简单的轴对称图形(2)
- 格式:ppt
- 大小:296.50 KB
- 文档页数:20
§7.2.2 简单的轴对称图形(二)教学目标1.等腰三角形是轴对称图形.2.等腰三角形的性质.3.等边三角形的轴对称性及性质.教学重点等腰三角形的轴对称性及其有关性质.教学难点等腰三角形的“三线合一”的性质.教学过程Ⅰ.巧设现实情景,引入新课[师]上节课我们探讨了简单图形——线段.角的轴对称性,知道线段和角是轴对称图形.除线段和角外,我们还研究过三角形,那大家想一想:三角形是轴对称图形吗?Ⅱ.讲授新课[师]什么是等腰三角形、等边三角形呢?我们共同来回忆一下.[师生共析]三角形的三边,有的各不相等,有的有两边相等,有的三条边都相等.三边都不相等的三角形叫做不等边三角形(scalence triangle);有两条边相等的三角形叫做等腰三角形(isosceles triangle),三条边都相等的三角形叫做等边三角形(equilateral triangle) 也叫正三角形.(如图7-11)图7-11在等腰三角形中,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.等边三角形是特殊的等腰三角形.即底边和腰相等的等腰三角形.[师]有了上述的概念后,同学们来想一想.(出示投影片§7.2.2 A)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.顶角的平分线所在的直线是等腰三角形的对称轴吗?3.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两条腰相等,所以把这两条腰重合对折三角形便可知道:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.……[师]接下来大家来剪一个等腰三角形,然后进行折叠,找出它的对称轴.[师]很好,大家看屏幕:(电脑演示等腰三角形的折叠过程,显示“三线合一”,底角相等)由此我们得到了等腰三角形的性质(师生共同总结,然后出示投影片§7.2.2 C)等腰三角形是轴对称图形.等腰三角形顶角的平分线,底边上的中线,底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴.等腰三角形的两个底角相等.[师]我们讨论了等腰三角形的性质,那等边三角形有哪些性质呢?大家来画一个等边三角形,然后剪下来,做一做(出示投影片§7.2.2 D)(1)等边三角形是轴对称图形吗?找出它的对称轴.(2)你能发现它的哪些特征?(学生操作,教师指导)Ⅲ.课堂练习(一)课本P195随堂练习Ⅳ.课时小结这节课我们主要探讨了等腰三角形和等边三角形的轴对称性.由此我们得到了等腰三角形和等边三角形的性质.等腰三角形是轴对称图形.等腰三角形的顶角平分线,底边上的中线、高线互相重合,即三线合一.它们所在的直线是等腰三角形的对称轴.等腰三角形的两底角相等.等边三角形是特殊的等腰三角形,根据其特殊性,再由等腰三角形的性质及三角形的内角和性质,可以得出等边三角形的内角均为60°大家应灵活应用这些性质.Ⅴ.课后作业:课本P228习题7.3 1、2、3、4.课后反思:。
初中尺规作图数学史尺规作图是起源于古希腊的数学课题.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.平面几何作图,限制只能用直尺、圆规.在历史上最先明确提出尺规限制的是伊诺皮迪斯.他发现以下作图法:在已知直线的已知点上作一角与已知角相等.这件事的重要性并不在于这个角的实际作出,而是在尺规的限制下从理论上去解决这个问题.在这以前,许多作图题是不限工具的.伊诺皮迪斯以后,尺规的限制逐渐成为一种公约,最后总结在《几何原本》之中.初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图有如下三条:⑴ 经过两已知点可以画一条直线;⑵ 已知圆心和半径可以作一圆;⑶ 两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题.