
D
D D
a y x xd y x fa F a y x yd y x f F a y x xd y x f F F F F F a a M z xoy d y x x I y d y x y I x d y x d y x y M
M y d y x d y x x M
M x dxdy y z x z A y x f z rdrd r r f dxdy y x f 2
3
22
2
2
3
22
2
2
3
22
2
22D
2
2
)
(),()
(),()
(),(},,{)0(),,0,0(),(,),(),(),(,),(),(1),()sin ,cos (),(σ
ρσ
ρσ
ρσρσρσ
ρσ
ρσ
ρσ
ρθ
θθ, , ,其中:的引力:轴上质点平面)对平面薄片(位于轴 对于轴对于平面薄片的转动惯量: 平面薄片的重心:的面积曲面
柱面坐标和球面坐标:
⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
ΩΩ+=+=+====
=
=
===⋅⋅⋅=⎪⎩
⎪⎨⎧=====⎪⎩⎪
⎨⎧===dv
y x I dv z x I dv z y I dv
x M dv z M
z dv y M
y dv x M
x dr
r
r F d d d drd r
r F dxdydz z y x f d drd r dr d r rd dv r z r y r x z r r f z r F dz rdrd z r F dxdydz z y x f z
z r y r x z y x r ρρρρρρρϕθϕϕ
θθϕϕθϕθ
ϕϕθϕϕϕθϕθϕθθθθθθθπ
πθϕ)()()(1,1,1sin ),,(sin ),,(),,(sin sin cos sin sin cos sin )
,sin ,cos (),,(,),,(),,(,sin cos 22222220
)
,(0
2
2
2
, , 转动惯量:, 其中 重心:, 球面坐标:其中: 柱面坐标:
曲线积分:
⎩⎨
⎧==<'+'=≤≤⎩
⎨
⎧==⎰
⎰)()()()()](),([),(),(,)()(),(22t y t
x dt t t t t f ds y x f t t y t x L L y x f L
ϕβαψϕψϕβαψϕβ
α
特殊情况: 则: 的参数方程为:上连续,在设长的曲线积分):
第一类曲线积分(对弧。
,通常设的全微分,其中:才是二元函数时,=在:二元函数的全微分求积注意方向相反!
减去对此奇点的积分,,应。
注意奇点,如=,且内具有一阶连续偏导数在,、是一个单连通区域;
、无关的条件:平面上曲线积分与路径的面积:时,得到,即:当格林公式:格林公式:的方向角。
上积分起止点处切向量分别为
和,其中系:两类曲线积分之间的关,则:的参数方程为设标的曲线积分):第二类曲线积分(对坐0),(),(),(),(·)0,0(),(),(21·212,)()()cos cos ()}()](),([)()](),([{),(),()()(00
)
,()
,(00==+=
+∂∂∂∂∂∂∂∂-===∂∂-∂∂=-=+=∂∂-∂∂+=∂∂-∂∂+=+'+'=+⎩
⎨
⎧==⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰y x
dy y x Q dx y x P y x u y x u Qdy Pdx y
P
x Q y
P
x Q G y x Q y x P G ydx
xdy dxdy A D y P x Q x Q y P Qdy Pdx dxdy y P
x Q Qdy Pdx dxdy y P x Q L ds Q P Qdy Pdx dt
t t t Q t t t P dy y x Q dx y x P t y t x L y x y x D L
D L D L L
L
L
βαβαψψϕϕψϕψϕβ
α
曲面积分:
⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰
∑
∑
∑
∑
∑
∑
∑
++=++±=±=±=++++=ds
R Q P Rdxdy Qdzdx Pdydz dzdx z x z y x Q dzdx z y x Q dydz z y z y x P dydz z y x P dxdy y x z y x R dxdy z y x R dxdy z y x R dzdx z y x Q dydz z y x P dxdy y x z y x z y x z y x f ds z y x f zx
yz
xy
xy
D D D D y x )cos cos cos (]),,(,[),,(],),,([),,()],(,,[),,(),,(),,(),,(),(),(1)],(,,[),,(2
2γβα系:两类曲面积分之间的关号。
,取曲面的右侧时取正号;,取曲面的前侧时取正
号;,取曲面的上侧时取正
,其中:
对坐标的曲面积分:对面积的曲面积分:
高斯公式:
⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω
∑
∑
∑
∑
∑
Ω
∑=++==⋅<∂∂+∂∂+∂∂=++=++=∂∂+∂∂+∂∂ds
A dv A ds R Q P ds A ds n A z R y Q x P ds R Q P Rdxdy Qdzdx Pdydz dv z R y Q x P n n
div )cos cos cos (...
,0div ,div )cos cos cos ()(
成:因此,高斯公式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:—通量与散度:
—高斯公式的物理意义γβαννγβα斯托克斯公式——曲线积分与曲面积分的关系:
⎰⎰⎰⎰⎰⎰⎰⎰⎰Γ
Γ
∑
∑∑
Γ
⋅=++Γ∂∂
∂∂∂∂=
∂∂=
∂∂∂∂=∂∂∂∂=∂∂∂∂∂∂∂∂
=∂∂∂∂∂∂++=∂∂-∂∂+∂∂-∂∂+∂∂-∂∂ds
t A Rdz Qdy Pdx A R
Q P z y x A y P
x Q x R z P z Q y R R
Q
P
z y x R Q P z y x dxdy dzdx dydz Rdz Qdy Pdx dxdy y P
x Q dzdx x R z P dydz z Q y R
的环流量:沿有向闭曲线向量场旋度:, , 关的条件:空间曲线积分与路径无上式左端又可写成:k
j i rot cos cos cos )()()(
γβ
α。