三相桥式全控整流电路系统
- 格式:doc
- 大小:371.15 KB
- 文档页数:19
三相桥式全控整流电路及工作原理
三相桥式全控整流电路是一种常用的电力电子变换电路,广泛应用于交流调速、直流传动、直流无刷电机等领域。
它具有输出电压可调、功率因数可控和双向传输功率等特点。
1. 电路结构
三相桥式全控整流电路由六个可控硅整流器()组成,三个正并联,另外三个反并联。
每个可控硅整流器的阳极与交流电源的一相相连,阴极与负载相连。
整流器的栅极连接到相应的脉冲发生电路,用于控制导通时间。
2. 工作原理
在每个周期内,三相交流电源的三相电压有两相电压大于另一相电压。
整流电路利用这一特性,使两相较高电压的可控硅整流器导通,从而将这两相电压的正半周经整流器输出到负载。
通过控制每个整流器的导通时间,可以调节输出电压的幅值和相位。
当某一相电压达到最大值时,该相的两个整流器将导通。
随着时间推移,其他两相电压将超过该相电压,相应的整流器也将导通。
如此循环,每个整流器在每个周期内均有一段导通时间。
通过调节每个整流器的导通时间,即控制脉冲发生电路对栅极施加脉冲的时间,可以控制输出电压的幅值。
同时,还可以改变脉冲施加的相位角,从而控制功率因数。
3. 特点
(1) 输出电压可连续调节
(2) 功率因数可控
(3) 双向传输功率
(4) 电路结构相对简单
三相桥式全控整流电路通过控制整流器的导通时间和相位,可以实现对输出电压和功率因数的精确控制,是一种非常重要和实用的电力电子变换电路。
1 原理及方案1.1原理三相桥式全控整流电路系统通过变压器与电网连接,经过变压器的耦合,晶闸管主电路得到一个合适的输入电压,使晶闸管在较大的功率因数下运行。
变流主电路和电网之间用变压器隔离,还可以抑制由变流器进入电网的谐波成分。
保护电路采用RC过电压抑制电路进行过电压保护,利用快速熔断器进行过电流保护。
采用锯齿波同步KJ004集成触发电路,利用一个同步变压器对触发电路定相,保证触发电路和主电路频率一致,触发晶闸管,使三相全控桥将交流整流成直流,带动直流电动机运转。
1.2方案设计整流电路是电力电子电路中出现最早的一种,它将交流电变为直流电,应用广泛。
当整流负载容量较大,或要求直流电压脉冲较小时,应采用三相整流电路,其交流测由三相电源供电。
三相可控整流电路中,最基本的是三相半波可控整流电路,应用最广泛的是三相桥式全控整流电路。
本设计要求整流电路带直流电机负载,希望获得的直流电压脉冲较小,所以用三相全波整流比较合理。
三相桥式全控和三相桥式半控是常见的三相桥式可控全波整流电路。
三相半控桥式整流电路适用于中等容量的整流装置或不要求可逆的电力拖动中,它采用共阴极的三相半波可控整流电路与共阳极接法的三相半波不可控整流电路串联而成,电路兼有可控与不可控两者的特性。
共阳极组的三个整流二极管总是在自然换流点换流,使电流换到阴极点为更低的一相中去。
该电路在使用中需加设续流二极管,以避免可能发生的失控现象,所以电路不具备逆变能力。
虽然三相半控电路相应触发电路较简单,但只能用于整流不能用于逆变,现在很少使用。
本设计选择使用三相桥式全控整流电路。
整流电路的输入部分是变压器,作用是降低或减少晶闸管变流装置对电网和其它用电设备的干扰,将整流电路与电网隔离,并将电网电压值转变为整流所需输入值。
整流部分是六个晶闸管,是由共阴极的三相半波可控整流电路与共阳极接法的三相半波可控整流电路串联而成。
为使整流电路能正常工作,除了要给晶闸管配设可靠的触发电路外,还要有保护电路,以防止各种原因产生的过电压和过电流影响或损坏晶闸管。
三相桥式全控整流电路实验结论一、电路结构与工作原理三相桥式全控整流电路由三相交流电源、三相全控桥、负载电阻以及触发脉冲源等部分组成。
其工作原理基于三相全控桥的工作原理,通过控制触发脉冲的相位来控制整流输出的电压大小和方向。
二、触发脉冲与控制方式本实验采用脉冲变压器触发方式,通过调节触发脉冲的相位来控制整流输出的电压大小和方向。
控制方式采用移相控制方式,通过调节控制电压的大小和极性来控制触发脉冲的相位。
