ansys对斜拉桥的分析实例
- 格式:docx
- 大小:453.15 KB
- 文档页数:7
利用ANSYS实现斜拉桥非线性分析卫星,强士中西南交通大学土木工程学院,四川成都(610031)摘要:ANSYS软件是融结构、热、流体、电磁场、声场和耦合场分析于一体的大型通用有限元分析软件。
利用ANSYS的二次开发技术,如用户界面设计语言(UIDL)、参数化设计语言(APDL)以及用户可编程特性(UPFs),可以实现对ANSYS的用户化定制,使ANSYS在特定的应用范围内发挥更大效率。
本文着重介绍利用ANSYS进行斜拉桥非线性分析的实现过程,并在最后给出了应用实例。
关键词:ANSYS软件;二次开发技术;斜拉桥;非线性分析ANSYS软件是融结构、流体、电磁场、声场和耦合场分析于一体的大型通用有限元分析软件。
经过30多年的发展,ANSYS逐渐为全球工业界所广泛接受。
ANSYS用户涵盖了机械制造、航空航天、能源化工、交通运输、土木建筑、水利、电子、地矿、生物医学、教学科研等众多领域,ANSYS是这些领域进行国际国内分析设计技术交流的主要分析平台。
作为通用有限元分析软件,在讲究通用性的前提下势必在考虑特定专业领域时有所欠缺。
具体到桥梁结构分析中,还有许多分析问题不能通过ANSYS软件直接实现,如活载影响线加载,桥梁施工控制等。
这些不足一方面限制了ANSYS的推广和使用,另一方面迫使投入大量的人力、物力,针对桥梁分析问题开发更专业化的桥梁有限元分析程序。
事实上,ANSYS软件的开放式结构允许对ANSYS进行用户化定制,使ANSYS在特定的应用范围内发挥更大效率。
ANSYS的这一特性为桥梁结构有限元分析提供了新的途径,可以针对桥梁结构的实际问题对ANSYS软件进行二次开发,使ANSYS的分析功能得到扩充,使这一通用有限元分析软件的专业性缺陷得到改善,更好地满足桥梁结构分析要求。
1 ANSYS的二次开发技术1.1 用户界面设计语言(UIDL)[1]用户界面设计语言(UIDL,User Interface Design Language)是一种程序化的语言,是ANSYS为用户进行界面设计提供的一种专用语言。
第6章ANSYS桥梁工程应用实例分析本章重点结构分析具体步骤结构静力分析桁架结构建模方法结构模态分析本章典型效果图6.1 引言ANSYS通用有限元软件在土木工程应用分析中可发挥巨大的作用。
我们用它来分析桥梁工程结构,可以很好的模拟各种类型桥梁的受力、施工工况、动荷载的耦合等。
ANSYS程序有丰富的单元库和材料库,几乎可以仿真模拟出任何形式的桥梁。
静力分析中,可以较精确的反应出结构的变形、应力分布、内力情况等;动力分析中,也可精确的表达结构的自振频率、振型、荷载耦合、时程响应等特性。
利用有限元软件对桥梁结构进行全桥模拟分析,可以得出较准确的分析结果。
本章介绍桥梁结构的模拟分析。
作为一种重要的工程结构,桥梁的精确分析具有较大的工程价值。
桥梁的种类繁多,如梁桥、拱桥、钢构桥、悬索桥、斜拉桥等等,不同类型的桥梁可以采用不同的建模方法。
桥梁的分析内容又包括静力分析、施工过程模拟、动荷载响应分析等。
可以看出桥梁的整体分析过程比较复杂。
总体上来说,主要的模拟分析过程如下:(1)根据计算数据,选择合适的单元和材料,建立准确的桥梁有限元模型。
(2)施加静力或者动力荷载,选择适当的边界条件。
(3)根据分析问题的不同,选择合适的求解器进行求解。
(4)在后处理器中观察计算结果。
(5)如有需要,调整模型或者荷载条件,重新分析计算。
桥梁的种类和分析内容众多,不同类型桥梁的的分析过程有所不同,分析侧重点也不一样。
在这里仅仅给出大致的分析过程,具体内容还要看具体实例的情况。
6.2 典型桥梁分析模拟过程6.2.1 创建物理环境建立桥梁模型之前必须对工作环境进行一系列的设置。
