最新等腰三角形的性质与判定练习题
- 格式:doc
- 大小:160.50 KB
- 文档页数:3
专题01等腰三角形的性质与判定(十六大题型+跟踪训练)题型1:等腰三角形的定义1.用刻度尺测量得出下图()是等腰三角形.A .B .C .D .【答案】B【分析】分别量取各三角形的三边长,然后根据等腰三角形两腰相等,进行判断即可.【解析】解:A 中三边长分别为:1.8,2.6,2.9,不是等腰三角形,故不符合要求;B 中三边长分别为:2.2,2.2,2.2,是等腰三角形,故符合要求;C 中三边长分别为:3.4,3.2,2,不是等腰三角形,故不符合要求;D 中三边长分别为:3.3,1.8,3.7,不是等腰三角形,故不符合要求;故选:B .【点睛】本题考查了等腰三角形的定义.解题的关键在于熟练掌握等腰三角形两腰相等.2.在ABC 中,若AB BC =,则ABC 是()A .不等边三角形B .等边三角形C .直角三角形D .等腰三角形【答案】D【分析】由等腰三角形的定义:有两边相等的三角形,即可判断.【解析】解:在ABC 中,若AB BC =,则ABC 是等腰三角形.故选:D .【点睛】本题考查等腰三角形,关键是掌握等腰三角形的定义.3.以下列线段为边不能组成等腰三角形的是()A .2,2,4B .6,3,6C .4,4,5D .1,1,1【答案】A【分析】根据三角形三边关系和等腰三角形的判定对所给的四个选项逐一判断、解析即可.【解析】解:A .∵224+=,∴以2,2,4为边不能组成三角形,更不可能组成等腰三角形,故此选项符合题意;B.∵以6,3,6为边能组成三角形,且有两边相等,∴以6,3,6为边能组成等腰三角形,故此选项不符合题意;C.∵以4,4,5为边能组成三角形,且有两边相等,∴以4,4,5为边能组成等腰三角形,故此选项不符合题意;D.∵以1,1,1为边能组成三角形,且有两边相等,∴以1,1,1为边能组成等腰三角形,故此选项不符合题意.故选:A.【点睛】本题考查三角形的三边关系、等腰三角形的判定等知识点及其应用问题.牢固掌握三角形的三边关系、等腰三角形的判定是解题的关键.4.等腰三角形两边长分别是2cm和3cm,则周长是()A.7cm B.8cm C.7cm或8cm D.条件不足,无法求出【答案】C【分析】分两种情况讨论:①底边为3cm时;②底边为2cm时,分别求解即可得到答案.【解析】解:分两种情况讨论:①底边为3cm时,等腰三角形的周长为3227cm++=;②底边为2cm时,等腰三角形的周长为2338cm++=,∴等腰三角形的周长为7cm或8cm,故选C.【点睛】本题考查了等腰三角形的性质,利用分类讨论的思想解决问题是解题关键.5.已知等腰三角形的一边长为2cm,另一边长为4cm,则它周长是()A.6cm B.8cm C.10cm D.8cm或10cm【答案】C【分析】根据等腰三角形的性质及三角形的三边关系进行分类讨论,即可得到答案.当AD AC+与BC+即115 22x x x⎛⎫+-+⎪⎝⎭解得:8x=,8,8,5能够组成三角形;当BC BD+与AD+∵BD AC ⊥,∴90ADB ∠=︒,∵46ABD ∠=︒,∴9044A ABD ∠︒-=︒=∠,∵BD AC ⊥,∴90ADB ∠=︒,∵46ABD ∠=︒,∴904644DAB ∠︒=︒-,【分析】根据轴对称的性质,得到ABC 是以AB 和AC 为腰的等腰三角形,再根据对称性可得结果.【解析】解:由题意可得:ABC 是以AB 和AC 为腰的等腰三角形,且不是等边三角形,∴AB AC =,∴ABC 的周长2AB AC BC AB BC =++=+,故选B .【点睛】本题考查了等腰三角形的性质,轴对称图形,解题的关键是根据题意判断出ABC 是等腰三角形.13.如图,在ABC 中,90C ∠=︒,AC BC =,AD 平分CAB ∠交BC 于D ,DE AB ⊥于E ,若5cm AB =,则DBE 的周长是()A .5cmB .6cmC .7cmD .8cm【答案】A 【分析】根据角平分线的定义和性质可得DE CD =,CAD EAD ∠=∠,推出CDA EDA ∠=∠,可得AC AE =,证明再根据等腰直角三角形的性质求出AC BC AE ==,然后求出DBE 的周长AB =,代入数据即可得解.【解析】解:AD 平分CAB ∠,DE AB ⊥,90C ∠=︒,DE CD ∴=,CAD EAD ∠=∠,CDA EDA ∴∠=∠,AC AE ∴=,又AC BC = ,AC BC AE ∴==,DBE ∴△的周长DE BD EB CD BD EB BC EB AE EB AB =++=++=+=+=,5cm AB = ,DBE ∴△的周长5cm =.故选:A .A .80︒B 【答案】C 【分析】根据等边对等角可得【解析】解:∵AB AC =∴B C ∠=∠,∵80B ∠=︒,∴80C ∠=︒,∵180A B C ∠+∠+∠=︒∴20A ∠=︒.故选:C .【点睛】本题考查三角形内角和定理,等腰三角形的性质.解题的关键是掌握三角形的三个内角之和是180°.16.如图,在△ABC 中,AB =AD =DC ,∠C =35°,则∠B 的度数为()A .50︒B .60︒C .70︒D .80︒【答案】C 【分析】首先利用等腰三角形的性质求得∠DAC 的度数,然后求得∠BDA 的度数,最后利用等腰三角形的性质求得∠B 的度数.【解析】解:∵AD =DC ,∴∠DAC =∠C ,∵∠C =35°,∴∠DAC =35°,∴∠BDA =∠C +∠DAC =70°,∵AB =AD ,∴∠BDA =∠B =70°.故选:C .【点睛】本题考查了等腰三角形的性质:等腰三角形两底角相等.17.如图,在ABC 中,90BAC ∠= ,AB AC =,点D 在BC 上,且BD BA =,则CAD ∠的度数为()A .30︒B .25︒C .22.5︒D .21︒【答案】C 【分析】利用ABC 是等腰直角三角形先求出B ∠,再利用BDA △是等腰三角形求出BAD ∠,最后利用直【答案】50︒/50度【分析】首先根据垂直平分线的性质得到据角的和差计算求解即可.∵80ACB ∠=︒∴803050BCE ACB ACE ∠=∠-∠=︒-︒=︒.故答案为:50︒.【点睛】此题考查了垂直平分线的性质,等边对等角性质,解题的关键是熟练掌握以上知识点.21.如图,直线a ∥b ,AB AC =,140 ∠=,则∠BAC 的度数是()A .100B .110C .120D .130【答案】A 【分析】根据直线a ∥b ,140 ∠=,可知140ACB ∠=∠= ,由AB AC =,可得40ACB ABC ∠=∠= ,利用平行的性质即可求出∠BAC 的值.【解析】解:由题意得,∵直线a ∥b ,140 ∠=,∴140ACB ∠=∠= ,∵AB AC =,∴40ACB ABC ∠=∠= ,∴()180118080100BAC ABC ∠=︒-∠+∠=︒-︒=︒,故选:A .【点睛】本题主要考查的是平行线的性质,熟练利用平行线进行角度转化时解题的关键.22.如图,在∠ECF 的边CE 上有两点A 、B ,边CF 上有一点D ,其中BC =BD =DA 且∠ECF =27°,则∠ADF 的度数为()A .54°B .91°C .81°D .101°【答案】C【分析】根据等腰三角形的性质以及三角形外角和内角的关系,逐步推出∠ADF 的度数.【解析】解:∵BC =BD =DA ,∴∠C =∠BDC ,∠ABD =∠BAD ,∵∠ABD =∠C +∠BDC ,∠ECF =27°,∴∠ADF =∠C +∠BAD =3∠ECF =81°.故选:C .【点睛】本题考查了等腰三角形的性质:等腰三角形的两个底角相等,三角形外角和内角的运用.23.如图,在ABC 中,DE 垂直平分BC ,若6428CDE A ∠=︒∠=︒,,则ABD ∠的度数为()A .100︒B .128︒C .108︒D .98︒【答案】A 【分析】直接利用线段垂直平分线的性质结合三角形内角和定理得出答案.【解析】解:∵DE 垂直平分BC ,∴BD =DC ,∴∠BDE =∠CDE =64°,∴∠ADB =180°-64°-64°=52°,∵∠A =28°,∴∠ABD =180°-28°-52°=100°.故选:A .【点睛】此题主要考查了线段垂直平分线的性质、三角形内角和定理,正确掌握相关定理是解题关键.24.如图,已知D 为ABC 边AB 的中点,E 在AC 上,将ABC 沿着DE 折叠,使A 点落在BC 上的F 处.若70B ∠=︒,则BDF ∠等于()键.题型5:等边对等角的解答证明26.如图,在ABC 中,AB AC =,点D 、E 都在边BC 上,且BE CD =,求证:AD AE =.【答案】见详解【分析】利用等腰三角形的性质可得B C ∠=∠,再由SAS 证明()SAS ABE ACD ≌△△,从而得AD AE =.【解析】证明:∵AB AC =,∴B C ∠=∠,在ABE 和ACD 中,AB AC B C BE CD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE ACD ≌△△,∴AD AE =.【点睛】本题考查等腰三角形的性质,全等三角形的性质与判定,熟练掌握相关性质定理是解题的关键.27.如图,,∥DE AB AE 平分DAB ∠,点C 在线段AE 上,AC BC AD ==,求证:AE AB =.【答案】见解析【分析】根据平行和角平分线得出AD DE =,再证△ADE ≌△ACB 即可.【解析】证明:∵AE 平分DAB ∠,∴DAE CAB ∠=∠,∵DE AB ∥,∴E BAE ∠=∠,∵AC BC =,∴B BAE ∠=∠,∴E B ∠=∠,在△ADE 和△ACB 中,E B DAE CAB AD AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ACB ,∴AE AB =.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质,解题关键是熟练运用等腰三角形的性质得出角相等.28.如图,在ABC 中,AB AC =,点D 在BC 边上,点E 在AC 边上,连接AD ,DE .已知12∠=∠,AD DE =.(1)求证:ABD △≌DCE △;(2)若3BD =,5CD =,求AE 的长.【答案】(1)见解析;(2)2【分析】(1)根据等边对等角可得:B C ∠=∠,利用全等三角形的判定定理证明即可;(2)根据全等三角形的性质可得5AB DC ==,3CE BD ==,由图形中各边的关系计算即可得出.【解析】(1)证明:∵AB AC =,∴B C ∠=∠,在ABD 和DCE 中,12B C AD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABD DCE ≅ ;(2)解:∵ABD DCE ≅ ,∴5AB DC ==,3CE BD ==,∵5AB AC ==,∴532AE AB CE =-=-=.【点睛】题目主要考查全等三角形及等腰三角形的性质,理解题意,结合图形,熟练运用各个性质是解题关键.29.如图,在ABC 中,AB AC =,延长BC 至D ,使得BD AC =,连接AD ,再延长AB 至E ,使得BE CD =,连接DE .求证:≌BED CDA △△.【答案】见详解【分析】先证明,EBD ACD ∠=∠再根据SAS 判定证明即可.【解析】解:∵在ABC 中,AB AC =,ABC ACB ∴∠=∠,180,180,EBD ABC ACD ACB ∠=︒-∠∠=︒-∠ ,EBD ACD ∴∠=∠BE CD = ,BD AC =,(SAS)BED CDA ≌.【点睛】本题考查了等腰三角形的性质,全等三角形的判定,解题的关键是熟练掌握全等三角形的判定定理.题型6:等腰三角形的“三线合一”30.等腰三角形的“三线合一”指的是()A .中线,高线,角平分线互相重合B .顶角的平分线,中线,高线三线互相重合C .腰上的中线,腰上的高线,底角的平分线互相重合D .顶角的平分线,底边上的中线及底边上的高线三线互相重合【答案】D【分析】根据等腰三角形的性质直接选取答案即可求解.【解析】解:三线合一,即在等腰三角形中顶角的角平分线,底边的中线,底边的高线,三条线相互重合.【点睛】本题考查等腰三角形的性质,解题的关键是熟练掌握等腰三角形的三线合一的性质,属于中考基础题.33.下列说法错误的是()A .等腰三角形两腰上的高相等B .等腰三角形两腰上的中线相等C .等腰三角形两底角的平分线相等D .等腰三角形高、中线和角平分线重合【答案】D【分析】根据等腰三角形的性质依次判断.【解析】解:A 、等腰三角形两腰上的高相等,故正确;B 、等腰三角形两腰上的中线相等,故正确;C 、等腰三角形两底角的平分线相等,故正确;D 、等腰三角形底边上的高、底边上的中线和顶角的角平分线重合,故错误;故选:D .【点睛】此题考查了等腰三角形的性质,熟记等腰三角形的性质是解题的关键.34.已知点P 到ABC 的两边AB ,AC 所在直线的距离相等,且PB PC =,则下列命题为假命题的是()A .若点P 在边BC 上,则AB AC=B .若点P 在ABC 内部,则AB AC=C .若点P 在ABC 外部,则AB AC=D .