人教版七年级数学上册导学案 用合并同类项法解方程
- 格式:pptx
- 大小:21.01 KB
- 文档页数:3
3.2.1 解一元一次方程—合并同类项【教学目标】1.会根据实际问题找相等关系列一元一次方程,会利用合并同类项解一元一次方程。
2.体会方程中的化归思想,会用合并同类项解决“ax+bx=c”型方程,进一步认识如何用方程解决实际问题。
3.通过对实际问题的分析,体会一元一次方程作为实际问题的数学模型的作用。
【教学重、难点】会列一元一次方程解决实际问题,并会合并同类项解一元一次方程。
【教学准备】课本、练习本、练习册【教学过程】一、忆旧识新再设疑——新课导入1.复习回顾(1)同类项:所含字母____,并且_____的指数也分别相同的项叫____。
(2)合并同类项:合并同类项时,只把_____相加减,字母与字母的指数_____。
2.创设情境,提出问题约公元820年,中亚细亚数学家阿尔—花拉子米写了一本代数书,重点论述怎样解方程。
这本书的拉丁文译本取名为《对消与原》。
“对消”与“还原”是什么意思呢?【设计意图】学生通过复习旧知识,进一步巩固了同类项的相关概念,为准备本课的学习做好铺垫。
二、曲径通幽细探寻——问题探究某校近三年共购买计算机140台,去年的购买量是前年的2倍,今年的购买量又是去年的2倍,前年这个学校购买了多少台计算机? 活动1:推理验证问题1:可以怎样设未知数?【学生活动】独立思考,同桌交流归纳。
分析:设前年购买计算机x台。
则去年购买计算机2x台,今年购买计算机4x台。
问题2:题目中的等量关系是什么?【学生活动】独立思考,小组交流归纳。
前年购买量+去年购买量+今年购买量=140台问题3:如何根据等量关系列方程?由题意得,x+2x+4x=140活动2:集思广益,寻找解一元一次方程的办法问题1:怎样解这个方程?如何将这个方程转化为x=a的形式?合并同类项,得7x=140系数化为1,得x=20答:所以前年这个学校购买了20台计算机。
思考:以上解方程中的“合并”起了什么作用?它把含未知数的项合并为一项,从而向x=a的形式迈进了一步,起到了化简的作用。
3.2解一元一次方程(一)——合并同类项(第1课时)一、内容和内容解析(一)内容一元一次方程的合并同类项解法,用方程模型解决实际问题.(二)内容解析本章的核心内容是“解方程”和“列方程”.方程的解法是初中数学的核心内容,合并同类项是解方程的基本步骤之一.“列方程”在所有方程类问题中占有重要的地位,贯穿于全章始终.从实际背景中建立一元一次方程模型,结合这些模型讨论方程的解法,这样可以自然地反映所讨论的内容是从实际需要中产生.“解方程”就是将复杂的方程向x=a的形式转化,其中化归思想起了指导作用.化归的思想在以后二元一次方程组.一元一次不等式.分式方程.一元二次方程的解法中都有所体现.基于以上分析,确定本节课的教学重点:确定实际问题中的相等关系,建立形如ax+bx=c+d的方程,利用合并同类项解一元一次方程.二、目标和目标解析(一)目标(1)理解合并同类项,会解形如ax+bx=c+d的方程,体会解方程中的化归思想.(2)能够从实际问题中列出一元一次方程,进一步体会方程的作用及应用价值.(二)目标解析(1)达成目标(1)的标志是:知道合并同类项的必要性;给定一个方程,能够准确的进行合并同类项解方程.知道合并同类项的作用可以简化方程,使方程向x=a的形式转化,在此过程中体会化归思想.(2)达成目标(2)的标志是:能够根据问题建立形如ax+bx=c的方程,观察与分析方程的特征,进而能够讨论出通过合并同类项解这类方程;在“列方程”“解方程”的过程中,能够体会方程思想的应用价值.三、学情分析学生已经接触并掌握了合并同类项法则,进一步系统学习解一元一次方程的有关知识。
故本节课只是合并同类项法则在一元一次方程中的延伸。
再者,七年级的学生年龄和认知水平还较低,学生爱表现.有较强的好胜心理等特征,因此,在教学过程中结合学生的这些特征是上好这节课的关键所在。
四、教学手段新课标提倡教学中要重视现代教育技术.要引导学生独立思考.自主探索与合作交流,让学生掌握知识的发生发展过程,主动去获得新的知识,学会获取知识的方法,因而在教学中创设情境让学生乐意并全身心投入到现实的.探索性的数学活动中去.所以本节课充分利用多媒体课件等教学手段创设教学情境,引导学生观察.探索.发现.归纳来激发学生学习兴趣.激活学生思维,以利于突破教学重点和难点,提高课堂教学效益.五、学法指导自主探究法:主动观察→分析→思考→比较→探索→归纳→例题探索→练习挑战→巩固提高→总结.六、目标要求,教学重难点(一)教学目标:1.知识与技能(1)会找相等关系,列一元一次方程;(2)会用合并同类项解ax+bx=c+d型一元一次方程.2.数学思考(1)学习分析问题,找到相等关系,并通过列方程解决问题的方法;(2)通过学习合并同类项解一元一次方程,体会到式子变形的转化作用.3.