历史上,最著名的尺规作图不能问题是:⑴ 三等分角问题:三等分一个任意角;⑵ 倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶ 化圆为方问题:作一个正方形,使它的面积等于已知圆的面积.这三个问题后被称为“几何作图三大问题”.直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1r 时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题.若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书.还有另外两个著名问题:⑴ 正多边形作法·只使用直尺和圆规,作正五边形.·只使用直尺和圆规,作正六边形.·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的.·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的.·问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解决了两千年来悬而未决的难题.⑵ 四等分圆周只准许使用圆规,将一个已知圆心的圆周4等分.这个问题传言是拿破仑·波拿巴出的,向全法国数学家的挑战.尺规作图的相关延伸:用生锈圆规(即半径固定的圆规)作图1.只用直尺及生锈圆规作正五边形2.生锈圆规作图,已知两点A、B,找出一点C使得AB BC CA==.3.已知两点A、B,只用半径固定的圆规,求作C使C是线段AB的中点.4.尺规作图,是古希腊人按“尽可能简单”这个思想出发的,能更简洁的表达吗?顺着这思路就有了更简洁的表达.10世纪时,有数学家提出用直尺和半径固定的圆规作图. 1672年,有人证明:如果把“作直线”解释为“作出直线上的2点”,那么凡是尺规能作的,单用圆规也能作出!从已知点作出新点的几种情况:两弧交点、直线与弧交点、两直线交点,在已有一个圆的情况下,那么凡是尺规能作的,单用直尺也能作出!.五种基本作图:初中数学的五种基本尺规作图为:1.做一线段等于已知线段2.做一角等于已知角3.做一角的角平分线4.过一点做一已知线段的垂线5.做一线段的中垂线下面介绍几种常见的尺规作图方法:⑴ 轨迹交点法:解作图题的一种常见方法.解作图题常归结到确定某一个点的位置.如果这两个点的位置是由两个条件确定的,先放弃其中一个条件,那么这个点的位置就不确定而形成一个轨迹;若改变放弃另一个条件,这个点就在另一条轨迹上,故此点便是两个轨迹的交点.这个利用轨迹的交点来解作图题的方法称为轨迹交点法,或称交轨法、轨迹交截法、轨迹法.【例1】 电信部门要修建一座电视信号发射塔,如下图,按照设计要求,发射塔到两个城镇A 、B 的距离必须相等,到两条高速公路m 、n 的距离也必须相等,发射塔P 应修建在什么位置?m【分析】 这是一道实际应用题,关键是转化成数学问题,根据题意知道,点P 应满足两个条件,一是在线段AB 的垂直平分线上;二是在两条公路夹角的平分线上,所以点P 应是它们的交点.【解析】 ⑴ 作两条公路夹角的平分线OD 或OE ;⑵ 作线段AB 的垂直平分线FG ;则射线OD ,OE 与直线FG 的交点1C ,2C 就是发射塔的位置.⑵ 代数作图法:解作图题时,往往首先归纳为求出某一线段长,而这线段长的表达式能用代数方法求出,然后根据线段长的表达式设计作图步骤.用这种方法作图称为代数作图法.【例2】 只用圆规,不许用直尺,四等分圆周(已知圆心).【分析】 设半径为1..我们的任务就是做出这个长度..设法构造斜边1.【解析】 具体做法:⑴ 随便画一个圆.设半径为1.⑵ 先六等分圆周.⑶ 以这个距离为半径,分别以两个相对的等分点为圆心,同向作弧,交于一点.(“两个相对的等分点”其实就是直径的两端点啦!两弧交点与“两个相对的等分点”形成的是一个底为2.