三、输出电压与负载特性实验结果表明,随着控制电压的增大,整流输出电压增大,当控制电压达到一定值时,整流输出电压达到最大值。
当负载电阻增大时,整流输出电压减小,当负载电阻达到无穷大时,整流输出电压达到最小值。
四、功率因数与谐波分析实验结果表明,采用三相桥式全控整流电路可以有效地提高功率因数,减小谐波对电网的影响。
但是,当整流输出电压增大时,谐波电流也会相应增大,因此需要对谐波进行抑制。
五、电路参数设计与优化为了提高三相桥式全控整流电路的性能,需要对电路参数进行设计与优化。
实验结果表明,触发脉冲的频率和移相角是影响整流输出电压大小和稳定性的关键因素。
因此,在参数设计时需要重点考虑这些因素。
同时,为了减小谐波对电网的影响,需要选择合适的滤波器参数。
六、实验结果对比与分析通过对不同控制方式下的实验结果进行对比与分析,可以发现采用移相控制方式可以有效提高整流输出电压的稳定性和调节速度。
同时,采用脉冲变压器触发方式可以有效减小整流输出电压的脉动和噪声。
七、电路性能评估与改进建议根据实验结果,可以对三相桥式全控整流电路的性能进行评估。
本实验中,采用了以下指标进行评估:整流输出电压的大小和稳定性、功率因数、谐波含量以及调节速度等。
通过对这些指标进行分析,可以发现该电路具有以下优点:可以实现对交流电源的整流作用;可以提高功率因数;可以实现对整流输出电压的快速调节等。
但是也存在一些不足之处,例如触发脉冲的脉动和噪声较大等问题。
三相桥式全控整流电路
三相桥式全控整流电路是一种典型的多相变流器结构。
其概念是利用三个桥式变换器,并将三相电源转换成多脉冲的直流电压或电流。
三相桥式全控整流电路可以满足多种多种
应用场合的需求。
三相桥式全控整流电路具有输出电流均衡、无影响源特性和可靠性等优点。
结构简单,尺寸小,失压开关控制,可靠性高,功率非常低,因此可以有效减少处理器的使用,降低
成本。
控制电路精确,可以实现功率的精确控制,提高了净输出功率的效率。
电阻元件高
度可调,可以对输出电流进行良好的控制,从而获得更好的控制性能。
三相桥式全控整流电路结构简单,可以有效控制输出电流,并且可以满足输出频率和
脉宽调节等多种需求。
但它也有一定的局限性,如功率范围较小,无法处理较大的功率负载。
三相桥式全控整流电路是一种常用的多相变流器。
它结构简单,控制精度高,稳定性好,可以有效解决处理多种应用场景的需求,在工业自动化等领域有广泛的应用。
三相全控桥式整流电路一、引言随着工业技术的发展和电力电子技术的不断推广,三相全控桥式整流电路在各个行业中广泛应用。
三相全控桥式整流电路采用三相交流电源作为输入端,能够将交流电信号转换成满足不同负载需求的直流电信号。
本文将从以下几个方面详细介绍三相全控桥式整流电路的工作原理、主要构成和应用。
二、工作原理三相全控桥式整流电路是一种将交流电信号转换成直流信号的电路。
该电路采用三相变压器将三相交流电源通过变换,将input交流电进行相间差异为120度的降低或升高零电平的变换,接至整流桥三相管闸流控制器的输入端,然后将通过整流桥的三相管管子交错导通,实现交流电的全波整流。
三相全控桥式整流电路通过改变控制器的输出扭矩控制灵活性,从而控制整流桥输出直流电的电压和电流。
三、主要构成三相全控桥式整流电路主要由三相变压器、整流桥和控制器组成。
1. 三相变压器三相变压器的作用是将输入的三相交流电信号通过变换,降低或升高零电平,将降低或升高零电平后的输入信号接入整流桥电路中。
通常情况下,三相变压器分为多种类型,如输入和输出相等的三相变压器、桥式三相变压器、三角变压器等。
2. 整流桥整流桥是三相全控桥式整流电路中的重要部分。
整流桥需要至少4个按一定方式排列的二极管构成,在同一个相序的三个管相互导通的同时,三个相可以实现交替导通。
整流桥既能进行三相半波整流,也能进行三相全波整流。
3. 控制器在三相全控桥式整流电路中,控制器的主要作用是对整流桥输出直流信号进行控制。
通过控制器,可以实现相依输入电压的0-360°可控角度矩,从而实现输出电压的控制。