解决问题体会解方程中的化归思想,会合并同类项解ax+bx=c+d 型方程,进一步认识如何用方程解决实际问题.4.情感态度通过学习“合并同类项”,体会古老的代数中的“对消”和“还原”中“对消”的思想,激发数学学习的热情. 感受数学文化.(二)教学重点:1.找相等关系,列一元一次方程;2.用合并同类项解一元一次方程. (三)教学难点:分析、理解题意,找相等关系列方程,正确地合并同类项,解一元一次方程. 七、教学过程设计 (一)创设情境,提出问题(用课件出示背景资料) 欣赏小诗太阳下山晚霞红,我把鸭子赶回笼; 一半在外闹哄哄,一半的一半进笼中;剩下十五围着我,共有多少请算清.通过这节课的学习讨论,相信同学们一定能回答这个问题. (二)回顾旧知,打下伏笔温故知新:首先复习合并同类项法则和等式 性质,然后秀一秀(见练习一题.二题),通过做题的方式,使学生回顾前面学过的知识,给 本节课的学习,做好铺垫作用.(三)介绍数学史,创设情景约公元825年,中亚细亚数学家 阿尔—花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁译本为《对消与还原》.“对消”与“还原”是什么意思呢? (四)提出问题,建立模型出示教科书86页问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买的数量又是去年的2倍,前年这个学校购买了多少台计算机?引导学生思考.交流:独立思考用什么知识解决该问题?先独立思考,再合作交流如何列方程?师生讨论分析:1.设未知数:前年购买计算机x 台2.列代数式:去年购买计算机2x 台, 今年购买计算机4x 台3.分析题意找出等量关系:前年购买量+去年购买量+今年购买量=140台 4.根据等量关系列方程:x+2x+4x=140教师设问:还有其他列法吗?通过探究得出结论: 列法二 列法三教师再设问:如何解上面的方程?如何将方程转化为x=a 的形式?(五)合作探究,归纳方法如何将此方程转化为x =a (a 为常数)的形式?在学生说出“合并同类项”后,教师板演解方程过程:及时归纳得出结论.x+2x+4x=1407x=140X=20活动目的:初步渗透化归思想,采用框图表示解方程,使解法中各步骤先后顺序较清晰,渗透算法程序化的思想.合并同类项系数化为11529x x ()-=32722x x()+=330.510xx ()-+=474.52.535x x ()-=-(六)例题规范,巩固新知出示课本87页例1采用学生叙述,教师板书的师生合作方式完成.(七)基础训练,学以致用 解下列方程:学生练习:学生练习,教师巡视,指导,师生共同讲评,学生改正错误,展台展示错误原因.学生练习:用方程解释小诗解决导入新课时的小诗,起到前后呼应的作用,再次引出历史人物阿尔—花拉子米的“对消”即本节课所学的合并同类项,使学生进一步了解数学的历史渊源. (八)达标检测(限时7分钟)1.下列各组中,两项不能合并同类项的是( )A.3b+(-b)B.-6y+3xC.-a+aD.-20-23 2.方程-10x-6x=-7+15合并同类项得 ,系数活动目的:暴露学生的思维过程,强化合并同类项的作用及解方程的方法.活动目的:提高课堂效率,考查是否达标,及时巩固提高.及时矫正错误.化1得 3.解下列方程:(1) 2x-8x=-11-19 (2) x- x=-7-6 4. 某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元.前年的产值是多少?学生独立完成,然后交换批阅,教师点评. (九)课堂小结,知识梳理学生思考,分组讨论,师生共同讲评. 分享你我的收获,这节课你学会了什么? (十)作业课本第91页 习题3.2第1、5、6题 八、板书设计3.2一元一次方程的解法(一)——合并同类项 (第1课时)问题1:活动目的:训练学生的口头表达能力,养成及时归纳总结的良好学习习惯.例1解方程 练习.达标检测练 习一. 合并同类项(1)5x-7x = (2)-3x-5x = (3)9x+6x-11x= (4)-9x+6x-11x= 二.解方程(1)3x = 2 (2)-2x = -3x= x=(3)-3x = 6 (4) - x =x= x=三.解方程1529x x ()-= 32722x x()+=330.510xx ()-+= 474.52.535x x ()-=-四.太阳下山晚霞红,我把鸭子赶回笼;一半在外闹哄哄,一半的一半进笼中;剩下十五围着我,共有多少请算清。
一、教学目标:1. 让学生掌握合并同类项的定义和法则。
2. 培养学生运用合并同类项解决实际问题的能力。
3. 提高学生的逻辑思维能力和团队协作能力。
二、教学内容:1. 合并同类项的定义。
2. 合并同类项的法则。