若AB AC =,则点P 可能在边BC 上,可能在ABC 内部,也可能在ABC 外部【答案】C【分析】选项A 根据等腰三角形的性质判断;当点P 在ABC 内部时,分别作PE ,PF 垂直AB ,AC 于点E ,F ,先证明Rt Rt (HL)BEP CFP ≌ ,再证明(AAS)ABP ACP ≌可判断选项B ;若AB AC =,都有(SSS)ABP ACP ≌,可判断选项D ;选项C 有两种情况,具体见详解.【解析】∵点P 到ABC 的两边AB ,AC 所在直线的距离相等,∴点P 在BAC ∠的角平分线所在的直线上,即BAP CAP ∠=∠,如图1,当点P 在边BC 上时,即P 为BC 的中点,根据等腰三角形的“三线合一”,得到AB AC =,故选项A 是真命题;如图2,当点P 在ABC 内部时,分别作PE ,PF 垂直AB ,AC 于点E ,F ,,PE PF PB PC == ,Rt Rt (HL)BEP CFP ≌ ,得到EBP FCP ∠=∠,∵BAP CAP ∠=∠,AP AP =,(AAS)ABP ACP ∴ ≌,AB AC ∴=;故选项B 是真命题;若AB AC =,都有(SSS)ABP ACP ≌,故选项D 是真命题;当点P 在ABC 外部时,如图3所示,AB 与AC 不一定相等,故选:C .【点睛】此题考查了等腰三角形的判定与性质以及直角三角形全等的判定与性质.本题的关键是注意数形结合思想的应用,注意掌握辅助线的作法.题型7:等腰三角形的“三线合一”有关的最值问题35.如图,在ABC 中,AB AC =,=4BC ,面积是10;AB 的垂直平分线ED 分别交AC ,AB 边于E 、D 两点,若点F 为BC 边的中点,点P 为线段ED 上一动点,则PBF △周长的最小值为()A .7B .9C .10D .14【答案】A 【分析】连接AP ,根据线段垂直平分线性质得AP BP =,PBF △周长==BP PF BF AP PF BF AF BF ++++≥+,再根据等腰三角形的性质和三角形的面积求出AF ,BF ,即可得出答案.【解析】解:如图所示.连接AP ,∵DE 是AB 的垂直平分线,A.①②③【答案】D【分析】根据三线合一得到A.8cm B.【答案】B【分析】根据等腰三角形三线合一的性质,得【答案】见解析【分析】过点A 作AM BC ⊥于点M ,由等腰三角形的性质得出2BAC BAM ∠=∠,D E ∠=∠,由三角形外角的性质得出2BAC D ∠=∠,即可推出BAM D ∠=∠,最后根据平行线的判定和性质即可证明DE BC ⊥.【解析】证明:如图,过点A 作AM BC ⊥于点M .AB AC = ,2BAC BAM ∠∠∴=,AD AE = ,D E ∴∠=∠,2BAC D E D ∠∠∠∠∴=+=,22BAC BAM D ∠∠∠∴==,BAM D ∠∠∴=,DE AM ∴∥,AM BC ⊥ ,DE BC ∴⊥.【点睛】本题主要考查了等腰三角形的性质,三角形外角的性质,平行线的判断和性质,正确作出辅助线,构建等腰三角形三线合一的性质是解题的关键.42.如图,在ABC 中,AB AC =,40BAC ∠︒=,AD 是BC 边上的高.线段AC 的垂直平分线交AD 于点E ,交AC 于点F ,连接BE .(1)试问:线段AE 与BE 的长相等吗?请说明理由;(2)求EBD ∠的度数.【答案】(1)相等,理由见解析(2)50︒【分析】(1)连接CE ,根据中垂线的性质得到,AE CE BE CE ==,即可得到AE BE =;(2)利用等边对等角,求出ABC ∠的度数,三线合一,求出BAE ∠的度数,等边对等角得到ABE ∠的度数,利用EBD ABD ABE ∠=∠-∠,即可得解.【解析】(1)解:线段AE 与BE 的长相等,理由如下:连接CE ,∵AB AC =,AD 是BC 边上的高,∴BD CD =,∴AD 为BC 的垂直平分线,∵点E 在AD 上,∴BE CE =,又∵线段AC 的垂直平分线交AD 于点E ,交AC 于点F ,∴AE CE =,∴AE BE =;(2)∵AB AC =,40BAC ∠︒=,【答案】见解析【分析】作EF AC ⊥于点F EA EC = ,12AF FC AC ∴==.2AC AB = ,A.3【答案】A【分析】利用等腰三角形三线合一解题即可.∠=【解析】解:∵B【解析】解:如图,在AB 上截取BE BC =,连接DE ,∵BD 平分ABC ∠,∴ABD CBD ∠=∠,在CBD △和EBD △中,CB BE CBD DBE BD BD =⎧⎪∠=∠⎨⎪=⎩,∴CBD △≌EBD △()SAS ,∴CDB BDE ∠=∠,C DEB ∠=∠,∴2CDE CDB ∠=∠,∵2C CDB ∠=∠,∴CDE DEB C ∠=∠=∠,∴ADE AED ∠=∠,∴AD AE =,∴ABC 的周长=27AD AE BE BC CD AB AB CD ++++=++=,故选:C .【点睛】本题考查全等三角形的判定和性质以及等腰三角形的性质,注意掌握添加恰当辅助线构造全等三角形是解题的关键.题型11:等角对等边证明等腰三角形的解答证明48.已知:如图,在ABC 中,点D 在CA 边的延长线上,AE 平分DAB ∠,AE BC ∥.求证:ABC 为等腰三角形.【答案】见解析【分析】首先依据平行线的性质证明2B ∠=∠,1C ∠=∠,然后结合角平分线的定义可证明B C ∠=∠,故此可证明ABC 为等腰三角形.【解析】证明:∵AE BC ∥,∴2B ∠=∠,1C∠=∠∵AE 平分DAB ∠,∴12∠=∠∴B C∠=∠即ABC 为等腰三角形.【点睛】本题主要考查的是等腰三角形的判定,熟练掌握平行线的性质及等腰三角形的判定定理是解题的关键.49.如图,在ABD △和ACD 中,AB AC =,BD CD =.(1)求证:ABD ACD △≌△;(2)过点D 作∥DE AC 交AB 于点E ,求证:AED △是等腰三角形.【答案】(1)见解析(2)见解析【分析】(1)根据SSS 证明三角形全等即可;(2)证明EAD ADE ∠=∠即可证明AE DE =,进而得到AED △是等腰三角形.【解析】(1)证明:在ABD △和ACD 中,AB AC AD AD DB DC =⎧⎪=⎨⎪=⎩,∴()SSS ABD ACD ≌;(2)证明:∵ABD ACD △≌△,∴∠=∠DAB DAC ,∵∥DE AC ,∴ADE DAC ∠=∠,∴EAD EDA ∠=∠,∴AE DE =,∴AED △是等腰三角形.【点睛】本题考查全等三角形的判定和性质,平行线的性质,等腰三角形的判定等知识,解题的关键是掌握全等三角形的判定方法.50.已知ABC 中,AD 平分BAC ∠交BC 于点D ,且2B C ∠=∠.(1)如图1,求证:AB BD AC +=;(2)如图2,延长CB 至点E ,使BE AB =,连接AE ,若36C ∠=︒,直接写出图中所有的等腰三角形(ABC 和ADE V 除外).【答案】(1)证明见解析(2)ABE 是等腰三角形,ACE △是等腰三角形,ADC △是等腰三角形,ABD △是等腰三角形;【分析】(1)如图所示,在AC 上取一点E ,使得AE AB =,连接DE ,证明()SAS ABD AED ≌△△得到BD ED B AED ==,∠∠,根据三角形外角的性质结合已知条件证明EDC C ∠=∠,得到ED EC BD ==,即可证明AC AE CE AB BD =+=+;(2)根据等腰三角形的判定条件结合三角形内角和定理进行推理即可.【解析】(1)证明:如图所示,在AC 上取一点E ,使得AE AB =,连接DE ,∵AD 平分BAC ∠,∴BAD EAD ∠=∠,又∵AB AE AD AD ==,,∴()SAS ABD AED ≌△△,∴BD ED B AED ==,∠∠,∵2B C ∠=∠,∴2AED C ∠=∠,∵AED C EDC ∠=∠+∠,∴EDC C ∠=∠,∴ED EC BD ==,∴AC AE CE AB BD =+=+;(2)解:∵BE AB =,∴BEA BAE ∠=∠,ABE 是等腰三角形,∵BEA BAE ABC +=∠∠∠,∴2ABC BEA =∠∠,又∵272ABE C ==︒∠∠,∴36BEA BAE C ===︒∠∠∠,∴AE AC =,即ACE △是等腰三角形,∵18072BAC C ABC =︒--=︒∠∠∠,AD 平分BAC ∠,∴36BAD CAD ∠=∠=︒,∴36DAC C ∠=∠=︒,∴72ADB C DAC =+=︒∠∠∠,ADC △是等腰三角形,∴72ADB ABD ∠∠==︒,∴ABD △是等腰三角形.【点睛】本题主要考查了等腰三角形的判定,全等三角形的性质与判定,三角形内角和定理,三角形外角的性质,角平分线的定义等,灵活运用所学知识是解题的关键.题型12:等角对等边证明边长相等、求边长51.如图,已知12∠=∠,B C ∠=∠,不正确的等式是()A .AB AC=B .BAE CAD ∠=∠C .BE DC =D .BD DE=【答案】D 【分析】根据等腰三角形的判定和全等三角形的判定和性质定理即可得到结论.【解析】解:∵B C ∠=∠,∴AB AC =,故A 选项正确,不符合题意;在ABE 和ACD 中,12B C AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ABE ACD ≌,∴BE CD =,BAE CAD ∠=∠,∵BE CD =,∴BE DE CD DE -=-,∴BD CE =,故B 选项、C 选项正确,D 选项错误,故选:D .【点睛】本题考查等腰三角形的判定,全等三角形的判定和性质,掌握等腰三角形的判定是解题的关键.52.如图,ABC 中,BD 平分ABC ∠交AC 于点D ,过点D 作DE BC ∥交AB 于点E ,若12AB =,7DE =,则AE 的长为()A .5B .6C .7D .8【答案】A【分析】由角平分线的定义和平行线的性质,得到ABD EDB ∠=∠,则7BE DE ==,即可求出答案.【解析】解:∵在ABC 中,BD 平分ABC ∠,∴ABD CBD ∠=∠,∵DE BC ∥,∴CBD EDB ∠=∠,∴ABD EDB ∠=∠,∴7BE DE ==,∴1275AE AB BE =-=-=;故选:A .【点睛】本题考查了角平分线的定义和平行线的性质,解题的关键是掌握所学的知识进行计算.53.如图,点P 是AOB ∠的角平分线OC 上一点,点Q 是OA 上一点,且PQ OB ∥,若2PQ =,则线段OQ 的长是()A .1.8B .2.5C .3D .2【答案】D 【分析】利用角平分线的定义以及平行线的性质推出QPO QOP ∠=∠,据此即可求解.【解析】解:∵点P 是AOB ∠的角平分线OC 上一点,∴QOP POB ∠=∠,∵PQ OB ∥,∴QPO POB ∠=∠,∴QPO QOP ∠=∠,∴2OQ PQ ==,故选:D .【点睛】本题考查了平行线的性质,等角对等边,掌握“两直线平行内错角相等”是解题的关键.54.如图,在ABC 中,BE 平分ABC ∠,DE BC ∥.若8DE =,5AD =,则AB 的长为()A .13B .12C .10D .9【答案】A 【分析】先根据平行线的性质和角平分线的定义证明DBE DEB ∠=∠,得到8DE DB ==,则13AB AD BD =+=.【解析】解:∵BE 平分ABC ∠,∴DBE CBE ∠=∠,∵DE BC ∥,∴DEB CBE ∠=∠,∴DBE DEB ∠=∠,∴8DE DB ==,∴8513AB AD BD =+=+=,故选A .【点睛】本题主要考查了角平分线的定义,平行线的性质,等腰三角形的判定,证明DBE DEB ∠=∠是解题的关键.55.如图,在ABC 中,45AB AC ==,,ABC ∠和ACB ∠的平分线交于点E ,过点E 作MN BC ∥分别交AB AC ,于M ,N ,则AMN 的周长为()A .8B .9C .10D .不确定【答案】B 【分析】根据角平分线的定义和MN BC ∥可以得出MB ME =,NC NE =,继而可以得出AMN 的周长AB AC =+,从而可以得出答案.【解析】解:∵MN BC ∥,∴∠∠=MEB EBC .∵BE 平分ABC ∠,∴MBE EBC =∠∠,∴MEB MBE ∠=∠.∴MB ME =.同理,NC NE =,∴9AMN C AM ME EN AN AB AC =+++=+=△.故选:B .【点睛】本题考查了等腰三角形的性质,等角对等边,利用角平分线及平行线的性质得出MEB MBE ∠=∠是解题的关键.56.如图,ABC DEF ≌△△,点E 在AC 上,B ,F ,C ,D 四点在同一条直线上.若40,35A CED ∠=︒∠=︒,则下列结论正确的是()A .,EF EC AB FC==B .,EF EC AE FC ≠=C .,EF EC AE FC=≠D .,EF EC AE FC≠≠【答案】C 【分析】根据全等三角形的性质得到ACB DFE ∠=∠,40D A AC DF ==︒=∠∠,,则EF EC =,由于D CED ∠≠∠,则CE CD ≠,则AE CF ≠,由此即可得到答案.【解析】解:∵ABC DEF ≌△△,∴ACB DFE ∠=∠,40D A AC DF ==︒=∠∠,,∴EF EC =,∵4035D CED ∠=︒≠∠=︒,∴CE CD ≠,∴AE CF ≠,∴四个选项中只有C 选项符合题意,故选C .