流动测试技术概述
- 格式:pptx
- 大小:4.46 MB
- 文档页数:22
1104丨利用流动性缺口来做流动性压力测试流动性压力测试是一种以定量分析为主的流动性风险分析方法,通过测算商业银行在遇到假定的小概率事件等极端不利情况下可能发生的损失,从而对商业银行流动性管理体系的脆弱性做出评估和判断,进而采取必要措施。
流动性压力测试需要检验银行承受流动性风险的能力、揭示流动性风险状况、检查流动性风险管理方面存在的不足并为加强流动性管理提供依据。
1.流动性压力测试概述国际清算银行(BIS)把压力测试定义为压力测试情景或敏感性压力测试,进而把压力测试情景定义为变量测试,既能以过去的重大事件进行历史情景测试,(比如2013年6月金融市场流动性风波),也能以假设情景为基础开展。
情景分析有助于银行深刻理解并预测在多种因素共同作用下,其整体性流动性风险可能出现的不同状况。
银行可以通过面临的市场条件分为紧张、恶化、极差三种情形,采取轻度、中度和重度流动性压力测试,并结合现有的基准情景,得出压力测试结果并对结果展开分析。
分析时尽量考虑每种情景下可能出现的有利或不利的重大流动性变化。
深入分析最坏情景(即面临流动性危机)的意义最大,通常分为两种情况:一是银行自身问题。
银行绝大多数流动性危机根源在于自身管理能力和专业技术水平存在致命的薄弱环节。
比如没有好的IT系统支持报表取数,比如高管的重视领域局限于业务发展和信用风险。
当过度的资产负债期限错配加上市场流动性紧张,为了平头寸,极容易导致以不合理的价格去购买资金,实际已经是流动性风险的最好体现。
二是市场危机。
即当市场不能以低成本提供价格信号,实现资源的顺利交换和风险转移等市场功能是,市场流动性突然蒸发,交易过程的中断更加剧了价格的波动,就好比2015年股灾,找不到交易对手,每支股票被打到跌停,整个市场丧失了流动性,交易无法达成,学界也把其称为“流动性黑洞”。
假如银行间债券市场发生危机2.流动性风险压力测试管理2008 年席卷全球的经济危机历时 4 年仍存余威,监管全球银行业资本水平的巴塞尔银行监管委员会(Basel Committee for Banking Supervision)于 2009 年底首次提出流动性监管概念及测量方法,并在实践中不断完善。
流动测速原理
流动测速原理是指通过测量流体在管道中的流速来确定流体速度的一种方法。
常用的流动测速原理有多种,下面介绍其中的几种原理。
1. 管道流量计:利用管道内的流体流动产生的压力差来测量流速。
根据伯努利方程,流体在运动过程中,速度越大,其压力越小。
通过安装在管道上的不同压力传感器,可以测量出管道内的压力差,并进而计算出流体的速度。
2. 质量流量计:通过测量单位时间内通过管道截面的流体质量来确定流速。
常用的质量流量计有热物理和热敏原理。
例如,热敏式质量流量计利用热敏电阻来测量流体通过管道时所带走的热量,从而得出流速。
3. 旋涡流量计:利用流体通过管道时形成的旋涡来测量流速。
当流体通过管道时,会在某个位置形成一个或多个旋涡。
旋涡流量计通过检测旋涡的频率和幅度来计算流速。
以上是一些常用的流动测速原理。
它们各有优缺点,适用于不同场合和要求。
例如,在液体流量测量中,可以选择管道流量计或质量流量计;在气体流量测量中,旋涡流量计常被使用。
具体选择何种原理,需要结合实际情况进行考虑。
声学多普勒流量测验规范 2021声学多普勒流量测验(DopplerFlowTesting)一种用于确定和检测流体流动状态的特殊技术。
它可以用于探测流体的流动速度、密度和流量,并为管道的充放气操作提供可靠数据。
在2021年,专业机构出台了声学多普勒流量测验规范。
在声学多普勒流量测验中,标准工艺是利用多普勒效应来检测流体流动的速度、密度和流量。
具体而言,它要求将套管插入流体流管,并在其中安装音叉。
然后向流体中发射声波,并记录声波衍射出来的频率变化,即可以推算出流体流动的速度和量。