进入ANSYS前处理器,按照以下6个步骤来建立物理环境:1、设置GUT菜单过滤2、定义分析标题(/TITLE)3、说明单元类型及其选项(KEYOPT选项)4、设置实常数和单位制5、定义材料属性31.设置GUI 菜单过滤如果你希望通过GUI 路径来运行ANSYS ,当ANSYS 被激活后第一件要做的事情就是选择菜单路径:Main Menu>Preferences ,执行上述命令后,弹出一个如图6-1所示的对话框出现后,选择Structural 。
基于ansys斜拉桥的稳态有限元分析摘要:采用有限元分析软件ansys建立斜拉桥三维立体模型,其中拉索桥的所有梁采用beam模型,桥面采用shell模型,10根拉索桥将采用link模型,将beam模型和shell模型用form new part组合为一体,最后,求出整个模型的变形云图,并进行稳态等问题的相关后处理。
关键词:有限元分析;beam模型;shell模型;link模型1 建立有限元模型1.1三维有限元模型的建立采用有限元分析软件ansys建立斜拉桥三维立体模型,并对其进行数值分析。
在Engineering Data表格内点击右键新建一种材料,命名为c40,依次定义density (密度)为2500kg/m3,Young’s Modulus(杨氏模量)为33000Mpa,Poisson’s Ratio(泊松比)为0.2。
其材料属性如表1所示,点击Model进入Mechanical界面,如图4-6-16所示定义Shell模型的厚度和材料。
1.2.定义Link单元类型点击Line Body,依次命名为11,12,……,110,右键Insert Commands,在空白处输入以下命令。
LINK180单元是有着广泛工程应用的杆单元,它可以用来模拟桁架、缆索、连杆、弹簧等等。
这种三维杆单元是杆轴方向的拉压单元,每个节点具有三个自由度:沿节点坐标系X、Y、Z方向的平动。
就像铰接结构一样,单元不承受弯矩。
单元具有塑性、蠕变、旋转、大变形、大应变等功能。
默认情况下,无论进行何种分析,当使用命令NLGEOM,ON时,LINK180单元的应力刚化效应开关打开。
同时本单元还具有弹性、各向同性塑性硬化、动力塑性硬化、Hill(各向异性塑性)、Chaboche(非线性塑性硬化)以及蠕变等性能。
LINK180单元通过两个节点I和J、横截面面积(AREA)、单位长度的质量(ADDMAS)及材料属性来定义。
单元的X轴是沿着节点I到节点J的单元长度方向。
⽤ANSYS进⾏桥梁结构分析..⽤ANSYS进⾏桥梁结构分析宝来华龙海引⾔:我院现在进⾏桥梁结构分析主要⽤桥梁博⼠和BSACS,这两种软件均以平⾯杆系为计算核,多⽤来解决平⾯问题。
近来偶然接触到ANSYS,发现其结构分析功能强⼤,现将⼀些研究⼼得写出来,并⽤⼀个很好的学习例⼦(空间钢管拱斜拉桥)作为引⽟之砖,和同事们共同研究讨论,共同提⾼我院的桥梁结构分析⽔平⽽努⼒。
【摘要】本⽂从有限元的⼀些基本概念出发,重点介绍了有限元软件ANSYS平台的特点、使⽤⽅法和利⽤APDL语⾔快速进⾏桥梁的结构分析,最后通过⼯程实例来更近⼀步的介绍ANSYS进⾏结构分析的⼀般⽅法,同时进⾏归纳总结了各种单元类型的适⽤围和桥梁结构分析最合适的单元类型。
【关键词】ANSYS有限元APDL结构桥梁⼯程单元类型⼀、基本概念有限元分析(FEA)是利⽤数学近似的⽅法对真实物理系统(⼏何和载荷⼯况)进⾏模拟。
还利⽤简单⽽⼜相互作⽤的元素,即单元,就可以⽤有限数量的未知量去逼近⽆限未知量的真实系统。
有限元模型是真实系统理想化的数学抽象。
真实系统有限元模型⾃由度(DOFs)⽤于描述⼀个物理场的响应特性。
节点和单元1、每个单元的特性是通过⼀些线性⽅程式来描述的。
2、作为⼀个整体,单元形成了整体结构的数学模型。
3、信息是通过单元之间的公共节点传递的。