【点睛】本题主要考查了全等三角形的性质,等腰三角形的判定,熟知全等三角形的性质是解题的关键.57.如图,在ABC 中,AB AC =,AD BC ⊥于点D .(1)若37B ∠=︒,求CAD ∠的度数;(2)若点E 在边AC 上,EF AB ∥交AD 的延长线于点F .求证:AE FE =.【答案】(1)53︒(2)见解析【分析】(1)根据等腰三角形底角相等,再根据直角三角形的性质即可求得CAD ∠;(2)根据两直线平行内错角相等,再根据AD 是BAC ∠的角平分线即可得到DAC F ∠=∠,从而证得AE FE =.【解析】(1)解:AB AC = ,AD BC ⊥,37B C ∴∠=∠=︒,90ADC ∠=︒,9053CAD C ∴∠=︒-∠=︒;(2)证明:E F A B ∥ ,BAF F ∴∠=∠,AB AC = ,AD BC ⊥,AD ∴是BAC ∠的角平分线,BAF DAC ∴∠=∠,DAC F ∴∠=∠,AE FE ∴=.【点睛】本题考查等腰三角形的性质、平行线的性质、直角三角形的性质,解题的关键是熟练掌握等腰三角形、平行线、直角三角形的相关知识.58.如图,在四边形ABCD 中,AD BC ∥,E 是AB 的中点,连接DE 并延长交CB 的延长线于点F ,点G 在边BC 上,且GDF ADF ∠=∠.连接EG ,判断EG 与DF 的位置关系,并说明理由.【答案】EG 与DF 的位置关系是EG DF ⊥;理由见解析【分析】证明()AAS ADE BFE ≌△△,得出DE EF =,证明GDF BFE ∠=∠,得出GD GF =,根据垂直平分线的判定得出GE 垂直平分DF ,即可得出答案.【解析】解:EG 与DF 的位置关系是EG DF ⊥;理由见如下:∵AD BC ∥,∴ADE BFE ∠=∠,E 是AB 的中点,AE BE ∴=,又∵FEB DEA ∠=∠,∴()AAS ADE BFE ≌△△,DE EF ∴=,∵GDF ADF ∠=∠,ADE BFE ∠=∠,∴GDF BFE ∠=∠,GD GF ∴=,DE EF = ,∴GE 垂直平分DF ,∴EG DF ⊥.【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形的判定,垂直平分线的判定,解题的关键是熟练掌握三角形全等的判定方法,得出ADE BFE V V ≌.题型13:直线上与已知两点组成等腰三角形的点59.如图,ABC ,点P 为直线AC 上的一个动点,若使得ABP 是等腰三角形.则符合条件的点P 有()A .1个B .2个C .3个D .4个【答案】D【分析】根据等腰三角形的判定定理即可得到结论.【解析】解:作AB 垂直平分线与AC 的交点,可得22P A P B =,以A 为圆心,AB 为半径画圆,交AC 有两个交点,13P A AB P A ==,以B 为圆心,AB 为半径画圆,交AC 有一个交点,4P B AB =,故选:D .【点睛】本题考查了等腰三角形的判定来解决实际问题,其关键是根据等腰三角形的判定定理解答.60.如图,线段AB 的一个端点B 在直线m 上,直线m 上存在点C ,使ABC 为等腰三角形,这样的点C 有()A .2个B .3个C .4个D .5个【答案】C 【分析】以A 为圆心,以BA 的长为半径画弧与直线m 交于点D ,此时BA AD =,同理以B 为圆心以BA 的长为半径画弧与直线m 交于E 、C ,此时BC BA =,BE BA =,再作BA 的垂直平分线与直线m 交于点F ,此时BF AF =,据此可得答案.【解析】解:如图所示,以A 为圆心,以BA 的长为半径画弧与直线m 交于点D ,此时BA AD =,同理以B 为圆心以BA 的长为半径画弧与直线m 交于E 、C ,此时BC BA =,BE BA =,再作BA 的垂直平分线与直线m 交于点F ,此时BF AF =,∴直线m 上存在4个点C ,使ABC 为等腰三角形,故选:C .【点睛】本题考查了等腰三角形的定义,线段垂直平分线的性质,解题的关键在于能够熟练掌握等腰三角形的定义.61.如图,直线a b ,相交于点O ,150∠=︒,点A 在直线a 上,直线b 上存在点B ,使以点O A B 、、为顶点的三角形是等腰三角形,这样的B 点有()A .1个B .2个C .3个D .4个【答案】D 【分析】分别以点O A B 、、为顶点的等腰三角形有3种情况,分别为OA OB =,OA AB =,OB AB =,从这三方面考虑点B 的位置即可;【解析】解:当OA OB =时;以点O 为圆心,OA 的长为半径作圆,与直线b 在O 点两侧各有一个交点,此时B 点有2个;当OA AB =时;以点A 为圆心,OA 的长为半径作圆,与直线b 有一个交点,此时B 点有1个;当OB AB =时;作OA的垂直平分线,与直线b有一个交点,此时B点有1个;∴满足条件的B点总共有4个;故选:D.【点睛】本题考查了等腰三角形的判定,两条边相等的三角形为等腰三角形,因此要注意分类讨论,由每种情况的特点选择合适的方法确定点B是解题的关键.题型14:等腰三角形有关的尺规作图62.如图,给出了尺规作等腰三角形的三种作法,认真观察作图痕迹,下面的已知分别对应作图顺序正确的是()①已知等腰三角形的底边和底边上的高;②已知等腰三角形的底边和腰;③已知等腰三角形的底边和一底角.A.①②③B.②①③C.③①②D.②③①【答案】B【分析】根据等腰三角形的性质即可求解.【解析】解:图形①的作图依据是“②已知等腰三角形的底边和腰”;图形②的作图依据是“①已知等腰三角形的底边和底边上的高”;图形③的作图依据是“③已知等腰三角形的底边和一底角”.故选:B .【点睛】本题主要考查尺规作图等腰三角形,掌握等腰三角形的性质,作图的方法是解题的关键.63.如图(1),锐角ABC 中,AB BC AC >>,要用尺规作图的方法在AB 边上找一点D ,使ACD 为等腰三角形,关于图(2)中的甲、乙、丙三种作图痕迹,下列说法正确的是()A .甲、乙、丙都正确B .甲、丙正确,乙错误C .甲、乙正确,丙错误D .只有甲正确【答案】A【分析】根据圆、线段垂直平分线、角的尺规作图进行分析即可.【解析】解:甲图:以点A 为圆心,AC 为半径作弧,交AB 于点D ,∴AD AC =,∴ACD 为等腰三角形,乙图:作AC 的垂直平分线,交AB 于点D ,∴AD DC =,∴ACD 为等腰三角形,丙图:∵所作的A DCA ∠=∠,∴AD DC =,∴ADC △是等腰三角形,∴甲、乙、丙都正确,故选A .【点睛】本题考查等腰三角形的定义、尺规作图−圆、角、垂直平分线,熟练掌握等腰三角形的判定与圆、角和线段垂直平分线的基本作图的方法是解题的关键.64.已知锐角40AOB ∠=︒,如图,按下列步骤作图:①在OA 边取一点D ,以O 为圆心,OD 长为半径画 MN,交OB 于点C .②以D 为圆心,DO 长为半径画 GH, GH 与OB 交于点E ,连接DC 并延长,使DC 的延长【答案】见解析【分析】以AB为腰和底两种情况作图即可.【解析】如图,以AB为腰,AO为对称轴;如图,以AB为底作等腰三角形,CM为对称轴;【点睛】本题考查利用网格作图,掌握等腰三角形的判定定理是解题的关键.66.图1,图2均是44⨯的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A,B,C均为格点.只用无刻度的直尺,分别在给定的网格中找一格点M,按下列要求作图:=;(1)在图1中,连接MA,MB,使MA MB==.(2)在图2中,连接MA,MB,MC,使MA MB MC【答案】(1)见解析(2)见解析=;【分析】(1)根据勾股定理得MA MB==.(2)连接AC,取AC中点M,MA MB MC【解析】(1)解:如图1正确画图.(2)如图2正确画图.【点睛】本题主要考查尺规作图,熟练根据题意作出符合题意的图形是解题的关键.67.如图,在每个小正方形的边长均为方形的顶点上.(1)在方格纸中画出以AB为底的等腰ABC(2)在方格纸中画出以DE为一边的等腰DEF直接写出DC的长度.【答案】(1)图见解析;(2)图见解析,22DC .(2)如图所示,DEF 即为所求;CD =【点睛】本题考查的是作图:应用与设计作图,根据题意找出符合条件的点是解题的关键.题型16:等腰三角形的性质和判定综合题68.如图,在ABC 中,90BAC ∠=︒,AB 90EDF ∠=︒,下列结论:①BED AFD △≌△积,则1211142S S S ≤≤;④EF AD =;所有正确的结论是(。
专题第01讲等腰(边)三角形的判定与性质一.解答题(共30小题)1.(2022秋•韩城市期末)如图,已知点D,E分别是△ABC的边BA和BC延长线上的点,作∠DAC的平分线AF,若AF∥BC.(1)求证:△ABC是等腰三角形;(2)作∠ACE的平分线交AF于点G,若∠B=40°,求∠AGC的度数.2.(2023春•修水县期末)在△ABC中,BD和CD分别平分∠ABC和∠ACB,过点D作EF∥BC,分别交AB,AC于点E,F.(1)若AB=AC,请判断△AEF是否是等腰三角形,并说明理由;(2)若△ABC的周长为18,BC=6,求△AEF的周长.3.(2023春•新泰市期末)如图,在△ABC中,AB=AC,∠ABC的平分线BE交AC于点D,AF⊥AB交BE于点F.(1)如图1,若∠BAC=40°,求∠AFE的度数.(2)如图2,若BD⊥AC,垂足为D,BF=8,求DF的长.4.(2023春•淄博期末)如图,△ABC中,AB=AC,D是AB上一个动点,DF⊥BC于点F,交CA延长线于点E,(1)试判断AD、AE的大小关系,并说明理由;(2)当点D在BA的延长线上时,其他条件不变,(1)中的结论是否还成立?请说明理由.5.(2023春•郫都区期末)如图,AM∥BN,∠BCM和∠CBN的角平分线交于点D,DE∥BN交BC于点E.(解答过程要求写出每步推导的理由)(1)求∠BDC的度数;(2)若AB=AC,求证:AE⊥BC.6.(2023春•皇姑区期末)按逻辑填写步骤和理由,将下面的求解过程补充完整如图,在△ABC中,AD⊥BC于点D,∠B=2∠C,若AB=6,BD=2,求CD的长.解:在线段CD上取一点E,使ED=BD,连接AE,∵ED=BD,AD⊥BC,∴AB=AE().∴=∠AEB().∵∠B=2∠C,∴∠AEB=2∠C.∵∠AEB+∠AEC=180°(),∠EAC+∠C+∠AEC=180°(),∴∠AEB=∠EAC+∠C.∴=∠EAC.∴=().∴AB=CE().∵AB=6,BD=2,∴CE=6,ED=2.∴CD=CE+ED=6+2=8.7.(2023春•杨浦区期末)已知在△ABC中,AB=AC,点D是边AB上一点,∠BCD=∠A.(1)如图1,试说明CD=CB的理由;(2)如图2,过点B作BE⊥AC,垂足为点E,BE与CD相交于点F.①试说明∠BCD=2∠CBE的理由;②如果△BDF是等腰三角形,求∠A的度数.8.(2023春•高陵区期末)如图,在△ABC中,AB=AC.过点A作BC的平行线交∠ABC的角平分线于点D,连接CD.(1)求证:△ACD为等腰三角形.(2)若∠BAD=140°,求∠BDC的度数.9.(2023春•宝山区期末)如图,△ABC中,AB=AC,点D在边BC延长线上,点E在边AC上,且DE =BE=AE,延长线段DE交边AB于点F.(1)说明△AEF是等腰三角形的理由;(2)如果△BEF是等腰三角形,求∠A的度数.10.(2022秋•祁阳县期末)(1)操作实践:△ABC中,∠A=90°,∠B=22.5°,请画出一条直线把△ABC 分割成两个等腰三角形,并标出分割成两个等腰三角形底角的度数;(要求用两种不同的分割方法)(2)分类探究:△ABC中,最小内角∠B=24°,若△ABC被一直线分割成两个等腰三角形,请画出相应示意图并写出△ABC最大内角的所有可能值;(3)猜想发现:若一个三角形能被一直线分割成两个等腰三角形,需满足什么条件?(请你至少写出两个条件,无需证明)11.(2022秋•阳谷县期末)如图,已知△ABC中,AB=AC,AC与AB边上的高BD、CE相交于点O.(1)求证:△OBC是等腰三角形.(2)判断点O是否在∠BAC的平分线上,并说明理由.12.(2022秋•禹州市期末)如图,在△ABC中,AB=AC,D是AB上的一点,过点D作DE⊥BC于点E,延长ED和CA,交于点F.(1)求证:△ADF是等腰三角形;(2)若∠F=30°,BD=4,AD=2,求EC的长.13.(2022秋•开福区校级期末)已知在△ABC中,∠ACB的平分线CD交AB于点D,DE∥BC.(1)如图1,求证:△CDE是等腰三角形;(2)如图2,若DE平分∠ADC交AC于E,∠ABC=30°,在BC边上取点F使BF=DF,若BC=12,求DF的长.14.(2022秋•沙依巴克区校级期末)如图,△ABD中,AB=AD,AC平分∠BAD,交BD于点E.(1)求证:△BCD是等腰三角形;(2)若∠ABD=50°,∠BCD=130°,求∠ABC的度数.15.(2023春•东港市期末)如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=110°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,连接OD.