3. 合并同类项的实际应用。
三、教学重点与难点:1. 合并同类项的定义和法则。
2. 如何在实际问题中运用合并同类项。
四、教学方法:1. 采用问题驱动法,引导学生主动探究合并同类项的定义和法则。
2. 运用案例分析法,让学生通过实际问题练习合并同类项的方法。
3. 采用小组讨论法,培养学生的团队协作能力和逻辑思维能力。
五、教学过程:1. 导入新课:通过生活中的实例,引导学生思考如何对同类项进行合并。
2. 讲解合并同类项的定义和法则:讲解合并同类项的概念,举例说明合并同类项的法则。
3. 案例分析:给出具体的数学问题,让学生运用合并同类项的方法解决问题。
4. 小组讨论:学生分组讨论,总结合并同类项的方法和技巧。
5. 课堂练习:布置练习题,让学生巩固所学知识。
6. 总结与反思:对本节课的内容进行总结,引导学生思考合并同类项在实际生活中的应用。
7. 布置作业:布置课后作业,巩固所学知识。
教学评价:通过课堂表现、练习题和课后作业,评价学生对合并同类项的掌握程度。
六、教学策略:1. 采用情境教学法,通过生活实例引入合并同类项的概念,提高学生的学习兴趣。
2. 利用多媒体教学辅助工具,展示合并同类项的过程,增强学生的理解力。
3. 设计具有层次性的练习题,逐步提升学生的解题能力。
4. 鼓励学生参与课堂讨论,培养学生的表达能力和团队协作能力。
七、教学步骤:1. 回顾合并同类项的定义和法则,提醒学生关注同类项的系数和字母。
2. 针对具体数学问题,引导学生运用合并同类项的方法步骤。
3. 分析解题过程,让学生理解合并同类项在解决问题中的作用。
4. 设计不同难度的练习题,让学生进行实战演练。
5. 组织学生进行小组讨论,分享解题心得和经验。
《3.2 解一元一次方程(1)─合并同类项与移项》导学案【学习目标】1.会列一元一次方程解决实际问题,•并会合并同类项解一元一次方程;2.培养学生观察、分析、概括的能力;3.初步渗透特殊—一般—特殊的辩证唯物主义思想【学习重点】:会合并同类项解一元一次方程;【学习难点】:会列一元一次方程解决实际问题;【使用说明与学法指导】1、先认真阅读学习目标;2、再认真阅读86—87页内容,并用红笔标注重点;3、阅读教材后认真完成导学案.预习案【预习自学】1.等式性质 1:2:2.解方程:(1)x-9=8;(2) 3x+1=4;3.下列各题中的两个项是不是同类项?(1)3x y与-3x y (2)0.2a b与0.2ab(3)11abc与9bc (4)3m n 与-n m(5)4xy z与4 x yz (6)6 与x4.能把上题中的同类型合并成一项吗?如何合并?5.合并同类型的法则是什么?依据是什么【我的疑惑】________________________________________________________探究案探究点:合并解一元一次方程问题1:某校三年级共购买计算机140台,去年购买数量是前年的2倍,•今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么购买___台,又知今年购买数量是去年的2倍,则今年购买了______(即____)台;题目中的相等关系为:三年共购买计算机140台,即前年购买量+去年购买量+今年购买量=140列方程:_____________如何解这个方程呢?根据分配律,x+2x+4x=(______)x=7x;这样就可以把含x的项合并为一项,合并时要注意x的系数是1,不是0;下面的框图表示了解这个方程的具体过程:x+2x+4x=140↓合并同类项7x=140↓系数化为1x=20由上可知,前年这个学校购买了20台计算机.上面解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a、b是常数.2.自己试着完成例1 解下列方程:(1)2x-5/2x=6-8; (2)7x-2.5x+3x-1.5x=-15×4-6×3合并同类项,得系数化为1,得所以-3x= ,9x=答:这三个数是、、讨论:以上列方程解决实际问题的关键。
解一元一次方程(一)——合并同类项一、内容及内容解析人教版义务教育课程标准实验教科书,七年级上册《3.2一元一次方程——合并同类项与移项》第1课时.方程是应用广泛的数学工具,生活中,很多问题借助于方程来解决.一元一次方程是最简单的方程,也是所有代数方程的基础.二元一次方程组(七年级下)和一元二次方程(九年级上)都是将其化归为一元一次方程来解决.因此它在义务教育阶段的数学课程中占重要地位。
而本节课用合并同类项解一元一次方程是解一元一次方程的基本步骤之一,为后面解一元一次方程奠定基础.在解方程的过程中,渗透转化的数学思想。