为了确保测量结果的准确性,2021年成立了声学多普勒流量测验规范,主要包括以下几点:1、设备的选择:测量设备必须经过严格的认证和测试,确保设备精度和可靠性。
2、流量测量方法:检测时,应确保流体流动是恒定的,同时也要考虑流量测量点的位置,注意减少测量误差。
3、数据处理:检测完毕后,流量测量的结果应及时处理,针对不符合要求的结果也应及时进行调整和重新计算。
4、安全措施:测量过程中要求实行有效的安全管理,采取有效的安全措施,防止意外的发生。
2021年新版的声学多普勒流量测验规范,既保护了测试设备,又能提供准确可靠的测量数据。
它为管道系统提供了更完善、更科学的检测性能,为企业管理流体运动提供了重要的帮助。
声学多普勒流量测验规范,不仅体现了专业机构对流体监测的重视,也更有利于提高流量测量的精度,为企业提供更完善的服务。
它的出现,不仅能提高流体管道系统的效率,也能有效防止安全事故的发生,使企业及其他使用单位安全可靠地使用管道系统。
综上所述,声学多普勒流量测验规范2021版在检测流体流动状态方面起到了巨大作用。
它不仅为企业提供了可靠的数据参考,还为正确操作流体管道系统提供了可靠的技术支撑。
随着关注度的提高,声学多普勒流量测验规范将被渐渐推广到更多的领域,对全球流量测量技术的发展将起到更大的作用。
物理实验技术的流体流动测试方法与技巧分享引言:物理实验技术在科研和工程领域中起着不可忽视的作用。
流体力学是物理学的重要分支,涵盖了广泛的研究领域,如流动的测量和分析。
本文将讨论物理实验技术中流体流动测试的方法和技巧,并分享一些经验。
一、流体流动的基本理论流体流动是研究流体在时间和空间上变化的过程。
了解流体流动的基本理论对于设计和实施流体流动测试至关重要。
分析流体流动可以采用多种方法,如雷诺数、涡量分析和动量方程等。
研究者应根据具体实验需求和流体性质选择适当的理论方法。
二、流体流动测试的设备和工具1. 流速测量装置:流速是流体流动的关键参数之一,因此选择合适的流速测量设备至关重要。
常用的测量设备包括流速计和测速仪表。
其中,热膜测速仪和激光多普勒测速仪是最常用的测速仪表。
2. 压强测量设备:在流体流动中,压强是另一个重要的参数,可以帮助研究者了解流体流动的压力变化。
压强测量设备应根据流体性质和实验条件的不同选择合适的压力传感器。
3. 流场可视化装置:实验过程中的流场可视化是帮助研究者观察和分析流体流动的重要手段。
常用的流场可视化方法包括颜色标记法、激光干涉和高速摄影等。
选择适当的流场可视化方法可以帮助研究者更好地理解流体流动的特性。
三、流体流动测试的技巧与挑战1. 实验环境控制:流体流动实验需要控制实验环境的温度、湿度和压力等参数,以确保实验结果的准确性和可重复性。
研究者应根据实验要求选择适当的实验室设备和环境控制方法。
2. 液体参数调节:对于液体流动测试,研究者需要调节液体的粘度、密度和表面张力等参数。
通过调节液体参数,研究者可以模拟真实的流体流动环境,从而获得更准确的实验结果。
3. 流体流动模型设计:为了更好地研究流体流动,研究者可以设计合适的流体流动模型。
流体流动模型的设计应考虑到流体性质、流动速度和流动方向等因素。
通过合理设计流体流动模型,研究者可以更好地控制和观察流体流动的各个参数。
4. 数据处理与分析:对于流体流动测试结果的处理和分析是重要的一步,可以通过图像处理、统计学方法和计算模拟等手段进行。
连续流动分析仪原理
连续流动分析仪原理是基于连续流动分析技术,通过一系列化学反应和光学测量来分析样品中的某种化学物质。
其基本原理如下:
1. 自动进样:样品通过自动进样系统被引入连续流动分析仪中。
仪器中通常配备了一种适合分析的进样系统,如注射器或自动进样器。
2. 连续流动:样品进入连续流动分析仪后,会与一种或多种试剂连续混合。
这些试剂可以进行一系列与待分析物相关的化学反应。
连续流动的设计确保了分析过程的快速和高效。
3. 化学反应:在连续流动分析仪中,样品与试剂发生化学反应。