(1)求证:△OCD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.16.(2023春•榆阳区期末)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,DE是AB的垂直平分线,交AB、BC于点D、E连接CD、AE.求证:(1)△ADC是等边三角形;(2)点E在线段CD的垂直平分线上.17.(2023春•渠县校级期末)如图,在△ADB中,∠ADB=60°,DC平分∠ADB,交AB于点C,且DC ⊥AB,过C作CE∥DA交DB于点E,连接AE.(1)求证:△ADB是等边三角形.(2)求证:AE⊥DB.18.(2022秋•青秀区校级期末)已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.19.(2022秋•离石区期末)已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.(1)【特殊情况,探索结论】如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”、“<”或“=”).(2)【特例启发,解答题目】如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AE DB (填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程).(3)【拓展结论,设计新题】在等边三角形ABC中,点E在直线AB上,点D在线段CB的延长线上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出相应图形,并直接写出结果).20.(2023春•毕节市期末)已知:如图,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN 交MC于点E,BM交CN于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形.21.(2022秋•南充期末)如图,在等边△ABC中,AC=12cm,点M以2cm/s的速度从点B出发向点A运动(不与点A重合),点N以3cm/s的速度从点C出发向点B运动(不与点B重合),设点M,N同时运动,运动时间为ts.(1)在点M,N运动过程中,经过几秒时△BMN为等边三角形?(2)在点M,N运动过程中,△BMN的形状能否为直角三角形,若能,请计算运动时间t;若不能,请说明理由.22.(2022秋•长清区期末)如图,已知AE⊥BC,∠ADB=120°,∠B=40°,∠CAE=30°.(1)求证:△ACD为等边三角形;(2)求∠BAC的度数.23.(2022春•林甸县期末)如图△ABC为等边三角形,直线a∥AB,D为直线BC上任一动点,将一60°角的顶点置于点D处,它的一边始终经过点A,另一边与直线a交于点E.(1)若D恰好在BC的中点上(如图1)求证:△ADE是等边三角形;(2)若D为直线BC上任一点(如图2),其他条件不变,上述(1)的结论是否成立?若成立,请给予证明;若不成立,请说明理由.24.(2021秋•随县期末)在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为G,且AD=AB.∠EDF =60°,其两边分别交边AB,AC于点E,F.(1)求证:△ABD是等边三角形;(2)求证:BE=AF.25.(2021秋•白水县期末)如图,在四边形ABCD中,AB=AD,CB=CD,∠A=60°,点E为AD上一点,连接BD,CE交于点F,CE∥AB.(1)判断△DEF的形状,并说明理由;(2)若AD=12,CE=8,求CF的长.26.(2021秋•阎良区期末)如图,点P,M,N分别在等边△ABC的各边上,且MP⊥AB于点P,MN⊥BC 于点M,PN⊥AC于点N.(1)求证:△PMN是等边三角形;(2)若AB=12cm,求CM的长.27.(2022春•汝州市期末)数学课上,张老师举了下面的例题:例1:等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2:等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编的题目如下:变式题:等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答上面的变式题.(2)请继续探索,完成下面问题:等腰三角形ABC中,∠A=60°,则∠B的度数为60°.(3)根据以上探索,我们发现,∠A的度数不同,得到的∠B度数的个数也可能不同.请你直接写出当∠A满足什么条件时,∠B能得到三个不同的度数.28.(2021秋•临河区期末)在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且AE=BD,(1)当点E为AB的中点时,如图1,求证:EC=ED;(2)当点E不是AB的中点时,如图2,过点E作EF∥BC,求证:△AEF是等边三角形;(3)在第(2)小题的条件下,EC与ED还相等吗,请说明理由.29.(2023春•大竹县校级期末)(1)如图1,已知:在△ABC中,AB=AC=10,BD平分∠ABC,CD平分∠ACB,过点D作EF∥BC,分别交AB、AC于E、F两点,则图中共有个等腰三角形;EF与BE、CF之间的数量关系是,△AEF的周长是(2)如图2,若将(1)中“△ABC中,AB=AC=10”改为“若△ABC为不等边三角形,AB=8,AC =10”其余条件不变,则图中共有2个等腰三角形;EF与BE、CF之间的数量关系是什么?证明你的结论,并求出△AEF的周长(3)已知:如图3,D在△ABC外,AB>AC,且BD平分∠ABC,CD平分△ABC的外角∠ACG,过点D作DE∥BC,分别交AB、AC于E、F两点,则EF与BE、CF之间又有何数量关系呢?直接写出结论不证明.30.(2021秋•大荔县期末)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E.(1)如图1,连接EC,求证:△EBC是等边三角形;(2)点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM的下方作∠BMG=60°,MG交DE延长线于点G.请你在图2中画出完整图形,并直接写出MD,DG与AD之间的数量关系;(3)如图3,点N是线段AD上的一点,以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G.试探究ND,DG与AD数量之间的关系,并说明理由.。
等腰三角形性质与判定练习题一、选择题1、等腰三角形一腰上的中线把等腰三角形的周长分成9和12两部分,则腰长为()A、6B、8C、10D、6或82、等腰三角形的周长为19cm,其中一边长为5cm,则该等腰三角形的底边边长为()A、9cmB、5cmC、9cm或5cmD、10cm3、等腰三角形的腰长等于2m,面积等于1m2,则它的顶角等于()A、150°B、30°C、150°或30°D、60°4、若等腰三角形的周长为10,一边长为4,则此等腰三角形的腰长为()A、2B、3C、4D、3或45、下列说法中正确的是()A、等腰三角形的两个底角的角平分线所夹的角是这个等腰三角形顶角的两倍B、在等腰三角形中“三线合一”是指等腰三角形的中线、高线、角平分线重合C、等边对等角D、有一个角等于60°的等腰三角形是等边三角形6、等腰三角形有两条边长为3和5,则它的周长可以是()A、12B、11C、10D、11或137、等腰三角形的对称轴有( )A、一条B、二条C、三条D、一条或三条8、等腰三角形周长为36cm,两边长之比为4:1,则底边长为()A、16cmB、4cmC、20cmD、16cm或4cm9、等腰三角形的周长是18cm,其中一边长为4cm,其它两边长分别为()A、4cm,10cmB、7cm,7cmC、4cm,10cm或7cm,7cmD、无法确定10、一个等腰而非等边的三角形,它的所有的内角平分线、中线和高的条数为()A、9B、6C、7D、311、已知等腰三角形的两边长分别为8与16,则其周长为()A、32B、40C、32或40D、8或1612、一个等腰三角形的周长是16,其中一边长是6,另两边长分别是()A、6和10B、6和4C、5和5D、5和5或4和613、等腰三角形ABC,其中AB=8cm,周长为20cm,则这个等腰三角形的腰长是( )A、8cmB、4cmC、6cmD、6cm或8cm14、等腰三角形的周长为18cm,其中一边长为4cm,则该等腰三角形的腰长为()A、4cm或10cmB、4cm或7cmC、4cmD、7cm15、如右图,在△ABC中,AB=AC,BD=BC,AD=DE=EB,则∠A是( )A、30°B、45°C、60°D、20°16、有下列命题说法:①锐角三角形中任何两个角的和大于90°;②等腰三角形一定是锐角三角形;③等腰三角形有一个外角等于120°,这个三角形一定是等边三角形;④等腰三角形中有一个是40°,那么它的底角是70°;⑤一个三角形中至少有一个角不小于60度.其中正确的有()A、2个B、3个C、4个D、5个17、等腰三角形中一个角是40°,则另外两个角的度数分别是()A、70°,70°B、40°,100°C、40°,40°D、70°,70°或40°,100°18、如右图,一钢架中,∠A=15°,焊上等长的钢条来加固钢架.若A P1=P1P2,则这样的钢条最多只能焊上()条.A、4B、5C、6D、719、若△ABC的三边a,b,c满足(a﹣b)(b﹣c)(c﹣a)=0,那么△ABC的形状是( )A、等腰三角形B、直角三角形C、等边三角形D、锐角三角形20、如果一个三角形的一条角平分线恰好是对边上的高,那么这个三角形一定是( )A、直角三角形B、等边三角形C、等腰三角形D、等腰直角三角形二、填空题1、一个等腰三角形的两边长分别是2cm、5cm,则它的周长为_______2、等腰三角形的两边长分别为4和9,则第三边长为_________ .3、等腰三角形的对称轴最多有_________ 条.4、一个等腰三角形周长为5,它的三边长都是整数,则底边长为_________ .5、若等腰三角形的三条边长分别为a2+1,a+1,4a﹣3,则a可以取的值为_________ .6、等腰三角形一个底角为36°,则此等腰三角形顶角为_________ 度.7、等腰三角形的两边长为5cm,10cm,则它的周长等于_________ cm.8、一个等腰三角形的顶角是底角的2倍,则它的各个内角的度数是_________ .9、在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为_________ .10、如图,B在AC上,D在CE上,AD=BD=BC,∠ACE=25°,∠ADE=_______度.10题图 11题图 13题图 15题图11、如图,在△ABC中,∠C=25°,AD⊥BC,垂足为D,且AB+BD=CD,则∠BAC的度数是_______ 度.12、一个三角形有两条边相等,周长为18cm,三角形的一边长为4cm,则其他两边长分别为_________ cm.13、如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,DE∥BC,则图中等腰三角形有______个.14、在△ABC中,AD⊥BC于D,且BD=CD,若AB=3,则AC= _________ .15、如图,在△ABC中,BC=5cm,BP、CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则△PDE的周长是_________ cm.16、如右图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有_________个.17、如图,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是(填序号)______三、解答题1、如图,在△ABC和△DCB中,AC与BD相交于点O.AB=DC,AC=BD.试判断△OBC的形状,并证明2、已知:如图,△ABC是等腰三角形,AB=AC,∠1=∠2.求证:OA平分∠BAC.3、已知:点D是△ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别为E,F,且BF=CE.求证:△ABC是等腰三角形.4、如图,在△ABC中,点E在AB上,点D在BC上,BD=BE,∠BAD=∠BCE,AD与CE相交于点F,试判断△AFC的形状,并说明理由.5、已知,如图△ABC中,AB=AC,D点在BC上,且BD=AD,DC=AC.求∠B的度数.6、如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,DE过O且平行于BC,已知△ADE的周长为10cm,BC 的长为5cm,求△ABC的周长.7、△ABC中,AB=AC,BD是△ABC的角平分线,E在BC的延长线上,且CE=CD。