整流桥控制器通常采用高性能单片机或FPGA,以实现控制回环环节过程控制、溅液等自动保护功能等。
四、应用三相全控桥式整流电路主要应用于高功率负载的变频调速、电力变流器、电弧炉等领域。
在风力发电、太阳能发电等清洁能源领域,三相全控桥式整流电路也具有广泛的应用前景。
在消费电子产品如UPS、电流计、电子锁等领域,也可以采用三相全控桥式整流电路实现高品质的电源供应。
三相桥式全控整流电路原理
三相桥式全控整流电路是一种常见的电力电路,用于将交流电转换为直流电。
它由三相电源、桥式整流器和触发电路组成。
在这个电路中,三相电源提供三相交流电信号。
每个相位的电源通过对应的触发电路来控制桥式整流器中的开关管。
桥式整流器由四个二极管或四个可控硅组成,用于将交流电转换为直流电。
桥式整流器中的四个二极管或可控硅可以分为两组,每组包含两个,并组成两个反并联的三电平桥。
每个桥臂的两个二极管或可控硅是反并联的,一个被称为正半周期控制,一个被称为负半周期控制。
在每个半周期中,根据触发电路提供的触发信号,分别对两个桥臂的二极管或可控硅进行开通或关断操作。
这样,在每个半周期内,只有一个桥臂是开通的,而另一个桥臂是关断的。
这种控制方式使得整流器输出的电流为激励波(落在功率电网电压曲线之下)。
通过控制开通和关断时间,可以实现对输出电流的调节。
通过改变开通角和关断角,可以改变输出电流的平均值和有效值。
从而实现对输出功率的控制。
总之,三相桥式全控整流电路通过桥式整流器和触发电路的配合控制,将三相交流电转换为直流电,并能够通过调节开通和
关断时间来实现对输出电流的调节。
这种电路广泛应用于工业领域,如直流电机驱动、电力电子器件等。
三相桥式全控整流电路的工作原理三相桥式全控整流电路是一种常用的电能转换电路,广泛应用于交流电转直流电的场合。
它具有电控性好、能耗低、体积小等优点,在电力系统中的应用非常广泛。
下面将详细介绍三相桥式全控整流电路的工作原理。
三相桥式全控整流电路由六个可控硅器件组成,分为两个并联的三相半波可控整流器。
其中,每个三相半波可控整流器包含三个可控硅器件,它们按照星形连接方式连接在交流电源的三相线上。
可控硅器件是由二极管和双向可控开关组成的,可以对电流进行双向控制。
整个电路通过操纵可控硅器件的导通角来控制输出电压的大小和形状。
当交流电源开始供电时,根据交流电源的正负半周变化,可控硅器件会先导通一半波,然后断开一半波,实现半波整流。
对于每个可控硅器件来说,当其导通时,流经它的电流方向与电流的正方向一致,为正半周;当其断开时,流经它的电流方向与电流的正方向相反,为负半周。
通过控制可控硅器件的导通角,可以实现对输出电压的调节。
当可控硅器件导通角度增大时,导通时间增长,输出电压增加;当导通角度减少时,导通时间减小,输出电压减小。
通过改变导通角度来改变输出电压的大小和形状,以满足不同负载的需求。
在控制可控硅器件的导通角度时,需要采用触发电路来提供触发脉冲。
触发脉冲的宽度决定了可控硅器件导通的时间,从而控制输出电压的大小。
通常采用零点触发方式,即在每个交流周期的零点附近触发可控硅器件的导通。
三相桥式全控整流电路的输出电压是由六个可控硅器件的导通角度和触发脉冲的宽度共同决定的。
通过合理地控制这些参数,可以实现输出电压的调节。
此外,为了保证可控硅器件的正常工作,需要采用继电器或保险丝等保护措施,以防止过电流或过压的损坏。
总之,三相桥式全控整流电路是一种通过控制可控硅器件的导通角度来实现交流电转直流电的电路。
它通过改变导通角度来改变输出电压的大小和形状,具有电压调节范围广、精度高等优点,适用于各种交流电转直流电的应用场合。
三相桥式全控整流电路原理及电路图,三相桥式全控整流电路原理及电路图三相整流电路的作用:在电路中,当功率进一步增加或由于其他原因要求多相整流时,三相整流电路就被提了出来。
图所示就是三相半波整流电路原理图。
在这个电路中,三相中的每一相都单独形成了半波整流电路,其整流出的三个电压半波在时间上依次相差120度叠加,整流输出波形不过0点,并且在一个周期中有三个宽度为120度的整流半波。