经历用方程解决实际问题,体会方程的应用价值.二、目标及目标解析1.目标:(1)掌握利用合并同类项解一元一次方程.(2)应用一元一次方程解决实际问题.2.目标解析:目标(1)是通过观察、类比、自主探究出利用合并同类项解一元一次方程的方法,渗透转化的数学思想,培养学生归纳、概括的能力.目标(2)是进一步让学生感受并尝试多角度解决问题的方法,初步体会方程的应用价值.通过学生之间相互交流,培养他们的合作意识.三、教学问题诊断分析在之前,学生已经学习了合并同类项和利用等式的性质解方程,这两个知识点综合到一起,就是本节用合并同类项解一元一次方程,故学生容易掌握.但学生在小学阶段习惯于列算式解决实际问题,用方程的思想来解决问题比较陌生,因此是本节的难点.由上确定本节课的重、难点如下:教学重点:1 合并同类项解一元一次方程.2列方程解决实际问题的思想方法.教学难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程。
使学生逐步建立列方程解决实际问题的思想方法.四、教学支持条件分析利用多媒体展示教学的部分环节,如创设情境等,支持课堂教学.五、教学方法:引导发现法,合作学习与自主探究相结合.教学流程:六、教学过程:(一) 创设情境,提出问题活动一练习: 1将下列各式合并同类项(1)5x —2x=_____(2)-x+23 x+21x =______ 2一个正方形的周长为24cm ,问:边长是多少?【设计意图】:由练习1复习合并同类项,为进一步学习利用合并同类项解一元一次方程做铺垫.利用练习2引出用方程解决问题,为问题1做准备.播放2015年阅兵视频【设计意图】:对学生进行爱国主义教育,同时借助阅兵式中,空中梯队、文艺表演方队、群众游行方队之间的数量间的关系,编写应用题,引入新知.(二)自主探索,获取新知问题1 阅兵式中,空中梯队的个数是文艺表演方队个数的2倍,而群众游行方队的个数是空中梯队个数的3倍。
2.2 整式的加减第1课时合并同类项一、新课导入1.课题导入:先看本章引言中的问题(2),并引导学生列出式子:100t+252t.然后提问:这个式子的结果是多少?如果学生直接得到352t,可以追问:这个结果是怎样得到的?这个问题就是今天要学习的整式的加减的内容.(板书课题:合并同类项)2.三维目标:(1)知识与技能理解同类项的概念,掌握合并同类项的法则.(2)过程与方法①经历概念的形成过程和法则的探究过程,培养观察、归纳、概括能力,发展应用意识.②渗透分类和类比的思想方法.(3)情感态度在独立思考的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益.3.学习重、难点:重点:同类项的概念;合并同类项的法则,感受“数式通性”和类比思想.难点:正确判断同类项,准确合并同类项.二、分层学习1.自学指导:(1)自学内容:探究多项式100t+252t的化简方法,并从中归纳出同类项的概念.(2)自学时间:8分钟.(3)自学要求:通过类比数的运算,体会“数式通性”和类比思想;弄清什么是同类项.(4)探究提纲:①a.运用运算律计算:100×2+252×2=(100+252)×2=704100×(-2)+252×(-2)=(100+252)×(-2)=-704b.把上面算式中的数2、-2换成一般的数t,根据a中的方法计算:100t+252t=(100+252)t=352t②类比式子100t+252t的运算,化简下列式子:a.100t-252t=-152tb.3x2+2x2=5x2c.3ab2-4ab2=-ab2③观察多项式100t+252t,100t-252t,3x2+2x2,3ab2-4ab2,它们的项有什么共同特点?在第一、第二个多项式中,每一项都含有相同的字母t,并且t的指数都是1.在第三个多项式中,每一项都含有相同的字母x,并且x的指数都是2, 在第四个多项式中,每一项都含有相同的字母a、b,并且a的指数都是1,b的指数都是2.像100t和-252t,3x2和2x2,3ab2和-4ab2这样,所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项.④下列各组式子是不是同类项,并说明理由.a.-3和23;b.-2a2b3和3a3b2;c. 12xy2和-3y2x;d.-mn和πmn.a.是;b.不是;c.是;d.是.2.自学:同学们根据探究提纲进行探究学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,关注学生完成“探究提纲”时存在的问题.②差异指导:对提纲中第②小题,指导学生正确使用分配律,区分清楚运算符号和性质符号.对提纲中第④题指导学生把握住判断同类项的两条标准.(2)生助生:小组内相互交流、改正,共同解决相关疑难问题.4.强化:(1)同类项的概念.(2)同类项的判断方法:①“项”都是单项式;②与系数无关,与字母顺序也无关;③所含字母相同;④相同字母的指数也相同.