这些反应可以是酸碱滴定、络合反应、氧化还原反应、荧光染料标记等,具体反应取决于待分析物的特性。
4. 光学测量:化学反应完成后,样品进入光学系统。
光学系统中通常包含光源、光栅、光电二极管等光学元件。
这些元件可以通过吸光度、荧光、发光等方式对样品进行测量。
5. 数据处理:通过光学测量得到的数据,可以使用仪器内置的计算机或连接的外部计算机进行数据处理和分析。
仪器通常具有预设好的分析方法和所需参数,可以进行标准曲线法、峰面积法等分析方法,计算出待分析物在样品中的浓度。
连续流动分析仪原理的关键在于连续流动和化学反应的有机结
合,通过精确的化学反应和灵敏的光学测量,能够进行快速、准确的分析。
与其他分析方法相比,连续流动分析仪具有分析速度快、自动化程度高、试剂耗量少等优点,被广泛应用于环境监测、生化分析、药物分析等领域。
流动测速原理
流动测速原理是一种通过测量流体流动速度来确定流速的方法。
它是基于质量守恒原理和能量守恒原理,利用流体的动力学性质来进行测量。
具体原理如下:
1. 测量装置通常包括一个装置或管道,其中流体流动。
在这个装置的某个位置(通常是管道的特定截面或装置的入口或出口处),放置一个传感器。
2. 传感器可以采用不同的工作原理,如压力传感器、旋转传感器、热敏传感器等。
传感器的工作原理决定了它测量流速的方式。
3. 传感器测量到的参数与流体流速之间存在一个确定的关系。
这个关系可以通过理论分析或者实验测定得到。
4. 通过对传感器测量到的参数进行处理和分析,可以计算出流体的流速。
需要注意的是,不同的流速测量方法具有不同的原理和测量精度,因此在具体应用中需要根据实际情况选择合适的方法。
同时,测量时还需要考虑流体的性质、流动方式、压力、温度等因素的影响,并进行相应的修正和校正,以提高测量的准确性和可靠性。
西安交通大学科技成果——大型透平压缩机整机及部件气动性能与流动测试技术项目简介透平压缩机,主要包括离心及轴流式压缩机,广泛应用于航空发动机、燃气轮机等重大关键装备中,以及能源、石化、冶金、制冷及空分等重要行业中,对国民经济的发展起着举足轻重的作用。
透平压缩机由一系列部件按照一定规律组合而成,主要有进口集流器、进口导叶、一组基本级及出口蜗室等部件。
基本级又由一组相邻的动叶和静叶排构成,或者由叶轮、扩压器、弯道和回流器等部件构成。
为研发高性能的透平压缩机产品,传统的压缩机气动测试分析技术局限于整机气动性能、或单个部件性能、或单个部件流场的测试与分析,不能全面切实地反映压缩机性能与内部流动之间的关系,对压缩机研发形成阻碍。
随着对高性能压缩机指标的不断提高,在试验研究上,不仅需要测试整机性能,更重要地还需要测试研究压缩机各部件之间的性能和流场匹配情况。
这样才可能较全面系统地掌握压缩机内流情况,为理解其非定常流动机理,分析和判断影响产品性能的主因,为改进定位提供准确目标,使产品研发做到有的放矢,提高高性能压缩机研发的效率,节省投资成本。
本项目通过创新性设计,在轴流及离心压缩机各部件之间布置由计算机控制的微小型探针运动机构,将探针测试系统与压缩机部件结构有机地融合为一体,实现对部件各关键位置截面流动参数分布的准确测试。
本项目提供有完整配套的测试数据分析技术,能对透平压缩机整机和部件性能进行综合分析,全面反映压缩机部件及整机性能与内部流场特性之间的关系,是服务于新一代高性能透平压缩机产品研发的重要技术。
其中部分技术2016年获得陕西高等学校科学技术奖二等奖,2017年获中国通用机械工业协会科技创新突出贡献奖。
产品性能优势在目前透平压缩机气动计算与分析软件发展迅速、种类繁多的情况下,本项目提出一种全面测试透平压缩机整机及部件气动性能,以及其内部流动参数的试验技术,是对该领域研究技术手段很有价值的探索与发展。
项目通过试验手段获得压缩机内部流动参量信息,测试精度高,测试数据的空间和时间分辨率高,测试过程实现了高度自动化,达到目前最先进水平。