【巩固练习】一.选择题1. 已知一个等腰三角形两边长分别为5,6,则它的周长为( )A.16 B.17C.16或17D.10或122. 若一个三角形的三个外角度数比为2:3:3,则这个三角形是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形3. 将两个全等的且有一个角为30°的直角三角形拼成如图所示形状,两条长直角边在同一条直线上,则图中等腰三角形的个数是()A. 4个B. 3个C. 2个D. 1个4. 如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,交AB于D,交AC于E,那么下列结论正确的有( )①△BDF,△CEF都是等腰三角形;②DE=DB+CE;③AD+DE+AE=AB+AC;④BF=CF.A.1个B.2个C.3个D.4个∆沿过D的直线折叠,使点A落在BC上F处,若5. 如图,D是AB边上的中点,将ABC∠=︒,则BDF50B∠度数是()A.60° B.70° C.80° D.不确定6.(2020•沂源县校级模拟)有3cm,3cm,6cm,6cm,12cm,12cm的六条线段,任选其中的三条线段组成一个等腰三角形,则最多能组成等腰三角形的个数为()A.1 B.2 C.3 D.4二.填空题7.如图,△ABC中,D为AC边上一点,AD=BD=BC,若∠A=40°,则∠CBD=_____°.8. 等腰三角形的顶角比其中一个底角大30°,则顶角的度数为.9. 如图,△ABC是等腰直角三角形,∠C=90°,BD平分∠CBA交AC于点D,DE⊥AB于E.若△ADE的周长为8cm,则AB =_________cm.10. 等腰三角形的一个角是70°,则它的顶角的度数是 .11. 如图,△ABC中,BO、CO分别平分∠ABC、∠ACB,OM∥AB,ON∥AC,BC=10cm,则ΔOMN的周长=______cm.12.(2020春•锦州月考)如图,在△ABC中,BI、CI分别平分∠ABC、∠AC F,DE过点I,且DE∥BC.BD=8cm,CE=5cm,则DE等于.三.解答题13.已知:如图,ΔABC中,AB=AC,D是AB上一点,延长CA至E,使AE=AD.试确定ED与BC的位置关系,并证明你的结论.14. (2020春•黄冈校级期末)在△ABC中,AB=AC,AC上的中线BD把三角形的周长分为24cm和30cm的两个部分,求三角形的三边长.15. 如图,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、CA上,并且AP、BQ分别为∠BAC、∠ABC的角平分线,求证:BQ+AQ=AB+BP.【答案与解析】一.选择题1. 【答案】C;【解析】注意分类讨论.2. 【答案】D;【解析】三个外角度数分别为360°×=90°,360°×=135°,135°,所以三角形为等腰直角三角形.3. 【答案】B;4. 【答案】C;【解析】①②③正确.5. 【答案】C;=180°-50°-50°=80°.【解析】AD=DF=BD,∠B=∠BFD=50°,BDF6. 【答案】C;【解析】解:由题意可得,3cm作腰,6cm作底或12cm作底,则三边分别为3cm,3cm,6cm,不能构成三角形,3cm,3cm,12cm,不能构成三角形;6cm作腰,3cm作底或12cm作底,则三边分别为6cm,6cm,3cm,能构成三角形,6cm,6cm,12cm,不能构成三角形;12cm作腰,3cm或6cm作底,则三边分别为12cm,12cm,3cm,能构成三角形,12cm,12cm,6cm,能构成三角形,故最多能组成3个等腰三角形,故选:C.二.填空题7. 【答案】20;【解析】∠A=∠ABD=40°,∠BDC=∠C=80°,所以∠CBD=20°.8. 【答案】80°;【解析】设顶角为x,则底角为x-30°,所以x+x-30°+x-30°=180°,x=80°.9. 【答案】8;【解析】DE=DC,AC=BC=BE,△ADE的周长=AD+DE+AE=AC+AE=AB=8.10.【答案】70°或40o;【解析】这个角可能是底角,也可能是顶角.11.【答案】10;【解析】OM=BM,ON=CN,∴△OMN的周长等于BC.12.【答案】3cm;【解析】解:∵BI、CI分别平分∠ABC、∠ACF,∴∠ABI=∠CBI,∠ECI=∠ICF,∵DE∥BC,∴∠DIB=∠CBI,∠EIC=∠ICF,∴∠ABI=∠DIB,∠ECI=∠EIC,∴DI=BD=8cm,EI=CE=5cm,∴DE=DI﹣EI=3cm.三.解答题13.【解析】证明:ED⊥BC;延长ED,交BC边于H,∵AB=AC,AE=AD.∴设∠B=∠C=x,则∠EAD=2x,∴∠ADE=1802902xx ︒-=︒-即∠BDH=90°-x∴∠B+∠BDH=x+90°-x=90°,∴∠BHD=90°,ED⊥BC.14.【解析】解:设三角形的腰AB=AC=x若AB+AD=24cm,则:x+x=24∴x=16三角形的周长为24+30=54cm所以三边长分别为16,16,22;若AB+AD=30cm,则:x+x=30∴x=20∵三角形的周长为24+30=54cm∴三边长分别为20,20,14;因此,三角形的三边长为16,16,22或20,20,14.15.【解析】证明:延长AB至E,使BE=BP,连接EP∵在△ABC中,∠BAC=60°,∠ACB=40°,∴∠ABC=80°∴∠E=∠BPE=802︒=40°∵AP 、BQ 分别为∠BAC 、∠ABC 的角平分线,∴∠QBC =40°,∠BAP =∠CAP∴BQ =QC (等角对等边)在△AEP 与△ACP 中,EAP CAP E C AP AP ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEP ≌△ACP (AAS )∴AE =AC∴AB +BE =AQ +QC ,即AB +BP =AQ +BQ.第二课时【学习目标】1. 了解因式分解的意义,以及它与整式乘法的关系;2. 能确定多项式各项的公因式,会用提公因式法将多项式分解因式.【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.要点诠释:(1)因式分解只针对多项式,而不是针对单项式,是对这个多项式的整体,而不是部分,因式分解的结果只能是整式的积的形式.(2)要把一个多项式分解到每一个因式不能再分解为止.(3)因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.要点二、公因式多项式的各项中都含有相同的因式,那么这个相同的因式就叫做公因式.要点诠释:(1)公因式必须是每一项中都含有的因式.(2)公因式可以是一个数,也可以是一个字母,还可以是一个多项式.(3)公因式的确定分为数字系数和字母两部分:①公因式的系数是各项系数的最大公约数.②字母是各项中相同的字母,指数取各字母指数最低的.要点三、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m ,另一个因式是,即,而正好是除以m 所得的商,这种因式分解的方法叫提公因式法.要点诠释:(1)提公因式法分解因式实际上是逆用乘法分配律,即 .(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式.(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号.(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误.【典型例题】类型一、因式分解的概念1、下列由左到右的变形,哪些是因式分解?哪些不是?请说明理由.(1)()a x y ax ay +=+;(2)2221(2)(1)(1)x xy y x x y y y ++-=+++-;(3)24(2)(2)ax a a x x -=+-;(4)221122ab a b =; (5)222112a a a a ⎛⎫++=+ ⎪⎝⎭. 【思路点拨】根据因式分解的定义是将多项式形式变成几个整式的积的形式,从对象和结果两方面去判断.【答案与解析】解:因为(1)(2)的右边都不是积的形式,所以它们都不是因式分解;(4)的左边不是多项式而是一个单项式,(5)中的21a 、1a都不是整式,所以(4)(5)也不是因式分解, 只有(3)的左边是多项式,右边是整式的积的形式,所以只有(3)是因式分解.【总结升华】因式分解是将多项式变成积的形式,所以等式的左边必须是多项式,将单项式拆成几个单项式乘积的形式不能称为因式分解.等式的右边必须是整式因式积的形式. 举一反三:【变式】下列变形是因式分解的是 ( )A.243(2)(2)3a a a a a -+=-++B.2244(2)x x x ++=+C. 11(1)x x x +=+D.2(1)(1)1x x x +-=-【答案】B ; 类型二、提公因式法分解因式2、下列因式分解变形中,正确的是( )A .()()()()1ab a b a b a a b a b ---=--+B .()()()()262231m n m n m n m n +-+=+++C .()()()()232332y x x y y x y x -+-=--+D .()()()()2232x x y x y x y x y +-+=++ 【答案】A ;【解析】解:A.()()()()1ab a b a b a a b a b ---=--+,正确;B.()()()()2622331m n m n m n m n +-+=++-,故本选项错误;C.()()()()232332y x x y y x y x -+-=---,故本选项错误;D.()()()()223331x x y x y x y x xy +-+=++-,故本选项错误. 【总结升华】解题的关键是正确找出公因式,提取公因式后注意符号的变化.找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.举一反三:【变式】(2020春•濉溪县期末)下列分解因式结果正确的是( )A.a 2b+7ab ﹣b=b (a 2+7a )B.3x 2y ﹣3xy+6y=3y (x 2﹣x ﹣2)C.8xyz ﹣6x 2y 2=2xyz (4﹣3xy )D.﹣2a 2+4ab ﹣6ac=﹣2a (a ﹣2b+3c )【答案】D.解:A 、原式=b (a 2+7a+1),错误;B 、原式=3y (x 2﹣x+2),错误;C 、原式=2xy (4z ﹣3xy ),错误;D 、原式=﹣2a (a ﹣2b+3c ),正确.故选D . 类型三、提公因式法分解因式的应用3、若a 、b 、c 为ABC ∆的三边长,且()()()()a b b a b a a c a b a c -+-=-+-,则ABC ∆按边分类,应是什么三角形?【答案与解析】解:∵()()()()a b b a b a a c a b a c -+-=-+-∴()()()()a b b a a b a c a b c a ---=---()()()()a b b a c a a b --=--当a b =时,等式成立,当a b ≠时,原式变为a b a c -=-,得出b c =,∴a b b c ==或∴ABC ∆是等腰三角形.【总结升华】将原式分解因式,就可以得出三边之间的关系,从而判定三角形的类型.4、对任意自然数n (n >0),422n n +-是30的倍数,请你判定一下这个说法的正确性,并说说理由.【答案与解析】解:()44422222221152n n n n n n +-=⨯-=-=⨯∵n 为大于0的自然数,∴2n 为偶数,15×2n 为30的倍数,即422n n +-是30的倍数.【总结升华】判断422n n +-是否为30的倍数,只需要把422n n +-分解因式,看分解后有没有能够整除30的因式.举一反三:【变式】说明200199198343103-⨯+⨯能被7整除. 【答案】解:200199198343103-⨯+⨯()198219833431073=-⨯+=⨯ 所以200199198343103-⨯+⨯能被7整除.5、(2020春•湘潭县期末)已知xy=﹣3,满足x+y=2,求代数式x 2y+xy 2的值.【思路点拨】将原式提取公因式xy ,进而将已知代入求出结果即可.【答案与解析】解:∵xy=—3,x+y=2,∴x 2y+xy 2=xy (x+y )=﹣3×2=﹣6.【总结升华】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.。
等腰三角形性质及判定等腰三角形的性质知识点一:等腰三角形的定义1.等腰三角形的两边的长为3和5,则其周长为_____________2.等腰三角形的两边的长分别为2和4,则取周长为__________3.等腰三角形的周长为29,其中一边长为7,则它的底边长为________4.等腰三角形的一个角为40°,则其余角度为_____________5.等腰三角形的一个角为120°,则其余角为____________知识点二等边对等角6.△ABC中,AB=AC,∠B=70°,则∠A的度数是___________7.如图,AB∥CD,点E在BC上,且CD=CE,∠D=80°,则∠B的度数为_________。