(3)若单项式-3a m b2与单项式13a3b n是同类项,则m=3,n=2.1.自学指导:(1)自学内容:教材第63页倒数第三段到第64页例1为止的内容.(2)自学时间:6分钟.(3)自学要求:边阅读、边思考合并同类项的方法和依据,并注意体会解题的格式.(4)自学参考提纲:①把多项式中的同类项合并成一项,叫做合并同类项;在合并同类项的过程中通常要用到交换律、结合律;合并同类项后,所得项的系数是合并前各项系数的和,且字母连同它的指数不变.②通常我们把一个多项式的各项按照某个字母的指数从大到小的顺序排列,叫做降幂排列;反之,叫做升幂排列,如:把多项式-5x2-6x4+2x-13x3+5按字母x的降幂排列为-6x4-13x3-5x2+2x+5.③试根据第63页的合并同类项的范例归纳合并同类项的一般步骤.④合并下列各式的同类项:a.-5a+0.3a-2.7a=-7.4ab.-6ab+ba+8ab=3abc.2x2-5x+3-3x2+7x-5=-x2+2x-2d.a2+3ab-2b2-2a2-3ab=-a2-2b22.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂,明了学生是否掌握了合并同类项的依据和方法.②差异指导:对学习有困难的学生进行点拨和指导.(2)生助生:在对学和群学中相互指导帮助解决疑难问题.4.强化:(1)合并同类项的概念和法则.(2)合并同类项的一般步骤:①找出同类项(并做标记);②运用交换律、结合律将多项式的同类项结合;③合并同类项;④按同一字母的降幂(或升幂)排列.(3)合并同类项应注意的问题:①运用交换律、结合律将多项式变形时,不能丢掉各项系数的符号;②不要漏项;③运算结果通常按某一字母的降幂(或升幂)排列.1.自学指导:(1)自学内容:教材第64页例2和第65页的例3.(2)自学时间:6分钟.(3)自学要求:体会例2中“先合并同类项,再求值”的好处,例3中合并同类项在解决实际问题中的作用.(4)自学参考提纲.①在例2中,求多项式的值时,都是先化简,再代值计算.②在例2中,请你把字母的值直接代入原式求值,并与例2的运算过程比较,哪种方法更简便?先化简再求值比较简便③在多项式求值的过程中,为什么要写“当……时,原式=……”?这个格式说明了什么?④在例3中,体会如何用正数和负数表示相反意义的量,以及列出相应的整式表示问题中的数量关系.⑤完成教材第65页“练习”的第2、3、4题.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否学会了求代数式的值的方法和步骤.②差异指导:对学习有困难的学生进行点拨和指导.(2)生助生:学生相互交流解决自学中的疑难问题.4.强化:多项式化简求值的方法和书写格式.三、评价1.学生的自我评价(围绕学习目标):自我评价本节课学习的收获和不足.2.教师对学生的评价:(1)表现性评价:教师对本节课学习中同学们的学习态度、方法、成效进行总结.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学要重点引导学生抓住理解同类项的定义中的要点:(1)所含字母相同,不能多或少;(2)相同字母指数完全相同。
人教版七年级上册数学导学案第三章一元一次方程3.1.1一元一次方程(1)学习目标1.了解什么是方程,什么事一元一次方程。
2.体会字母表示数的优越性。
重点:知道什么是方程,一元一次方程难点:找等关系列方程使用说明及学法指导:先自学课本78—80页内容,独立完成学案,然后小组讨论交流。
一. 导学1.书中问题用算术方法解决应怎样列算式:2.含X的式子表示关于路程的数量:王家庄距青山___千米,王家庄距秀水___千米。
从王家庄到青山行车__小时,王家庄到秀水__小时。
3车从王家庄到青山的速度为___千米/小时,从王家庄到秀水的速度为___千米/小时。
4.车匀速行驶,可列方程为:5.什么是方程?6.什么是一元一次方程?二、合作探究1.判断下列式子是否是方程:(1)5x+3y-6x=7 (2)4x-7 (3)5x >3(4)6x 2+x-2=0 (5)1+2=3 (6) -x5-m=11 2.下列式子哪些是一元一次方程?不是一元一次方程的,要说明理由.(1)9x=2 (2)x+2y=0 (3)x 2-1=0(4) x=0 (5)x3=2 (6) ax=b(a 、b 是常数)3.(1)已知2x m+1 +3=7是一元一次方程,求m 的值;(2)已知关于x 的方程mx n-1+2=5是一元一次方程,则m=__,n=__.4、根据下列条件列出方程:(1)某数的5倍加上3,等于该数的7倍减去5;(2)某数的3倍减去9,等于该数的三分之二加6;(3)某数的8倍比该数的5倍大12;(4)某数的一半加上4,比该数的3倍小21.(5)某班有x名学生,要求平均每人展出4枚邮票,实际展出的邮票量比要求数多了15枚,问该班共展出多少枚邮票?三、学习小结四、作业习题3.1第1、5题。