制药工程中固体粉末流动性测试与数据分析方法制药工程中,固体粉末的流动性是一个重要的性质,对于生产工艺的设计和产品质量的控制具有重要意义。
固体粉末的流动性测试与数据分析是评估粉末流动性的标准化方法,能够为工程师提供需要的信息以准确分析并优化制药工艺的参数。
固体粉末的流动性是指粉末在一定条件下的流动性能。
粉末在制药过程中可能会遇到不同的流动条件,如斜面流动、漏斗流动、倾倒流动等,因此准确测量和分析固体粉末的流动性非常重要。
一种常用的固体粉末流动性测试方法是哈雷斯定指数法,它可以通过测量固体粉末在某个试验设备中的流动时间与参考物质的流动时间进行比较来评估粉末的流动性能。
该方法简便易行,可以快速获得流动性的定量数据。
然而,哈雷斯定指数法有一定的局限性,因为它只能提供单一的流动性指标,并不能全面评估粉末流动性的各个方面。
为了更全面地评估固体粉末的流动性,研究人员开发了一系列基于流动性测试的数据分析方法。
其中一个常用的方法是流变学方法,通过测量粉末在剪切力作用下的变形行为来描述其流动性。
流变学方法可以提供流变学参数,如流变指数、剪切应力和动态黏度,这些参数可以更详细地描述粉末的流动性和变形特性。
然而,流变学方法需要复杂的仪器设备和较长的测量时间,不适用于一些实际生产环境中的快速分析。
除了流变学方法,还有一些数据分析方法可以进一步评估固体粉末的流动性。
例如,可以使用统计学方法,通过测量多个样品并统计其流动性指标的变异性来评估粉末的均匀性和一致性。
另一种方法是使用图像处理技术,通过分析粉末颗粒的形状、大小和分布来评估其流动性。
这些数据分析方法可以为制药工程师提供更全面的流动性信息,帮助他们更好地理解粉末的流动性及其影响因素。
在固体粉末流动性测试和数据分析方面,还有一些注意事项需要特别关注。
首先,测试条件应该与实际生产环境尽可能接近,以保证数据的准确性和可靠性。
其次,应选择合适的样品制备方法和测试设备,以避免因样品不均匀或测试装置不适用而导致的误差。
流式细胞仪分析技术及应用流式细胞术(FCM)是以流式细胞仪为检测手段的一项能快速、精确的对单个细胞理化特性进行多参数定量分析和分选的新技术。
流式细胞仪的发展综合了激光技术、计算机技术、显微荧光光度测定技术、流体喷射技术、分子生物学和免疫学等多门学科的知识。
概述流式细胞仪由液流系统、光学与信号转换测试系统和信号处理及放大的计算机系统三大基本结构组成,可对细胞悬液中的单个细胞或特定细胞或其超微结构进行多参数快速分析。
一、工作原理(了解)基本组成结构1.液流系统由样本和鞘液组成。
待测细胞被制备成单个细胞的悬液,经荧光染料标记的单克隆抗体染色后置入样品管中,在清洁气体压力下进入流动室形成样本流;鞘液是辅助样本流被正常检测的基质液,其主要的作用是包裹在样本流的周围,使其保持处于喷嘴中心位置以保证检测的精确性,同时又防止样本流中细胞靠近喷孔壁而堵塞喷孔。
2.光学系统由激光光源、分光镜、光束成形器、透镜组和光电倍增管组成。
(1)激光光源:现代流式细胞仪采用的多为气冷式氢离子激光器,常用激光束波长为488nm,15mW。
(2)分光镜:作用是反射较长波长的光,通过较短波长的光。
(3)光束成形器:由两个十字交叉放置的圆柱形透镜组成。
(4)透镜组:有3个透镜,作用是将激光和荧光变成平行光,同时除去离散的室内光。
(5)滤片:长通滤片,允许长于设定波长的光通过;短通滤片,允许短于设定波长的光通过;带通滤片,允许一定带宽的波长通过,其他波长的光不能通过。
(6)光电倍增管(PMT):主要作用是检测散射光和荧光,同时将光学信号转换成电脉冲(数字数据)信号。
3.数据处理系统主要由计算机及其软件组成,进行实验数据的分析、存储、显示,是流式细胞仪组成部件中的重要环节。
二、散射光的测定散射光信号的产生是细胞在液柱中与激光束相交时向周围360°立体角方向散射的光线信号,散射光的强弱与细胞的大小、形状、光学同性、胞内颗粒折射有关,与接收散射光的方向也有关。