第7题第8题第9题8.如图,在△ABC中,AB=AC,AD∥BC,若∠1=70°,则∠BAC=___________9.如图,△ABC中,AB=AC,∠B=40°,CD=AC,则∠DAC=_________,∠DAB=__________-10.如图,△ABC中,AB=AC,AE平分△ABC的外角∠DAC,求证:AE∥BC。
知识点三:等腰三角形的“三线合一”11.在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长为_________-12.在△ABC中,AB=AC,D为BC的中点,若∠BAD=20°,则∠C=_________13.如图,在△ABC中,AB=AC,BD=CD,DE⊥AB于E,DF⊥AC于F,求证:DE=DF14.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D15.在△ABC中,AC=AB,点D在AB上,BC=BD,∠ACD=15°,求∠B的度数。
16.如图,AB=AC=CD,AD=BD,求∠BAC的度数。
17.如图1.在△ABC中,AB=AC,BD⊥AC于D.(1)若∠A=50°,则∠DBC=__________,∠A= ,则∠DBC=____________(2)如图2,若∠BAC为钝角,猜想:∠DBC与∠BAC之间的数量关系,并给予证明。
等腰三角形的性质及判定一.选择题(共30小题)1.如图,已知AB=AC=BD,那么()A.∠1=∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°2.如图,△ABC中,CA=CB,∠A=20°,则三角形的外角∠BCD的度数是()A.20°B.40°C.50°D.140°3.若C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有()个.A.2个B.3个C.4个D.5个4.如果某等腰三角形的两条边长分别为4和8,那么它的周长为()A.16B.20C.20或16D.不确定5.△ABC中,AB=AC,顶角是120°,则一个底角等于()A.120°B.90°C.60°D.30°6.已知等腰三角形ABC的两边满足+|6﹣BC|=0,则此三角形的周长为()A.12B.15C.12或15D.不能确定7.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上(不含端点B,C)的动点.若线段AD长为正整数,则点D的个数共有()A.5个B.3个C.2个D.1个8.已知等腰三角形的两边长分别为6和1,则这个等腰三角形的周长为()A.13B.8C.10D.8或139.若等腰三角形的周长为26cm,底边为11cm,则腰长为()A.11cm B.11cm或7.5cmC.7.5cm D.以上都不对10.若实数m、n满足|m﹣3|+(n﹣6)2=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12B.15C.12或15D.911.已知△ABC中,∠ACB=90°,AC=8,BC=6.在射线BC上取一点D,使得△ABD 为等腰三角形,这样的等腰三角形有几个?()A.2个B.3个C.4个D.5个12.若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于()A.15或17B.16C.14D.14或1613.若等腰三角形的顶角为70°,则它的一个底角度数为()A.70°或55°B.55°C.70°D.65°14.如图,在3×3的正方形网格中,点A、B在格点上,要找一个格点C,使△ABC是等腰三角形(AB是其中一腰),则图中符合条件的格点有()A.2个B.3个C.4个D.5个15.等腰三角形的一个角是30°,则这个等腰三角形的底角为()A.75°B.30°C.75°或30°D.不能确定16.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于E,CD平分∠ACB 交BE于D,图中等腰三角形的个数是()A.3个B.4个C.5个D.6个17.如图,直线l1,l2相交于点A,点B是直线外一点,在直线l1,l2上找一点C,使△ABC 为一个等腰三角形,满足条件的点C有()A.2个B.4个C.6个D.8个18.如图,已知OA=OB=OC,BC∥AO,若∠A=36°,则∠B等于()A.54°B.60°C.72°D.76°19.如图,△ABC中,∠B=∠C,BD=CD,则下列判断不一定正确的是()A.AB=AC B.AD⊥BCC.∠BAD=∠CAD D.△ABC是等边三角形20.等腰三角形的边长为2和3,那么它的周长为()A.8B.7C.8或7D.以上都不对21.等腰三角形的顶角是40°,则它的底角是()A.55°B.70°C.40°或70°D.55°或70°22.如图所示,在三角形ABC中,AB=AC,∠BAC=108°,在BC上分别取点D,E使∠BAD=∠B,∠CAE=∠C,则图中的等腰三角形有()A.3个B.4个C.5个D.6个23.三角形三个内角的比是∠A:∠B:∠C=1:1:2,则△ABC是()A.等腰三角形B.等腰直角三角形C.等边三角形D.不能确定24.小方画了一个有两边长为3和5的等腰三角形,则这个等腰三角形的周长为()A.11B.13C.8D.11或1325.如图钢架中,∠A=a,焊上等长的钢条P1P2,P2P3,P3P4,P4P5…来加固钢架.若P1A =P1P2,且恰好用了4根钢条,则α的取值范围是()A.15°≤a<18°B.15°<a≤18°C.18°≤a<22.5°D.18°<a≤22.5°26.已知等腰△ABC中,∠A=120°,则底角的大小为()A.60°B.30°或120°C.120°D.30°27.如图,在△ABC中,AB=AC=13,该三角形的面积为65,点D是边BC上任意一点,则点D分别到边AB,AC的距离之和等于()A.5B.6.5C.9D.1028.如图,直线L1∥L2,点A、B在L1上,点C在L2上,若AB=AC、∠ABC=70°,则∠1的大小为()A.20°B.40°C.35°D.70°29.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°30.等腰三角形的周长为18,其中一条边的长为8,则另两条边的长是()A.5、5B.2、8C.5、5或2、8D.以上结果都不对二.填空题(共15小题)31.等腰三角形的一个内角为30°,那么其它两个角的度数为______.32.已知AD是△ABC的高,若AB=AC,BC=4,则CD=______,33.如图,在平面直角坐标系中,点A,B分别在y轴和x轴上,∠ABO=60°,在y轴上找一点P,使△P AB是等腰三角形,则符合条件的P点共有______个.34.如图,直线a、b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O、A、B为顶点的三角形是等腰三角形,这样的B点有______.35.若等腰三角形的两边的长分别为3和10,则它的周长为______.36.如果等腰三角形的两边长分别是6、8,那么它的周长是______.37.如图,Rt△ABC中,AC⊥BC,AE=AO,BF=BO,则∠EOF的度数是______.38.等腰△ABC的边长分别为6和8,则△ABC的周长为______.39.已知等腰三角形中顶角的度数是底角的3倍,那么底角的度数是______.40.已知等腰三角形的周长为20,底长为x,则x的取值范围是______.41.用一条长为20cm的细绳围成一个等腰三角形,已知一边长是另一边长的2倍,则腰长为______cm.42.如图,△ABC中,AB=AC,D、E是BC边上两点,AD=AE,BE=6,DE=4,则EC =______.43.如图,△ABC中,AB=AC,∠C═30°,DA⊥BA于点A,BC=16cm,则AD=______.44.如图,AB=AC=CD,∠BAC=56°,则∠B=______,∠D=______.45.如图,已知每个小方格的边长为1,A,B两点都在小方格的顶点上,请在图中找一个顶点C,使△ABC为等腰三角形,则这样的顶点C有______个.三.解答题(共5小题)46.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.47.在△ABC中,AD平分∠BAC,E是BC上一点,BE=CD,EF∥AD交AB于F点,交CA的延长线于P,CH∥AB交AD的延长线于点H,①求证:△APF是等腰三角形;②猜想AB与PC的大小有什么关系?证明你的猜想.48.如图,在△ABC中,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)若∠BAC=90°(图1),求∠DAE的度数;(2)若∠BAC=120°(图2),求∠DAE的度数;(3)当∠BAC>90°时,探求∠DAE与∠BAC之间的数量关系,直接写出结果.49.已知等腰三角形的周长为24cm,其中两边之差为6cm,求这个等腰三角形的腰长.50.如图,在△ABC中,AB=AC,CE平分∠ACB,EC=EA.(1)求∠A的度数;(2)若BD⊥AC,垂足为D,BD交EC于点F,求∠1的度数.等腰三角形的性质及判定参考答案与试题解析一.选择题(共30小题)1.解:∵AB=AC=BD,∴∠B=∠C,∠BAD=∠1,∵∠1=∠C+∠2,∴∠BAD=∠1=∠C+∠2,∵∠B+∠1+∠BAD=180°,∴∠C+2∠1=180°,∵∠C=∠1﹣∠2,∴∠1﹣∠2+2∠1=180°,即3∠1﹣∠2=180°.故选:D.2.解:∵CA=CB,∠A=20°,∴∠B=∠A=20°,∴∠BCD=∠A+∠B=40°,故选:B.3.解:如图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有2个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有2个.故选:C.4.解:若4为腰,8为底边,此时4+4=8,不能构成三角形,故4不能为腰;若4为底边,8为腰,此时三角形的三边分别为4,8,8,周长为4+8+8=20,综上三角形的周长为20.故选:B.5.解:∵△ABC中,AB=AC,顶角是120°,∴∠B=∠C,∠A=120°∵∠A+∠B+∠C=180°,∴∠B=∠C==30°,故选:D.6.解:∵+|6﹣BC|=0,∴AB﹣3=0,6﹣BC=0,解得AB=3,BC=6,(1)若AB是腰长,BC为底,则三角形的三边长为:3、3、6,不能能组成三角形,(2)若AB是底边长,BC为腰,则三角形的三边长为:3、6、6,能组成角形,周长为3+6+6=15.故此三角形的周长为15.故选:B.7.解:过A作AE⊥BC,∵AB=AC,∴EC=BE=BC=4,∴AE==3,∵D是线段BC上的动点(不含端点B、C).∴3≤AD<5,∴AD=3或4,∵线段AD长为正整数,∴AD的可以有三条,长为4,3,4,∴点D的个数共有3个,故选:B.8.解:当等腰三角形的腰为1时,三边为1,1,6,1+1=2<6,三边关系不成立,当等腰三角形的腰为6时,三边为1,6,6,三边关系成立,周长为1+6+6=13.故选:A.9.解:∵11cm是底边,∴腰长=(26﹣11)=7.5cm,故选:C.10.解:|m﹣3|+(n﹣6)2=0,∴m﹣3=0,n﹣6=0,解得m=3,n=6,当m=3作腰时,三边为3,3,6,不符合三边关系定理;当n=6作腰时,三边为3,6,6,符合三边关系定理,周长为:3+6+6=15.故选:B.11.解:在Rt△ABC中,AB==10,①如图1,当AB=AD=10时,CD=CB=6时,CD=CB=6,得△ABD的等腰三角形.②如图2,当AB=BD=10时,△ABD是等腰三角形;③如图3,当AB为底时,AD=BD时,△ABD是等腰三角形.故选:B.12.解:当4为底边时,腰长为6,则这个等腰三角形的周长=4+6+6=16;当6为底边时,腰长为4,则这个等腰三角形的周长=4+4+6=14;故选:D.13.解:∵等腰三角形的顶角为70°,∴它的一个底角度数为(180°﹣70°)=55°,故选:B.14.解:如图所示:由勾股定理得:AB==,①若AB=BC,则符合要求的有:C1,C2,C3共4个点;②若AB=AC,则符合要求的有:C4,C5共2个点;若AC=BC,则不存在这样格点.∴这样的C点有5个.故选:D.15.解:①当这个角为顶角时,底角=(180°﹣30°)÷2=75°;②当这个角是底角时,底角=30°;故选:C.16.解:∵AB=AC,∠A=36°,∴△ABC是等腰三角形.∴∠C=∠ABC=72°.∵BD平分∠ABC交AC于E,∴∠ABE=∠EBC=36°,∵∠A=∠ABE=36°,∴△ABE是等腰三角形.∵∠BEC=∠A+∠ABE=72°=∠C,∴△BEC是等腰三角形.∵∠DBC=∠DCB=36°,∴△BCD是等腰三角形,∵∠EDC=∠DBC+∠DCB=72°=∠DEC,∴△CDE是等腰三角形,∴共有5个等腰三角形.故选:C.17.解:以A为圆心,AB长为半径画弧,交l1、l2于4个点;以B为圆心,AB长为半径画弧交l1、l2于2个点,再作AB的垂直平分线交l1、l2于2个点,共有8个点,故选:D.18.