4、节点⾃由度是随连接该节点单元类型变化的。
单元形函数1、FEA 仅仅求解节点处的DOF 值。
2、单元形函数是⼀种数学函数,规定了从节点DOF 值到单元所有点处DOF 值的计算⽅法。
3、因此,单元形函数提供出⼀种描述单元部结果的“形状”。
4、单元形函数描述的是给定单元的⼀种假定的特性。
5、单元形函数与真实⼯作特性吻合好坏程度直接影响求解精度。
6、DOF 值可以精确或不太精确地等于在节点处的真实解,但单元的平均值与实际情况吻合得很好。
7、这些平均意义上的典型解是从单元DOFs 推导出来的(如,结构应⼒,热梯度)。
用Ansys分析斜拉桥的变形、应力分布与优化
问题背景:第三届结构设计大赛,题目为:承受运动载荷的不对称双跨桥
梁结构模型设计。
参赛作品为一个斜拉桥
比赛所用材料:桐木若干,白乳胶一瓶。
比赛要求:保证小车通过的同时,桥应力求重量轻,轻者可进入决赛。
参赛实验台示意图
比赛计算参数:
木杆的抗拉强度表
设计方案数据:根据所给材料,经过计算我们预计需要使用:主梁:4根6*6、4*6,55*1截取18mm宽,55*2截取15mm宽;拉塔:2根6*6,3*4作桁架;梁的固定用1根3*4;桥墩:2根3*4,55*1的木片作桁架结构。
下脚料把主梁两端各加长20mm,并把端面做成梯形以使桥梁稳定。
桥梁简支模型:
其中(5)、(7)、(8)为拉索,(6)为拉塔,(1)、(2)、(3)、(4)为主梁,1、2、5为三个支座,塔高为330mm,2、3的距离为250mm,3、4的距离为200mm。
当小车经过2、5之间时,梁最容易发生破坏。
加载条件:预赛——空车(重9.88kg)行驶,桥面板由长度为30mm的若干铝板,用柔绳串接而成,重量为2.8kg。
Ansys分析目的:使用ansys分析软件对桥的应力分布进行分析,对结构进行改进与优化。
Ansys建模数据:
步骤:
定义单元类型:桐木材料选取单元类型:Beam 188 拉索材料选取单元类型为Link 10。
定义单元实常数:Link 10单元的实常数AREA定义为3.14*2.25/4。
其中Beam 188不需要定义实常数。
定义材料属性:材料属性如图。
定义梁截面类型:主梁:8*8,侧梁:5*5,桁架:3*3(全部为矩形),拉索:R=1.5(圆形)。
建模:建立节点模型,利用建模工具建立节点,再用lines—straight lines 连接节点形成线模型。
划分网格:利用Meshing—Mesh attributes—picked lines,根据不同单元属性,不同材料属性,不同截面属性选择线,划分网格。
再用Meshing命令中的line—set进行线单元数目划分,取为15。
定义load:对底座、边缘施加全部自由度约束,节点受力为98.8/4。
求解:solve命令。
查看结果:利用general postproc后处理查看结构变形云图,应力分布。
模型说明:建模过程中,对实际模型进行简化。
其中弹性模量和泊松比进行简化处理,数据从网络中获取。
桥面板由长度为30mm的若干铝板,用柔绳串接而成,重量为2.8kg。
此约束忽略不计。
当小车通过桥梁时,认为在如图位置变形最大,故受力分析时,将载荷加载到如图13、14、16、17节点处。
尤其是拉索模型。
由于拉索单元为Link,其只能受拉,不具有抗弯性能,故改用杆单元代替原模型。
建模时使用mm作单位,而泊松比要除以1000,受力要乘以1000,才能得到正确的结果。
模型
约束及受力图
分析结果如下:
变形图
应力图
在图中变形最大为 6.6998cm,变形量较大,和实际模型相同,说明模型的
结构稳定性不高,需要进行改进。
虽然最大应力为:15.575MPa,其小于主梁的最大许用应力,但为了进入决赛要对模型进行改进。
可在模型中添加加固桁架,但同时会增加质量,所以应去掉不必要的桁架或将侧梁或桁架的截面尺寸减小。