可算出顶点距圆心距离)的长度等分圆周就可以啦!⑶ 旋转法作图:有些作图题,需要将某些几何元素或图形绕某一定点旋转适当角度,以使已知图形与所求图形发生联系,从而发现作图途径.【例3】 已知:直线a 、b 、c ,且a b c ∥∥.求作:正ABC ∆,使得A 、B 、C 三点分别在直线a 、b 、c 上.c b aD'DC B Acb a【分析】 假设ABC ∆是正三角形,且顶点A 、B 、C 三点分别在直线a 、b 、c 上.作AD b⊥于D ,将ABD ∆绕A 点逆时针旋转60︒后,置于'ACD ∆的位置,此时点'D 的位置可以确定.从而点C 也可以确定.再作60BAC ∠=︒,B 点又可以确定,故符合条件的正三角形可以作出.【解析】 作法:⑴ 在直线a 上取一点A ,过A 作AD b ⊥于点D ;⑵ 以AD 为一边作正三角形'ADD ;⑶ 过'D 作''D C AD ⊥,交直线c 于C ;⑷ 以A 为圆心,AC 为半径作弧,交b 于B (使B 与'D 在AC 异侧).⑸ 连接AB 、AC 、BC 得ABC ∆.ABC ∆即为所求.⑷ 位似法作图:利用位似变换作图,要作出满足某些条件的图形,可以先放弃一两个条件,作出与其位似的图形,然后利用位似变换,将这个与其位似得图形放大或缩小,以满足全部条件,从而作出满足全部的条件.【例4】 已知:一锐角ABC ∆.求作:一正方形DEFG ,使得D 、E 在BC 边上,F 在AC 边上,G 在AB 边上.C B AG'F'E'D'GF E D C B A【分析】 先放弃一个顶点F 在AC 边上的条件,作出与正方形DEFG 位似的正方形''''D E F G ,然后利用位似变换将正方形''''D E F G 放大(或缩小)得到满足全部条件的正方形DEFG .【解析】 作法:⑴ 在AB 边上任取一点'G ,过'G 作''G D BC ⊥于'D⑵ 以''G D 为一边作正方形''''D E F G ,且使'E 在'BD 的延长线上.⑶ 作直线'BF 交AC 于F .⑷ 过F 分别作''FG F G ∥交AB 于G ;作''FE F E ∥交BC 于E .⑸ 过G 作''GD G D ∥交BC 于D .则四边形DEFG 即为所求.⑸ 面积割补法作图:对于等积变形的作图题,通常在给定图形或某一确定图形上割下一个三角形,再借助平行线补上一个等底等高的另一个三角形,使面积不变,从而完成所作图形.【例5】 如图,过ABC ∆的底边BC 上一定点,P ,求作一直线l ,使其平分ABC ∆的面积.【分析】 因为中线AM 平分ABC ∆的面积,所以首先作中线AM ,假设PQ 平分ABC ∆的面积,在AMC ∆中先割去AMP ∆,再补上ANP ∆.只要NM AP ∥,则A M P ∆和AMP ∆就同底等高,此时它们的面积就相等了.所以PN 就平分了ABC ∆的面积.【解析】 作法:⑴ 取BC 中点M ,连接,AM AP ;⑵ 过M 作MN AP ∥交AB 于N ;⑶ 过P 、N 作直线l .直线l 即为所求. NM P CB Al。
第五章生活中的轴对称第一课时 5.1 轴对称现象一、学习目标:1、经历观察、分析现实生活实例和典型图案的过程,认识轴对称和轴对称图形培养学生探索知识的能力与分析问题、思考问题的习惯。
2、会找出简单对称图形的对称轴,了解轴对称和轴对称图形的联系与区别。
二、学习重点:通过对现实生活实例和典型图案的观察与分析,认识轴对称和轴对称图形,会找出简单的轴对称图形的对称轴.三、学习难点:找出简单轴对称图形的对称轴与理解轴对称和轴对称图形的联系与区别(一)预习准备(1)预习书115~117页(2)预习作业:1.如图所示的几个图案中,是轴对称图形的是()2.如图所示,下面的5个英文字母中是轴对称图形的有()A.2个 B.3个 C.4个 D.5个3.如图所示的图案中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个(二)学习过程:1、如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做_______图形,这条直线叫做_______.2、对称轴是一条_______,有些轴对称图形可能有几条,甚至无数条对称轴.3、把一个图形沿着一条直线翻折过去,如果它能够与另一个图形重合,那么就说这_______图形成轴对称,这条直线就是对称轴,两个图形中的对应点叫做对称点。