解:∵OA=OC,∴∠ACO=∠A=36°,∵BC∥AO,∴∠BCA=∠A=36°,∴∠BCO=72°,∵OB=OC,∴∠B=72°.故选:C.19.解:∵∠B=∠C,∴AB=AC,∴选项A不符合题意;∵∠B=∠C,∴AB=AC,BD=CD,∴AD⊥BC,∠BAD=∠CAD,∴选项B、选项C不符合题意;当△ABC中有一个角为60°时,△ABC是等边三角形,∴选项D符合题意;故选:D.20.解:分两种情况讨论:当这个三角形的底边是2时,三角形的三边分别是2、3、3,能够组成三角形,则三角形的周长是8;当这个三角形的底边是3时,三角形的三边分别是2、2、3,能够组成三角形,则三角形的周长是7.故等腰三角形的周长为8或7.故选:C.21.解:因为等腰三角形的两个底角相等,又因为顶角是40°,所以其底角为=70°.故选:B.22.解:∵AB=AC,∠BAC=108°,∴∠B=∠C=36°,△ABC是等腰三角形,∵∠BAD=∠B=36°,∴△ABD是等腰三角形,∵∠CAE=∠C=36°,∴△AEC是等腰三角形,∴∠ADC=∠DAC=72°,∴△ADC是等腰三角形,同理,△ABE是等腰三角形,∴∠ADE=∠AED=72°,∴△ADE是等腰三角形,故选:D.23.解:∵∠A+∠B+∠C=180°,∠A:∠B:∠C=1:1:2,∴∠A=∠B=45°,∠C=90°.则该三角形的等腰直角三角形.故选:B.24.解:由题意知,应分两种情况:(1)当腰长为3时,能构成三角形,周长=2×3+5=11;(2)当腰长为5时,能构成三角形,周长=2×5+3=13.故选:D.25.解:∵AP1=P1P2,P1P2=P2P3,P3P4=P2P3,P3P4=P4P5,∴∠A=∠P1P2A,∠P2P1P3=∠P2P3P1,∠P3P2P4=∠P3P4P2,∠P4P3P5=∠P4P5P3,∴∠P3P5P4=4∠A=4α°,∵要使得这样的钢条只能焊上4根,∴∠P5P4B=5α°,由题意,∴18°≤α<22.5°.故选:C.26.解:∵在等腰△ABC中,∵∠A=120°,∴∠A为等腰三角形的顶角,∴∠B=∠C,∵∠A=120°,∴∠B=∠C=30°;故选:D.27.解:连接AD,∵在△ABC中,AB=AC=13,该三角形的面积为65,∴三角形ABC的面积=△ABD的面积+△ACD的面积=AB•DN+AC•DM=AB•(DN+DM)=×13×(DN+DM)=65,解得:DN+DM=10.故选:D.28.解:∵AB=AC,∴∠ACB=∠ABC=70°,∵直线l1∥l2,∴∠1+∠ACB+∠ABC=180°,∴∠1=180°﹣∠ABC﹣∠ACB=180°﹣70°﹣70°=40°.故选:B.29.解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故选:D.30.解:当腰长为8时,底长为:18﹣8×2=2;2+8>8,能构成三角形;当底长为8时,腰长为:(18﹣8)÷2=5;5+5>8,能构成三角形.故另两条边的长是5、5或2、8.故选:C.二.填空题(共15小题)31.解:①30°是顶角,则底角=(180°﹣30°)=75°;②30°是底角,则顶角=180°﹣30°×2=120°.∴另两个角的度数分别是75°、75°或30°、120°.故答案为75°、75°或30°、120°.32.解:∵AD是△ABC的高,AB=AC,∴CD=BD=BC=4=2,故答案为:2.33.解:①当AB=AP时,在y轴上有2点满足条件的点P.②当AB=BP时,在y轴上有1点满足条件的点P.③当AP=BP时,在y轴上有一点满足条件的点P.综上所述:符合条件的点P共有4个.故答案为:434.解:要使△OAB为等腰三角形分三种情况讨论:①当OB=AB时,作线段OA的垂直平分线,与直线b的交点为B,此时有1个;②当OA=AB时,以点A为圆心,OA为半径作圆,与直线b的交点,此时有1个;③当OA=OB时,以点O为圆心,OA为半径作圆,与直线b的交点,此时有2个,1+1+2=4,故答案为:435.解:(1)若3为腰长,10为底边长,由于3+3<10,则三角形不存在;(2)若10为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为10+10+3=23.故答案为:23.36.解:当6是腰长时,周长=6+6+8=20;当8是腰长时,周长=6+8+8=22.故周长是20或22.故答案为:20或22.37.解:∵Rt△ABC中,AC⊥BC,∴∠A+∠B=90°,∵AE=AO,BF=BO,∴∠AOE=∠AEO=,∠BOF=∠BFO=,∴∠EOF=180°﹣∠AOE﹣∠BOF=180°﹣(+)=(∠A+∠B)=45°,故答案为45°.38.解:当6为底时,三角形的三边为6,8、8可以构成三角形,周长为6+8+8=22;当8为底时,三角形的三边为8,6、6可以构成三角形,周长为8+6+6=20.则△ABC的周长为22或20.故答案为:22或20.39.解:设底角为x°,则顶角为3x°,根据题意得:x+x+3x=180解得:x=36;故答案为:36°.40.解:根据三角形的三边关系,x<(20﹣x),解得x<10,∴x的取值范围是0<x<10.故答案为:0<x<10.41.解:设较短的边长为xcm,则较长的边长为2xcm,①若较短的边为底边,较长的边为腰,则x+2x+2x=20,解得x=4,此时三角形三边长分别为4cm,8cm,8cm,能组成三角形;②若较短的边为腰,较长的边为底边,则x+x+2x=20,解得x=5,此时三角形三边长分别为5cm,5cm,10cm,∵5+5=10,∴不满足三角形任意两边之和大于第三边,故不能围成三角形;综上所述,等腰三角形的腰长8cm,故答案为8.42.证明:∵BE=6,DE=4,∴BD=BE﹣DE=2,过A作AP⊥BC于P,∵AB=AC,AP⊥BC,∴BP=CP,同理有DP=EP,∴CE=BD=2,故答案为:2.43.解:∵AB=AC,∴∠B=∠C=30°,∴∠BAC=180°﹣2×30°=120°,∵DA⊥BA,∴∠BAD=90°,∴∠CAD=120°﹣90°=30°,∴∠CAD=∠C,∴AD=CD,在Rt△ABD中,∵∠B=30°,∠BAD=90°,∴BD=2AD,∴BC=BD+CD=2AD+AD=3AD,∵BC=16cm,∴AD=cm,故答案为:cm.44.解:∵AB=AC,∠BAC=56°∴∠B=∠ACB==62°,∵AC=CD,∴∠CAD=∠D,∵∠ACB=∠CAD+∠D,∴∠D=∠ACB=31°,故答案为:62°,31°.45.解:当AB为底时,作AB的垂直平分线,可找出格点C的个数有5个,当AB为腰时,分别以A、B点为顶点,以AB为半径作弧,可找出格点C的个数有3个;∴这样的顶点C有8个.故答案为:8.三.解答题(共5小题)46.解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.47.①证明:∵EF∥AD,∴∠1=∠4,∠2=∠P,∵AD平分∠BAC,∴∠1=∠2,∴∠4=∠P,∴AF=AP,即△APF是等腰三角形;②AB=PC.理由如下:证明:∵CH∥AB,∴∠5=∠B,∠H=∠1,∵EF∥AD,∴∠1=∠3,∴∠H=∠3,在△BEF和△CDH中,∵,∴△BEF≌△CDH(AAS),∴BF=CH,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠H,∴AC=CH,∴AC=BF,∵AB=AF+BF,PC=AP+AC,∴AB=PC.48.解:(1)如图1,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵BD=BA,∴∠BAD=∠BDA=(180°﹣∠B)=67.5°,∵CE=CA∴∠CAE=∠E=∠ACB=22.5°,∴∠BAE=180°﹣∠B﹣∠E=112.5°,∴∠DAE=∠BAE﹣∠BAD=45°,(2)如图2,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=30°,∵BA=BD,∴∠BAD=∠BDA=75°,∴∠DAC=45°,∵CA=CE,∴∠E=∠CAE=15°,∴∠DAE=∠DAC+∠CAE=60°;(3)∠DAE=∠BAC,理由:设∠CAE=x,∠BAD=y,则∠B=180°﹣2y,∠E=∠CAE=x,∴∠BAE=180°﹣∠B﹣∠E=2y﹣x,∴∠DAE=∠BAE﹣∠BAD=2y﹣x﹣y=y﹣x,∠BAC=∠BAE﹣∠CAE=2y﹣x﹣x=2y﹣2x ∴∠DAE=∠BAC.49.解:设三角形的腰为x,底为y,根据题意得或,解得或,又知6+6<12,不能构成三角形,即等腰三角形的腰长为:10cm.50.解:(1)∵EA=EC,∴设∠A=∠2=x,∵EC平分∠ACB,∴∠ACB=2x,∵AB=AC,∴∠ABC=∠ACB=2x,在△ABC中,∴x+2x+2x=180°,∴x=36°,∴∠A=36°;(2)∵∠A=∠2,∴∠2=36°,∵BD⊥AC,∴∠DFC=90°﹣36°=54°,∴∠1=∠DFC=54°.第1页(共1页)。
等腰三角形的性质与判定综合练习1、假设等腰三角形的顶角为60°,那么它底角的度数为〔 〕A 、40°B 、50°C 、60°D 、70°2、如图,在△ABC 中,点D 在BC 上,AB =AD =DC ,∠B =80°,那么C 的度数为〔 〕A 、30°B 、40°C 、45°D 、60°3、如图,在△ABC 中,D 为BC 的中点,AD ⊥BC ,E 为AD 上一点,∠ABC =60°,∠ECD=40°,那么∠ABE =〔 〕 A 、10° B 、15° C 、20° D 、25°4、等腰△ABC 中,AB =AC=6cm ,∠A =150°,那么△ABC 的面积为〔 〕A 、9cm ²B 、18cm ²C 、6cm ²D 、36cm ²5、如图,在△ABC 中,AB =AC ,∠A =36°,DM 是AB 的垂直平分线,那么图中的等腰三角形有〔 〕A 、5个B 、4个C 、3个D 、2个 6、如图,在△ABC 中,∠A =60°,BE ⊥AC ,垂足为E ,CF ⊥AB , 垂足为F ,BE 、CF 交于点M 。
如果CM =4,FM =5,那么BE 等于〔 〕 A 、9 B 、12 C 、13 D 、14 7、如图,AB =AC ,∠A =36°,AB 的中垂线MD 交AC 于点D ,交AB 于点M 。
以下结论:①BD 是∠ABC 的平分线;②△BCD 是等腰三角形;③DC+BC=AB 。
正确的有〔 〕A 、3个B 、2个C 、1个D 、0个8、如图,△ABC 中,AB =AC ,△DEF 为等边三角形,那么γβα、、之间的关系为〔 〕A 、2γαβ+= B 、2γβα+= C 、2γαβ—= D 、2γβα—=二、填空题9、如图,AB//CD ,CD =BD ,∠ABD =68°,那么∠C 的度数为。
等腰三角形的性质和判定(总4页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--等腰三角形的性质和判定知识点1:等边对等角1.若等腰三角形的顶角为40°,则它的底角度数为( ) A .40° B .50° C .60° D .70°2.如图,在△ABC 中,AB =AD =DC ,∠B =70°,则∠C 的度数为( ) A .35° B .40° C .45° D .50°第2题图 第3题图 第4题图 第7题图 第8题图 第11题图 第12题图3.如图,a ∥b ,点A 在直线a 上,点C 在直线b 上,∠BAC =90°,AB =AC ,若∠1=20°,则∠2的度数为( )A .25°B .65°C .70°D .75°4.如图,等腰△ABC 的底角为72°,腰AB 的垂直平分线交另一腰AC 于点E ,垂足为D ,连接BE ,则∠EBC 的度数为_______.5.如图,在△ABC 中,AB =AC ,D 是△ABC 内一点,且BD =DC.求证:∠ABD =∠ACD.知识点2:三线合一6.等腰三角形是轴对称图形,它的对称轴是( )A .过顶点的直线B .底边的垂线C .顶角的角平分线所在的直线D .腰上的高所在的直线 7.如图,在△ABC 中,AB =AC ,D 为BC 的中点,∠BAD =35°,则∠C 的度数为( ) A .35° B .45° C .55° D .60°8.如图,△ABC 的周长为32,且AB =AC ,AD ⊥BC 于点D ,△ACD 的周长为24,则AD 的长为____. 9.如图,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AD 上,求证:BE =CE.10.已知等腰三角形的一个内角为70°,则另外两个内角的度数为( )A .55°,55°B .70°,40°C .55°,55°或70°,40°D .以上都不对11.如图,一钢架NAM 中,∠A =15°,现要在角的内部焊上等长的钢条(相邻钢条首尾相接)来加固钢架.若AP 1=P 1P 2,则这样的钢条最多只能焊上( ) A .4根 B .5根 C .6根 D .7根12.如图,在Rt △ABC 中,D ,E 为斜边AB 上的两个点,且BD =BC ,AE =AC ,则∠DCE 的大小为_______.13.