3.1.1 一元一次方程(2)学习目标1.根据实际问题中的数量关系,设未知数,列出一元一次方程。
2.知道方程的解和解方程是两个不同的概念。
重点:根据实际问题列一元一次方程难点:找相等关系列方程。
《解一元一次方程---合并同类项》教学设计引言教研活动其实是教师与学生、教师与教师之间的心灵互动,匠心独具的课前预设、赏心悦目的课堂互动和的课后研讨,能让参与者忘却工作带给我们的一切烦恼,在愉悦中接受洗礼,于执教者而言,更是无与伦比的释放和满足,毕竟,这是他辛勤劳动的结晶,最大的受益者当然仍是受教学生。
这便是教研的魔力,让它沐浴我成长。
前几天,在我校数学组的课题《“三五三”问题导学法》研讨中,执教了了《解一元一次方程---合并同类项》一课,针对课题研讨目标“如何在数学课堂教学中实施《“三五三”问题导学法》教学模式?”进行了精心的预设和思考,近一周的琢磨之后,带着些许忐忑和期待,走进了熟悉又似乎全新的课堂……教学设计教学目标:1、会利用合并同类项解一元一次方程,掌握在解方程的过程中如何“合并”和系数化1。
2、通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用,认识用方程解决实际问题的关键是建立相等关系。
3、促进学生积极参与合作探讨,初步体会一元一次方程的应用价值;4、引导学生在解决实际问题的过程中分析数量关系、探寻列方程的方法、归纳解方程的步骤,同时渗透数学建模的思想。
教学重点、难点:重点:会列一元一次方程解决实际问题,并会用合并同类项的方法解“ax+bx=c”类型的一元一次方程难点:建立方程时寻找“相等关系”,合并时“x”前面的系数为“1”、“-1”。
一、激学导思:1、问题激思:粉笔分类;(师:这是老师每节课都要用到的粉笔,请同学们通过认真的观察与分析,能否从老师两手所抓的粉笔得到一些具体的信息?)针对上述“粉笔分类”引出合并同类项的铺垫训练:① 2a+a= ;② 2b -3b= ;③ 4c-c= ;(师:今天我们就一起来探讨如何运用“合并同类项”解一元一次方程。
)2、引探导学:猜粉笔支数。
(师:今天我们就拿讲台上的粉笔来做点文章,老师的面前有三盒粉笔,老师分别对三盒粉笔的数量做了一定的调整,如果我提供给你们一定的信息,你能猜出每盒粉笔的数量吗?)创设问题,引入探究,导入本节学习内容。
3. 2解一元一次方程----合并同类项与移项学习目标:1.学会探究数列中的规律,建立等量关系。
2.能够正确求解一元一次方程并判断解的合理性。
一、自主学习:阅读课本91页例3,完成下面的问题:1.有一列数,按一定规律排列:1,-3,9,-27,81,-243,…,其中某3个相邻的数的和为-1701,这三个数是多少?从符号和绝对值两方面观察,这列数有什么规律?试着列方程解决以上问题:二、合作探究:1.三个连续奇数的和是27,求这三个奇数。
2.小明和小红做游戏,小明拿出一张日历:“我用笔圈出了2×2的一个正方形,它们数字的和是76,你知道我圈出的是哪几个数字吗?”你能帮小红解决吗?三、即时训练:基础训练1.三个连续整数的和是54,则这三个数是()A.15,16,17B.16,17,18C.17,18,19D.18,19,202.一棵小树现在高为150cm,预计今年后每年能长10cm,则长到210cm需要经过()A.5年B.6年C.7年D.8年3.有一个两位数,个位上的数是十位上的数的一半,如果把十位上的数与个位上的数对调,那么得到的两位数比原来的两位数小36,求原来的两位数。
若设原来的两位数的个位上的数为x ,根据题意,下面所列方程正确的是( )A. 36210210++=+⨯x x x xB. x x x 21036210+=+⨯C. 3622-+=+x x x xD. 362010210-+=+⨯x x x x4.三个连续偶数的和是30,求这三个偶数。
5.在某月内,李老师要参加三天的学习培训,现在知道这三天的日期的数字之和是39;(1)培训时间是连续的三天,你知道这几天分别是当月的哪几号吗?(2)若培训时间是连续三周的周六,那这几天又分是当月的哪几号?能力拓展1.有一些卡片分别标有5,10,15,20,…的卡片,小明拿到了相邻的3张卡片,且卡片上的数字之和为255.小明拿到的3张卡片上的数分别是多少?四、评点总结附:学后反思3. 2解一元一次方程----合并同类项与移项学习目标:1.学会解决方案选择问题。
人教版数学七上3.2 第1课时《用合并同类项的方法解一元一次方程》精品说课稿1一. 教材分析《用合并同类项的方法解一元一次方程》是人教版数学七上3.2第1课时的内容。
这部分教材主要让学生掌握一元一次方程的解法,培养学生运用数学知识解决实际问题的能力。