4、轴对称图形与轴对称的区别:区别:轴对称是_______图形的位置关系,而轴对称图形是_______具有特殊形状的图形. 5.你认识世界上各国的国旗吗?如图7-4所示,观察下面的一些国家的国旗,是轴对称图形的有( )A.甲乙丙丁戊 B.甲乙丁戊 C.甲乙丙戊 D.甲乙戊6.小红将一张正方形的红纸沿对角线对折后,得到等腰直角三角形,然后在这张重叠的纸上剪出一个非常漂亮的图案,她拿出剪出的图案问小冬,打开后的图案的对称轴至少有( )A.0条 B.1条 C.2条 D.无数条7.如图所示,从轴对称的角度来看,你觉得下面哪一个图形比较独特?简单说明你的理由.8.观察如图所示的图案,它们都是轴对称图形,它们各有几条对称轴?在图中画出所有的对称轴.9.如图所示的四个图形中,从几何图形的性质考虑哪一个与其他三个不同?•请指出这个图形,并简述你的理由.拓展:1.如图所示,以虚线为对称轴画出图形的另一半.回顾小结:1.如果一个图形沿某一条直线折叠后,直线两旁的部分能够,那么这个图形叫做轴对称图形,这条直线叫做。
轴对称再认识(二)一等奖创新教案五年级上册数学北师大版轴对称再认识(二)(能补全简单的轴对称图形)一、教学目标1.知识与技能:了解轴对称图形特征,能在方格纸上面出简单的轴对称图形。
2.过程与方法:联系生活中的具体物体,通过观察和动手操作,使学生体会生活中的对称现象及轴对称图形的画法。
3.情感态度与价值观:培养观察能力和空问观念,体会数学价值。
二、教学重难点1.重点:能在方格纸上画出一个图形的轴对称图形。
2.难点:找出所给图形关键点的对应点。
(一)导入同学们,看老师今天带了一面镜子来学校,照一照你,他,手里的书,那照镜子带给我们什么数学知识呢?没错,两边对称,大小相等,距离相等,那么这节课我们就根据轴对称图形的这些特征,继续学习轴对称的知识。
(板书课题)(二)新授1.首先,请大家仔细观察屏幕上的图片,说说你看到了什么?红衣服的女孩你说,嗯,你说看到了半个房子。
那么我们看看右边是淘淘画的关于这个房子的另一半,说说看淘淘画的和你想象的一致吗?哦,不一样呀,谁来说说哪里不一样呢,看你跃跃欲试,那你来说吧。
对很好,轴对称图形沿着某条直线对折能够完全重合,可是淘气的补充房子不能够完全重合,你是从定义的角度判断,很扎实。
还有不一样的想法嘛?后面男同学来说,你也很有想法,下回可以积极主动举手。
你也觉得不对,你是根据两个对称点到对称轴的方格数相等来判断的。
你通过轴对称图形的性质也得到了结论。
虽然大家判断的方法各有不同,但是都看出来了淘气画的是不对的。
2.既然我们班的同学们这么聪明,那现在请同学们拿出手中的方格纸,以虚线为对称轴,画出小松树的另一半吧,请同学们先独立思考,再在四人小组内说一说你是怎么思考的,如果有其他同学出色的地方,请及时拿笔记录。
同学们交流的声音小了,想必已经交流差不多了,哪一组可以到前面投屏分享一下呢?好的,第二小组你们说。
果然,众人拾柴火焰高,你们组分工明确,有负责投屏的,有负责说的,大家把掌声送给他们。
3、下面那两个图形可拼成轴对称图形,连一连。
4、星期日上午小刚到少年宫练习体操,到达时他从镜子里看了下时间(如下图),这时候的时
间是()。
A.3:00
B. 12:00
C. 9:00
5、下面哪组图形是根据对称轴所画的另一部分,()是正确的。
A.
B.
C. 学生独立完
成,全班反馈
交流。
及时练习巩固,
体现学以致用的
观念。
6、画出下面图形的另一半,使得他们是轴对
称图形。
三、拓展提高。
一个图形从镜子中看到的样子如右下图,你能猜出这个图形本来的样子吗?()
A B
C
镜子
课堂小结这节课你学到了什么知识点?