如图,在△ABC 中,D 在BC 上,若AD =BD ,AB =AC =CD ,求∠BAC 的度数.14.如图,AD是△ABC的角平分线,EF是AD的垂直平分线,交BC的延长线于点F,连接AF.求证:∠BAF=∠ACF.15.如图,在等腰三角形ABC中,AB=AC,点D在BC上,且AD=AE.(1)若∠BAC=90°,∠BAD=30°,求∠EDC的度数;(2)若∠BAC=α(α>30°),∠BAD=30°,求∠EDC的度数;(3)猜想∠EDC与∠BAD的数量关系.(不必证明)知识点3:等腰三角形的判定1.在△ABC中,不能判定是等腰三角形的是( )A.∠A∶∠B∶∠C=1∶1∶3 B.a∶b∶c=2∶2∶3 C.∠B=50°,∠C=80°D.2∠A=∠B+∠C2.在△ABC中,∠A的相邻外角是70°,要使△ABC为等腰三角形,则∠B=( )A.70° B.35°C.110°或35° D.110°3.如图,AD平分∠BAC,AD∥EC,则下列三角形中一定是等腰三角形的是( )A.△ABD B.△ACD C.△ACE D.△ABC第3题图第4题图第6题图4.如图,在△ABC中,BD⊥AC,∠A=50°,∠CBD=25°,若AC=5 cm,则AB=________.5.如图,在△ABC中,AB=AC,D是AB上一点,过点D作DE⊥BC于点E,并与CA的延长线交于点F,试判断△ADF的形状,并说明理由.知识点4:等腰三角形的性质和判定的综合运用6.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有( )A.2个B.3个C.4个D.5个7.如图,将一张长方形纸片ABCD沿BD折叠,若AE=3,AB=4,BE=5,则重叠部分的面积为( )A.6 B.8 C.10 D.12第7题图第8题图第9题图第10题图第12题图8.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为____.9.如图,AD和BC交于点O,AB∥DC,OA=OB,试判断△OCD的形状,并说明理由.10.如图,轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C 处与灯塔A的距离是( )A.45海里B.35海里C.50海里D.25海里11.如图,下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是( )A.①②③B.①②④C.②③④D.①③④12.如图,在正方形网格中,网格线的交点称为格点,已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是____13.如图,AC⊥BC,BD⊥AD,AC与BD交于点O,AC=BD.(1)求证:BC=AD;(2)求证:△OAB是等腰三角形14.如图,AD是△ABC的角平分线,BE⊥AD交AD的延长线于点E,EF∥AC交AB于点F.求证:AF=FB.15.如图,△ABC中,∠B=2∠C,AD是∠BAC的平分线.求证:AC=AB+BD.。
专题:等腰三角形的性质与判定※题型讲练考点一等腰三角形的性质定理1:“等边对等角”1.等腰三角形的性质定理:(1)性质定理1:等腰三角形的两个相等(该定理可以简写成“”).注意:等腰三角形是轴对称图形,对称轴是底边上的中线(顶角平分线、底边上的高) .【例1】(1)已知等腰三角形的一个外角是100°,则其底角的度数是50°或80°.(2)如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD=___18°_____.(3)如图,在△ABC中,D在BC上,若AD=BD,AB=AC=CD,则∠BAC的度数是108°.(4)如图,AD是△ABC的角平分线,EF是AD的垂直平分线,交BC的延长线于点F,连接AF.求证:∠BAF=∠ACF.变式训练1:1.已知等腰三角形一腰上的高与另一腰的夹角为30°,则其顶角为60°或120°.2.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数度数是50°.3.如图,在△ABC中,AB=AC,D是AB上一点,延长CA到点E,使AE=AD,求证:ED⊥BC.考点二等腰三角形的性质定理2:“三线合一”(2)性质定理2:等腰三角形的的角平分线、底边上的、底边上的互相重合,简写成“”.【例2】(1)如图,在△ABC中,AB=AC,D为BC中点,∠BAD =35°,则∠C的度数为___55°_____.(2)如图,△ABC的周长为32,且AB=AC,AD⊥BC于点D,△ACD的周长为24,则AD的长为____8___.(3)如图,△ABC中,AB=AC=10cm,S△ABC=48cm2,AD平分∠BAC,DE⊥AC于点E,则DE等于___4.8____.变式训练2:1.如图,在△ABC中,AB=AC,AD,CE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ACE的度数是___35°___.2.如图,△ABC中,AB=AC,点D是BC边的中点,作∠EAB =∠BAD,AE边交CB的延长线于点E,延长AD到点F,使AF=AE,连接CF.试证明:BE=CF.考点三等腰三角形的判定定理:“等角对等边”1.等腰三角形的判定定理:如果一个三角形有相等,那么这两个角所对的边也相等(简写成“”).【例2】(1)如图,∠B=∠C=36°,∠ADE=∠AED=72°,则图中的等腰三角形的个数为( D )A.3个B.4个C.5个D.6个(2)如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的角平分线,AE与CD交于点F,求证:△CEF是等腰三角形.(3)如图,AD是△ABC的角平分线,BE⊥AD交AD的延长线于点E,EF∥AC交AB于点F.求证:AF=FB.变式训练3:1.如图,在△ABC中,BP平分∠CBA,AP平分∠CAB,且DE∥AB,若CB=12,AC=18,则△CDE的周长是____30____.2.如图,△ABC中,∠B=2∠C,AD是∠BAC的平分线.求证:AC=AB+BD.考点四等腰三角形的综合问题【例4】如图,在△ABC中,AB=AC,点D、E、F分别在AB 、BC 、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEF的度数.※课后练习1.等腰三角形是轴对称图形,它的对称轴是( D )A.过顶点的直线B.腰上的高所在的直线C.顶角的角平分线D.底边的垂直平分线2.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC 的长为半径画弧,交AC于点D,连接BD,则∠ABD=(B) A.30°B.45°C.60°D.90°3.如图所示,已知AB=AC=BD,那么∠1和∠2之间的关系是(D)A.∠1=2∠2 B.2∠1-∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°4.已知等腰三角形中有一个内角为70°,则该等腰三角形的顶角度数为70°或40°.5.如图,已知OC平分∠AOB,CD∥OB,若OD=4 cm,则CD等于____4 cm ___.6.如图,在△ABC中,∠B=∠C,点E在CA延长线上,EP⊥BC于点P,交AB于点F.若AF=3,BF=5,则CE的长度为11.7.在平面直角坐标系中,O为坐标原点,已知点A(2,4),在坐标轴上确定一点P,使△AOP为等腰三角形,则所有符合条件的点P有8 个.8.如图,在△ABC中,AB=AC,D,E分别在AC,AB边上,且BC=BD,AD=DE=EB.则∠A的度数为45°.9.如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BE 交AD于F,交AC于E.(1)若BE平分∠ABC,试判断△AEF的形状,并说明理由;(2)若AE=AF,请证明BE平分∠ABC.10.如图,AD是∠BAC的平分线,AB=AC+DC.求证:∠C=2∠B.证明:在AB上截取AE=AC,连接DE.∵AB=AC+DC,AE=AC,∴BE=DC.∵AD是∠BAC的平分线,∴∠EAD=∠CAD,∴△AED≌△ACD( SAS ).∴DE=DC=BE,∠AED=∠C,∴∠B=∠EDB.∵∠AED=∠B+∠EDB,∴∠AED=2∠B,∴∠C=2∠B.11.如图,在△ABC中,AB=AC,D是BC上任意一点,过点D 分别向AB,AC引垂线,垂足分别为E,F.(1)当点D在BC的什么位置时,DE=DF?请给出证明.(2)过点C作AB边上的高CG,请问DE,DF,CG的长度之间存在怎样的数量关系?并加以证明.解:(1)当D为BC的中点时,DE=DF.∵D为BC的中点,∴BD=CD.∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,∴△BED≌△CFD( AAS ),∴DE=DF.(2)CG=DE+DF.连接AD,∵S△ABC=S△ADB+S△ADC,AB×CG=AB×DE+AC×DF,又∵AB=AC,∴CG=DE+DF.12.在△ABC中,∠C=90°,AC=BC=2,将一块三角板的直角顶点放在斜边AB的中点P处,将此三角板绕点P旋转,三角板的两直角边分别交射线AC,CB于点D,E,图1,图2,图3是旋转得到的三种图形.(1)以图2为例证明:PD=PE;(2)△PBE能否构成等腰三角形?若能,求出∠PEB的度数;若不能,请说明理由.。
E
D
C
B
A
等腰三角形的判定和性质练习
1.在△ABC 中,AB =AC ,若∠B =56º,则∠C =__________.
2. 若等腰三角形的一个角是50°,则这个等腰三角形的底角为_____________. 3. 若等腰三角形的两边长分别为x cm 和(2x -6)cm ,且周长为17cm ,则第
三边的长为________.
4. 如图,在△ABC 中,AB =AC ,AD ⊥BC 于D ,BE ⊥AC 于E ,若∠CAD =25°,则∠ABE = ,若BC =6,则CD = .
5.△ABC 中,AB =AC ,∠ABC =36°,D .E 是BC 上的点,∠BAD =∠DAE =∠EAC ,则图中等腰三角形有______个
6.等腰三角形一腰上的高与底边夹角为20°,则其顶角的大小为___________. 7.如图,∠ABC =50°,∠ACB =80°,延长CB 到D ,使BD =AB ,延长BC 到E ,使CE =CA ,连接AD .AE ,则∠DAE =_______.
8.如下图,△MNP 中, ∠P =60°,MN =NP ,MQ ⊥PN ,垂足为Q ,
延长MN 至G ,取NG =NQ ,若△MNP 的周长为12,MQ =a ,则△MGQ 周长是 . 9.△ABC 中,∠C =∠B ,D .E 分别是AB .AC 上的点,AE =2cm ,且DE ∥BC ,则AD =______
10.如图,∠AOB 是一个钢架且∠AOB =10°,为了使钢架更加牢固,需在内部添加一些 钢管EF ,FG ,GH ,…,添加的钢管长度都与OE 相等,则最多能添加这样的钢管______根.
11.如图△ABC 中,AB =AC ,AD 、BE 是△ABC 的高,它们相交于H ,且AE=BE .
求证:AH =2BD .
12.△ABC 为非等腰三角形,分别以AB 、AC 为腰向△ABC 外作等腰直角三角形ABD 和等腰直角三角形ACE ,且∠DAB =∠EAC =90°.求证:(1)BE =CD ;(2)BE ⊥CD .
13.如图,点D 、E 在ABC ∆的边BC 上,AB AC =,AD AE =.
求证:BD CE =
14.如图,AB AC =,30BAD ∠=,且AD AE =.求EDC ∠的度数.
E
D
B
A
P
Q
M
N
G
15.如图,ABC ∆中,90ACB ∠=,CD BA ⊥于D ,AE 平分BAC ∠交CD 于F ,交BC 于E ,求证:CEF ∆是等腰三角形.
16.Rt ABC ∆中,AB AC =,90BAC ∠=,O 为 AB 中点,若点M .N 分别在线段AB .AC
上移 动,且在移动过程中保持AN BM =,试判断 OMN ∆的形状,并证明你的结论.
17.已知:如图,△ABC 中,D 在AB 上,E 在AC 延长线上,且BD =CE ,DE 交BC 于M ,MD =ME ,求证:△ABC 是等腰三角形.
18. 如图,已知△ABC 是等边三角形,点D 、E 分别在BC 、AC 边上,且AE=CD ,AD 与BE 相交于点F .(1)线段AD 与BE 有什么关系?试证明你的结论. (2)求∠BFD 的度数.
19. 如图,在△ABC 中,AB=AC ,D 是BC 上任意一点,过D 分别向AB ,AC 引垂线,垂足分别为E ,F ,CG 是AB 边上的高.
(1)DE ,DF ,CG 的长之间存在着怎样的等量关系?并加以证明;
(2)若D 在底边的延长线上,(1)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.
E
M
D
C B
A。