因此它的滤波电容器的容量可以比单相半波整流和单相全波整流时的电容量都小。
三相整流电路的工作原理:先看时间段1:此时间段A相电位最高,B相电位最低,因此跨接在A相B相间的二极管D1、D4导电。
电流从A相流出,经D1,负载电阻,D4,回到B相,见图14-1-3中红色箭头指示的路径。
此段时间内其他四个二极管均承受反向电压而截止,因D4导通,B相电压最低,且加到D2、D6的阳极,故D2、D6截止;,因D1导通,A相电压最高,且加到D3、D5的阴极,故D3、D5截止。
其余各段情况如下:时间段2:此时间段A相电位最高,C相电位最低,因此跨接在A相C相间的二极管D1、D6导电。
时间段3:此时间段B相电位最高,C相电位最低,因此跨接在A相C相间的二极管D3、D6导电。
时间段4:此时间段B相电位最高,A相电位最低,因此跨接在B相A相间的二极管D3、D2导电。
时间段5:此时间段C相电位最高,A相电位最低,因此跨接在C相A相间的二极管D5、D2导电。
三相桥式电阻负载整流电路的输出电压波形见图时间段6:此时间段C相电位最高,B相电位最低,因此跨接在C相B相间的二极管D5、D5导电。
时间段7:此时间段又变成A相电位最高,B相电位最低,因此跨接在A相B相间的二极管D1、D4导电。
电路状态不断重复三相半波可控整流电路工作原理:1.电阻性负载三相半波可控整流电路接电阻性负载的接线图如图3所示。
整流变压器原边绕组一般接成三角形,使三次谐波电流能够流通,以保证变压器电势不发生畸变,从而减小谐波。
电力电子技术课程设计班级电气1101学号 111704131姓名徐余浩扬州大学水利与能源动力工程学院电气工程及其自动化二零一五年五月目录1、工作原理及设计方案 (3)2、主电路的设计及器件选择 (5)2.1 三相全控桥的工作原理 (5)2.2 参数计算 (7)3、触发电路设计 (10)3.1 集成触发电路 (10)3.2 KJ004的工作原理 (10)3.3 集成触发器电路图 (11)4、保护电路的设计 (13)4.1 晶闸管的保护电路 (13)4.2 交流侧保护电路 (14)4.3 直流侧阻容保护电路 (15)5、MATLAB 建模与仿真 (16)5.1 MATLAB建模 (16)5.2 MATLAB 仿真 (16)5.3 仿真结构分析 (17)课程设计体会 (18)参考文献 (19)1 工作原理及设计方案三相桥式全控整流电路系统通过变压器与电网连接,经过变压器的耦合,晶闸管主电路得到一个合适的输入电压,使晶闸管在较大的功率因数下运行。
变流主电路和电网之间用变压器隔离,还可以抑制由变流器进入电网的谐波成分。
保护电路采用RC 过电压抑制电路进行过电压保护,利用快速熔断器进行过电流保护。
采用锯齿波同步KJ004集成触发电路,利用一个同步变压器对触发电路定相,保证触发电路和主电路频率一致,触发晶闸管,使三相全控桥将交流整流成直流,带动直流电动机运转。
结构框图如图1-1所示。
整个设计主要分为主电路、触发电路、保护电路三个部分。
框图中没有表明保护电路。
当接通电源时,三相桥式全控整流电路主电路通电,同时通过同步电路连接的集成触发电路也通电工作,形成触发脉冲,使主电路中晶闸管触发导通工作,经过整流后的直流电通给直流电动机,使之工作。
图1-1 三相桥式全控整流电路结构图 电源 三相桥式全控整流电路 直流电动机同步电路 集成触发器 触发信号 触发模块2 主电路的设计及器件选择实验参数设定负载为220V、305A的直流电机,采用三相整流电路,交流测由三相电源供电,设计要求选用三相桥式全控整流电路供电,主电路采用三相全控桥。
2.1 三相全控桥的工作原理如图2-1所示,为三相桥式全控带阻感负载,根据要求要考虑电动机的电枢电感与电枢电阻,故为阻感负载。
习惯将其中阴极连接在一起的3个晶闸管称为共阴极组;阳极连接在一起的3个晶闸管称为共阳极组。
共阴极组中与a、b、c 三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。
晶闸管的导通顺序为 VT1-VT2-VT3-VT4-VT5-VT6。
