基于奇异谱分析去噪和加权系数动态修正的风 电功率实时组合预测模型
- 格式:pdf
- 大小:1.63 MB
- 文档页数:11
基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型作者:潘迪夫,刘辉,李燕飞, PAN Di-fu, LIU Hui, LI Yan-fei作者单位:潘迪夫,刘辉,PAN Di-fu,LIU Hui(中南⼤学,交通运输⼯程学院,湖南省,长沙市,410075),李燕飞,LI Yan-fei(轨道交通安全教育部重点实验室(中南⼤学),湖南省,长沙市,410075)刊名:电⽹技术英⽂刊名:POWER SYSTEM TECHNOLOGY年,卷(期):2008,32(7)被引⽤次数:67次参考⽂献(15条)1.Li Shu-hui;Wunsch D C;Giesselmann M G Using neural networks to estimate wind turbine power generation[外⽂期刊] 2001(03)2.Billinton R;Chen H;Ghajar R Time-series models for reliability evaluation of power systems including wind energy[外⽂期刊] 1996(09)3.丁明;张⽴军;吴义纯基于时间序列分析的风电场风速预测模型[期刊论⽂]-电⼒⾃动化设备 2005(08)4.杨秀嫒;肖洋;陈树勇风电场风速和发电功率预测研究[期刊论⽂]-中国电机⼯程学报 2005(11)5.马静波;杨洪耕⾃适应卡尔曼滤波在电⼒系统短期负荷预测中的应⽤[期刊论⽂]-电⽹技术 2005(01)6.李明⼲;孙健利;刘沛基于卡尔曼滤波的电⼒系统短期负荷预测[期刊论⽂]-继电器 2004(04)7.⾦群;李欣然遗传算法参数设置及其在负荷建模中的应⽤[期刊论⽂]-电⼒⾃动化设备 2006(05)8.邰能灵;候志俭;李涛基于⼩波分析的电⼒系统短期负荷预测⽅法[期刊论⽂]-中国电机⼯程学报 2003(01)9.谢宏;陈志业;⽜东晓基于⼩波分解与⽓象因素影响的电⼒系统⽇负荷预测模型研究[期刊论⽂]-中国电机⼯程学报 2001(05)10.张伏⽣;汪鸿;韩悌基于偏最⼩⼆乘回归分析的短期负荷预测[期刊论⽂]-电⽹技术 2003(03)11.游仕洪;程浩忠;谢宏应⽤模糊线性回归模型预测中长期电⼒负荷[期刊论⽂]-电⼒⾃动化设备 2006(03)12.李天云;刘⾃发电⼒系统负荷的混沌特性及预测[期刊论⽂]-中国电机⼯程学报 2000(11)13.蒋传⽂;袁智强;候志俭⾼嵌⼊维混沌负荷序列预测⽅法研究[期刊论⽂]-电⽹技术 2004(03)14.王志贤最优状态估计和系统辨识 200415.Lonnie C.Ludeman;邱天爽;李婷;毕英伟随机过程--滤波、估计和检测 2005本⽂读者也读过(2条)1.潘迪夫.刘辉.李燕飞.PAN Di-fu.LIU Hui.LI Yan-fei风电场风速短期多步预测改进算法[期刊论⽂]-中国电机⼯程学报2008,28(26)2.丁明.张⽴军.吴义纯.DING Ming.ZHANG Li-jun.WU Yi-chun基于时间序列分析的风电场风速预测模型[期刊论⽂]-电⼒⾃动化设备2005,25(8)引证⽂献(67条)1.宋亮.杨志霞.刘芳应⽤双⽀持向量回归机的风速预测模型[期刊论⽂]-重庆理⼯⼤学学报(⾃然科学版)2013(8)2.⾼阳.陈华宇.