通过这部分的学习,学生能够理解一元一次方程的概念,掌握合并同类项的方法,并能够运用该方法解决实际问题。
二. 学情分析学生在学习这部分内容前,已经学习了有理数、方程等基础知识,对于解一元一次方程有一定的了解。
但部分学生对于合并同类项的方法和解方程的步骤还不够熟练,需要老师在教学过程中进行引导和巩固。
此外,学生对于实际问题的解决能力有待提高,需要老师通过实例进行讲解和训练。
三. 说教学目标1.知识与技能目标:学生能够理解一元一次方程的概念,掌握合并同类项的方法,并能够运用该方法解一元一次方程。
2.过程与方法目标:学生通过自主学习、合作交流,培养解方程的能力和团队协作精神。
3.情感态度与价值观目标:学生培养对数学的兴趣,提高解决实际问题的能力,培养积极的学习态度。
四. 说教学重难点1.教学重点:学生掌握合并同类项的方法,能够解一元一次方程。
2.教学难点:学生对于合并同类项的运用和解决实际问题的能力。
五. 说教学方法与手段1.教学方法:采用启发式教学法、案例教学法和小组合作学习法。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,以及数学软件和网络资源。
六. 说教学过程1.导入新课:通过一个实际问题引入一元一次方程的概念,激发学生的学习兴趣。
2.知识讲解:讲解合并同类项的方法,并通过例题进行讲解,让学生跟随老师一起解方程。
3.课堂练习:学生独立完成练习题,巩固所学知识。
4.拓展与应用:通过实际问题,让学生运用合并同类项的方法解方程,培养学生的实际问题解决能力。
5.总结与反思:学生总结本节课所学知识,老师进行点评和讲解。
七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点内容。
3.2.1 一元一次方程的解法(一)合并同类项教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第三章一元一次方程3.2.1 一元一次方程的解法(一)合并同类项,内容包括:运用合并同类项解形如ax+bx=c类型的一元一次方程.2.内容解析方程是应用非常广泛的数学工具,它在义务教育阶段的数学课程中占重要地位,在小学阶段已经对方程进行了初步的研究,但尚未形成方程的概念,更未研究各类方程的解法,所以解方程既是本章的重点也是今后学习其它方程、不等式及函数的重要基础和基本技能.本节课的教学内容是《解一元一次方程》的第1课时用“合并同类项”法解方程,是以后系统学习“移项”、“去括号”和“去分母”法解一元一次方程中的重要基础,因此本节课具有承上启下的作用.基于以上分析,确定本节课的教学重点为:学会运用合并同类项解形如ax+bx=c类型的一元一次方程.二、目标和目标解析1.目标(1)学会运用合并同类项解形如ax+bx=c类型的一元一次方程,进一步体会方程中的“化归”思想.(2)能够根据题意找出实际问题中的相等关系,列出方程求解.2.目标解析会用合并同类项法解一些简单的一元一次方程;经历根据具体实际问题中的数量关系列方程的过程,体会方程是刻画现实世界数量关系的有效数学模型,培养学生应用方程解决问题的能力;通过将实际问题抽象成数学问题的过程,培养学生的应用意识和转化的数学思想;通过具体情境的探索、交流等数学活动,培养学生的团队合作意识和积极参与、勤于思考的习惯.三、教学问题诊断分析七年级学生的理解能力和思维特征要求我的数学课堂要生动、有趣高效,因此我将整节课以观察、思考、讨论贯穿于整个教学环节之中采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生“多观察、勤动脑、善钻研”的研讨式学习方法.教学中积极为学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,培养学生解决问题的能力.基于以上学情分析,确定本节课的教学难点为:会列一元一次方程解决实际问题.四、教学过程设计(一)复习回顾1.含有相同的_____,并且相同字母的_____也相同的项,叫做同类项;2.合并同类项时,把各同类项的_____相加减,字母和字母的指数_____.用合并同类项进行化简:(1)3x -5x=________; (2)-3x+7x=________;(3)y+5y -2y=________; (4)=-+y y y 23231_______. (二)情境引入约公元820年,中亚细亚数学家阿尔—花拉子米写了一本代数书,重点论述怎样解方程. 这本书的拉丁译本取名为《对消与还原》.对消与还原推动了古代数学的进步,为人们解方程问题提供了简便的方法.其实不管是对消与还原,还是合并同类项与移项,其目的都是为了化简方程.(三)自学导航问题1:某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍,前年这个学校购买了多少台计算机?