变压器为Y型接法。
变压器二次侧接成星形得到零线,而一次侧接成三角形避免3次谐波流入电网图2-1 三相桥式全控整流电路带电动机(阻感)负载原理图2.1.1 三相全控桥的工作特点⑴2个晶闸管同时通形成供电回路,其中共阴极组和共阳极组各1个,且不能为同1相器件。
⑵对触发脉冲的要求:按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差60 。
共阴极组VT1、VT3、VT5的脉冲依次差120 。
共阳极组VT4、VT6、VT2也依次差120 。
同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180。
⑶ud一周期脉动6次,每次脉动的波形都一样, 故该电路为6脉波整流电路。
⑷晶闸管承受的电压波形与三相半波时相同,晶闸管承受最大正、反向电压的关系也相同。
2.1.2 阻感负载时的波形分析三相桥式全控整流电路大多用于向阻感负载和反电动势阻感负载供电(即用于直流电机传动),下面主要分析阻感负载时的情况,因为带反电动势阻感负载的情况,与带阻感负载的情况基本相同。
当α≤60度时,ud波形连续,电路的工作情况与带电阻负载时十分相似,各晶闸管的通断情况、输出整流电压ud波形、晶闸管承受的电压波形等都一样。
区别在于负载不同时,同样的整流输出电压加到负载上,得到的负载电流 id 波形不同,电阻负载时 ud 波形与 id 的波形形状一样。
而阻感负载时,由于电感的作用,使得负载电流波形变得平直,当电感足够大的时候,负载电流的波形可近似为一条水平线。
图2-2和图2-3分别给出了三相桥式全控整流电路带阻感负载α=0度和α=30度的波形。
图2-2中除给出ud波形和id波形外,还给出了晶闸管VT1电流 iVT1 的波形,可与带电阻负载时的情况进行比较。
由波形图可见,在晶闸管VT1导通段,iVT1波形由负载电流 id 波形决定,和ud波形不同。
图2-3中除给出ud波形和 id 波形外,还给出了变压器二次侧a相电流 ia 的波形,在此不做具体分析。
图2-2 触发角为0度时的波形图图2-3 触发角为30时的波形图当α>60度时,阻感负载时的工作情况与电阻负载时不同,电阻负载时ud 波形不会出现负的部分,而阻感负载时,由于电感L的作用,ud波形会出现负的部分。
图2-4给出了α=90度时的波形。
若电感L值足够大,ud中正负面积将基本相等,ud平均值近似为零。
这说明,带阻感负载时,三相桥式全控整流电路的α角移相范围为90度。
图2-4 触发角为90时的波形图2.2 参数计算2.2.1 整流变压器的选择由系统要求可知,整流变压器一、二次线电压分别为380V 和220V ,由变压器为Y ∆-接法可知变压器二次侧相电压为:V VU 12732202≈=变比为:0.312738021≈==U U K变压器一次和二次侧的相电流计算公式为:K I KI dI 11=d I I K I 22=而在三相桥式全控中816.03221===I I K KA I d 305=所以变压器的容量分别如下:变压器次级容量为:2213I U S =变压器初级容量为:1123I U S =变压器容量为:221S S S += 即: ()kW S 46989.920.3816.03053803305816.01273≈⨯⨯⨯+⨯⨯⨯= 变压器参数归纳如下:初级绕组三角形接法V U 3801=,A I 96.821=;次级绕组星形接法,V U 1272=,A I 88.2482=;容量选择为9.46989kW 。
2.2.2 晶闸管的选择⑴ 晶闸管的额定电压由三相全控桥式整流电路的波形(图2-4)分析知,晶闸管最大正、反向电压峰值均为变压器二次线电压峰值26FM RM U U U ==故桥臂的工作电压幅值为:V U m 1.3111276≈⨯=考虑裕量,则额定电压为:()()()V U U m N 3.933~2.6221.3113~23~2=⨯==⑵ 晶闸管的额定电流晶闸管电流的有效值为:A I I d VT 4.34636003max≈==考虑裕量,故晶闸管的额定电流为: ()()()A I I VT AV VT 30.441~97.33057.14.3462~5.157.12~5.1)(=== 2.2.3 平波电抗器的选择为了限制输出电流脉动和保证最小负载电流时电流连续,整流器电路中常要串联平波电抗器。