①用对折剪的方法,就能剪出两边形状、大小
完全相同的图形;
②剪轴对称图形的方法:把一张纸对折后,在
纸上画出轴对称图形的一半,然后沿着所画线条把
图形剪下来,展开就是完整的轴对称图形;
③根据轴对称图形的一半判断整个图形时要
牢记轴对称图形被对称轴平分的两部分完全相同,
且沿对称轴折叠后这两部分能够完全重合。
板书轴对称(二)
制作轴对称图形的方法:先对折,再画出要剪的图
形的一半,最后沿着所画线条把图案剪下来。
简单的轴对称图形(二)●教学目标【知识与技能目标】1、进一步理解轴对称、轴对称图形的概念。
2、探索等腰三角形的性质,掌握等腰三角形的轴对称性及其相关性质。
3、会利用轴对称的有关性质解决实际问题。
【过程与方法目标】1、学生通过实验探索发现等腰三角形的性质,并能利用等腰三角形的性质解决实际问题。
2、学生亲自经历“问题情境——建立模型——求解——解释应用”的基本过程,体验数学知识在实际生活中的广泛应用。
3、通过轴对称图形的探究,培养形式分析、概括的能力【情感与态度目标】1.通过优美的等腰三角形“三线合一”的性质,体会几何图形的和谐美。
2.在学习活动中,学会与同伴交流,体会获得成功的喜悦。
3.通过对实际问题的解决,使学生感受数学与我们的生活息息相关。
●教学重点:探索等腰三角形的轴对称性●教学难点:掌握等腰三角形有关概念及特性;加深等腰三角形“三线合一”的理解和应用●教具准备:等腰三角形纸片、三角板、量角器、多媒体●教学过程设计:C(七)教学反思与点评等腰三角形是生活中常见的几何中图形,等腰三角形匀称美观,所以常常用于建筑设计、商标设计及工艺品的装饰图案,与我们的生活密切相关.利用等腰三角形的轴对称特征设计图案,可以把我们的生活装饰得更美。
通过教学让学生了解到轴对称在数学中和实际生活中的广泛应用.感受到数学美(八)学情分析本节知识是学生在前面对轴对称图形已有初步的认识以后,更深一步了解轴对称图形,从学生熟悉的生活经验引入生活中的等腰三角形,这对引导学生进一步探究等腰三角形的特征、理解、掌握这部分知识有很大的帮助;反过来,学生在了解、掌握这些知识后,对生活中现象的理解也能易如反掌。
(九)教学建议本节知识可以通过直观教具、多媒体动化演示,直接刺激学生的感官,引起学生的好奇心,利用学生认识心理与认识特点,从而激发学生的学习兴趣,进行有效的学习。
在教学中,尽可能组织学生进行观察、操作、猜测、归纳等活动,并交流活动的体验,帮助学生积累数学活动的经验。
1.2简单的轴对称图形(2)教学目标:1、经历探索简单图形轴对称性的过程,进一步体会轴对称的特征,发展空间观念。
2、探索并了解线段垂直平分线的有关性质。
并能应用它们进行简单的推理说明。
会用尺规做线段的垂直平分线。
教学重点:1、线段是轴对称图形2、利用线段垂直平分线的有关性质进行推理说明。
教学难点:线段垂直平分线的有关性质教学方法:动手实践、讨论。
准备活动:准备一张画好一条线段的纸张教学过程:1、先复习轴对称图形的知识,提问:线段是不是轴对称图形呢?如果是,它的对称轴在哪里?引起学生思考并通过动手操作,寻找答案。
2、探索活动:做一做:按下面步骤做:(1)、用准备的线段AB,对折AB,使得点A、B重合,折痕与AB 的交点为O。
(2)在折痕上任取一点C,沿CA将纸折叠;(3)把纸展开,得到折痕CA和CB。
让学生提交相应的折纸结果,并附以简单的语言说明。
观察自己手中的图形,回答下列问题:a)CO与AB 有什么样的位置关系?b)AO与OB相等吗?CA与CB 呢?能说明你的理由吗?在折痕上另取一点,再试一试,你又有什么发现?引导学生按研究角的思路来独立探索线段的轴对称性。
学生会得到下面的结论:(1)线段是轴对称图形。
(2)它的对称轴垂直于这条线段并且平分这条线段。
(3)对称轴上的点各这条线段的两个端点的距离相等。
(4)垂直并且平分线段的直线叫做这条线段的垂直平分线。
简称中垂线。
(5)线段垂直平分线上的点到这条线段两个端点的距离相等。
说明:事实上线段还有另外一条对称轴,线段所在的直线,这一点同学们应知道并明白。
3、想一想:如何用符号描述线段中垂线的性质?如何利用中垂线的性质说理?P8想一想通过学生的独立思考和交流得出PA与PC相等,理由是:PA=PB,PB=PC,从而PA=PC4、你会用尺规作线段的垂直平分线吗?P8做一做:通过学生的作图实践、独立思考和交流,可以得出直线CD是线段AB的垂直平分线的理由是:先说明△ACD≌△BCD,再说明△AOC≌△BOC,从而得到直线CD是线段AB的垂直平分线。