设前年购买了x 台.可以表示出:去年购买计算机_____台,今年购买计算机_____台.你能找出问题中的相等关系吗?前年购买量+去年购买量+今年购买量=140台x+2x+4x=140思考:怎样解这个方程呢?下面的框图表示了解这个方程的流程:思考:上面解方程中“合并同类项”起了什么作用?解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b 的形式,其中a,b 是常数,“合并”的依据是逆用分配律.(四)考点解析例1.解下列方程:(1)6x -2x=28; (2)15x+25x=-1; (3)x -12x -14x=-5+8-6; (4)2x+1.5x -6.5x=9×2-4×3.(1)解:合并同类项,得4x=28.系数化为1,得x=7.(2)解:合并同类项,得35x=-1. 系数化为1,得x=-53.(3)解:合并同类项,得14x=-3. 系数化为1,得x=-12.(4)解:合并同类项,得-3x=6.系数化为1,得x=-2.【迁移应用】1.下列合并同类项不正确的是( )A.由5x -2x=9,得3x=9B.由12x+32x=7,得2x=7C.由-3x+0.5x=10,得-2.5x=10D.由3x -4x=-20-25,得x=-452.关于x 的方程4x -3m=2的解是x=m ,则m 的值是_______.3.解下列方程:(1)-2x+x 2=9; (2)23x -65x=-43; (3)x+0.75x=7.5-2.25.(1)解:合并同类项,得-32x=9. 系数化为1,得x=-6.(2)解:合并同类项,得-815x=-43. 系数化为1,得x=52. (3)解:合并同类项,得1.75x=5.25.系数化为1,得x=3.例 2.按规律排列的一列数:2,-4,8,-16,32,-64,…,其中某四个相邻的数的和是-720,求这四个数中最大的数与最小的数的差.解:根据题意,可设这四个相邻的数分别为x ,-2x ,4x ,-8x ,则x -2x+4x -8x=-720,即-5x=-720,解得x=144.所以-2x=-288,4x=576,-8x=-1152.所以最大的数为576,最小的数为-1152.所以576-(-1152)=1728.答:这四个数中最大的数与最小的数的差为1728.【迁移应用】1.一个两位数,个位上的数是十位上的数的3倍,它们的和是12,那么这个两位数是_________.2.【古代数学问题】中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一天和第六天共走了( )A.102里B.126里C.192里D.198里3.有一列数,按一定规律排列成13,-1,3,-9,27,-81,…,若其中某三个相邻数的和是-567,求这三个数中的第一个数.解:设这三个数中的第一个数为x ,则另外两个数分别为-3x ,9x.依题意,得x -3x+9x=-567,解得x=-81.答:这三个数中的第一个数是-81.例3.(1)2x -1与3x+1的和为10,求x 的值;(2)规定|a b c d |=ad -bc ,当|x 2−x 12|时,求x 的值. 解:(1)根据题意,得2x -1+3x+1=10.合并同类项,得5x=10.系数化为1,得x=2.(2)根据题意,得x 2×2-(-x)×1=32,即x+x=32. 合并同类项,得2x=32. 系数化为1,得x=34. 【迁移应用】1.若4x 比9x 的值小10,则x 的值为( )A.1B.2C.-2D.32.规定一种新运算:a * b=ab+a+b.若3*x -3=24,求x 的值.解:根据题意,得3x+3+x -3=24.合并同类项,得4x=24.系数化为1,得x=6.例4.某学校计划购买一批篮球和排球,已知篮球和排球的单价之比为4:3,单价之和为84元,则篮球和排球的单价分别为多少元?解:设篮球和排球的单价分别为4x 元和3x 元.根据题意,得4x+3x=84,解得x=12.所以4x=48,3x=36.答:篮球的单价为48元,排球的单价为36元.【迁移应用】某种中成药需要用到甘草、党参、苏叶三种材料,其中甘草、党参、苏叶三种材料的质量之比为1:2:4.若生产210kg这种中成药,则需要用到甘草、党参、苏叶的质量分别是多少千克?解:设需要用到甘草、党参、苏叶的质量分别是xkg,2xkg,4xkg.根据题意,得x+2x+4x=210.解得x=30.所以2x=60,4x=120.答:需要用到甘草、党参、苏叶的质量分别是30kg,60kg,120kg.(五)小结梳理解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a,b是常数,“合并”的依据是逆用分配律.五、教学反思。