对于三相桥式全控整流电路带电动机负载系统,有:min2693.0d I U L = 其中, (单位为mH )中包括整流变压器的漏电感、电枢电感和平波电抗器的电感。
由题目要求:当负载电流降至20A 时电流仍连续。
所以min d I 取20A 。
所以有:m H U L 40.420127693.020693.02=⨯==3 触发电路设计控制晶闸管的导通时间需要触发脉冲,常用的触发电路有单结晶体管触发电路,设计利用KJ004构成的集成触发器实现产生同步信号为锯齿波的触发电路。
3.1 集成触发电路本系统中选择模拟集成触发电路KJ004,KJ004可控硅移相触发电路适用于单相、三相全控桥式供电装置中,作可控硅的双路脉冲移相触发。
KJ004器件输出两路相差180度的移相脉冲,可以方便地构成全控桥式触发器线路。
KJ004电路具有输出负载能力大、移相性能好、正负半周脉冲相位均衡性好、移相范围宽、 对同步电压要求低,有脉冲列调制输出端等功能与特点。
原理图如下:图3-1 KJ004的电路原理图3.2 KJ004的工作原理如图3-1 KJ004的电路原理图所示,点划框内为KJ004的集成电路部分,它与分立元件的同步信号为锯齿波的触发电路相似。
V1~V4等组成同步环节,同步电压uS 经限流电阻R20加到V1、V2基极。
在uS 的正半周,V1导通,电流途径为(+15V -R3-VD1-V1-地);在uS 负半周,V2、V3导通,电流途径为(+15V-R3-VD2-V3-R5-R21―(―15V))。
因此,在正、负半周期间。
V4基本上处于截止状态。
只有在同步电压|uS|<0.7V时,V1~V3截止,V4从电源十15V经R3、R4取得基极电流才能导通。
电容C1接在V5的基极和集电极之间,组成电容负反馈的锯齿波发生器。
在V4导通时,C1经V4、VD3迅速放电。
当V4截止时,电流经(+15V-R6-C1-R22-RP1-(-15V))对C1充电,形成线性增长的锯齿波,锯齿波的斜率取决于流过R22、RP1的充电电流和电容C1的大小。
根据V4导通的情况可知,在同步电压正、负半周均有相同的锯齿波产生,并且两者有固定的相位关系。
V6及外接元件组成移相环节。
锯齿波电压uC5、偏移电压Ub、移相控制电压UC分别经R24、R23、R26在V6基极上叠加。
当ube6>+0.7V时,V6导通。
设uC5、Ub为定值,改变UC,则改变了V6导通的时刻,从而调节脉冲的相位。
V7等组成了脉冲形成环节。
V7经电阻R25获得基极电流而导通,电容C2由电源+15V经电阻R7、VD5、V7基射结充电。
当V6由截止转为导通时,C2所充电压通过V6成为V7基极反向偏压,使V7截止。
此后C2经(+15V-R25-V6-地)放电并反向充电,当其充电电压uc2≥+1.4V时,V7又恢复导通。
这样,在V7集电极就得到固定宽度的移相脉冲,其宽度由充电时间常数R25和C2决定。
V8、V12为脉冲分选环节。
在同步电压一个周期内,V7集电极输出两个相位差为180°的脉冲。
脉冲分选通过同步电压的正负半周进行。
如在us正半周V1导通,V8截止,V12导通,V12把来自V7的正脉冲箝位在零电位。
同时,V7正脉冲又通过二极管VD7,经V9~V11放大后输出脉冲。
在同步电压负半周,情况刚好相反,V8导通,V12截止,V7正脉冲经V13~V15放大后输出负相脉冲。
说明:1) KJ004中稳压管VS6~VS9可提高V8、V9、V12、V13的门限电压,从而提高了电路的抗干扰能力。
二极管VD1、VD2、VD6~VD8为隔离二极管。
2) 采用KJ004元件组装的六脉冲触发电路,二极管VD1~VD12组成六个或门形成六路脉冲,并由三极管V1~V6进行脉冲功率放大。