欧阳群风电场发电量预测技术研究综述[期刊论⽂]-电⽹与清洁能源 2010(4)3.王林川.陈宪⽻基于经验模式分解的风电输出功率预测[期刊论⽂]-⿊龙江电⼒ 2013(2)5.丁涛.肖宏飞基于最优邻域的动态加权混沌风速预测模型[期刊论⽂]-太阳能学报 2011(4)6.陈道君.龚庆武.⾦朝意.张静.王定美基于⾃适应扰动量⼦粒⼦群算法参数优化的⽀持向量回归机短期风电功率预测[期刊论⽂]-电⽹技术 2013(4)7.⽢敏.丁明.董学平基于改进Mycielski⽅法的风速预测[期刊论⽂]-系统⼯程理论与实践 2013(4)8.李元诚.杨瑞仙⽤于短期风速预测的优化核⼼向量回归模型[期刊论⽂]-中国电⼒ 2012(3)9.刘永前.朴⾦姬.韩爽风电场输出功率预测中两种神经⽹络算法的研究[期刊论⽂]-现代电⼒ 2011(2)10.洪丽华.阎军显⼀种风速预测⽅法的探讨[期刊论⽂]-中国新技术新产品 2010(10)11.⾼阳.朴在林.张旭鹏.冬雷.郝颖基于噪声场合下ARMA模型的风⼒发电量预测[期刊论⽂]-电⼒系统保护与控制2010(20)12.王晓兰.李辉基于EMD与LS-SVM的风电场短期风速预测[期刊论⽂]-计算机⼯程与设计 2010(10)13.⾕国利.王维庆.张新燕.董红风电场风速预测⽅法的研究[期刊论⽂]-农业⼯程技术·新能源产业 2009(6)14.张韬.张兴裕.刘元元.李晓松基于ARIMA模型的Kalman滤波算法在淋病发病率预测的应⽤初探[期刊论⽂]-现代预防医学2013(16)15.刘辉.⽥红旗.李燕飞基于⼩波分析法与滚动式时间序列法的风电场风速短期预测优化算法[期刊论⽂]-中南⼤学学报(⾃然科学版) 2010(1)16.孙斌.姚海涛.李⽥.刘袖.刘博基于Fast ICA和改进LSSVM的短期风速预测[期刊论⽂]-电⼒系统及其⾃动化学报 2014(1)17.王松岩.李碧君.于继来.徐泰⼭风速与风电功率预测误差概率分布的时变特性分析[期刊论⽂]-电⽹技术2013(4)18.刘亚南.卫志农.朱艳.孙国强.孙永辉.杨友情.钱瑛.周军基于D-S证据理论的短期风速预测模型[期刊论⽂]-电⼒⾃动化设备2013(8)19.周腊吾.陈静.戴浪基于最⼩⼆乘⽀持向量机的风速组合预测模型[期刊论⽂]-科技导报 2011(7)20.戴浪.黄守道.黄科元.叶盛风电场风速的神经⽹络组合预测模型[期刊论⽂]-电⼒系统及其⾃动化学报 2011(4)21.王莉.王德明.张⼴明.周献中基于粗糙集和RBF神经⽹络的风电场短期风速预测模型[期刊论⽂]-南京⼯业⼤学学报(⾃然科学版) 2011(6)22.邹⽂.丁巧林.杨宏.张伟基于Mycielski算法的风电场风速预测[期刊论⽂]-电⼒科学与⼯程 2011(3)23.连⽂莉.黄成⾠.吕昌霖采⽤时间序列预测风电场出⼒[期刊论⽂]-电⽹与清洁能源 2011(12)24.彭怀午.刘⽅锐.杨晓峰基于⼈⼯神经⽹络的风电场短期功率预测[期刊论⽂]-太阳能学报 2011(8)25.罗海洋.刘天琪.李兴源风电场短期风速的改进Volterra⾃适应预测法[期刊论⽂]-四川电⼒技术 2009(3)26.王韶.杨江平.李逢兵.刘庭磊基于经验模式分解和神经⽹络的短期风速组合预测[期刊论⽂]-电⼒系统保护与控制 2012(10)27.杨锡运.孙宝君.张新房.李利霞基于相似数据的⽀持向量机短期风速预测仿真研究[期刊论⽂]-中国电机⼯程学报 2012(4)28.冬雷.王丽婕.郝颖.胡国飞.廖晓钟基于⾃回归滑动平均模型的风⼒发电容量预测[期刊论⽂]-太阳能学报2011(5)29.彭怀午.刘⽅锐.杨晓峰基于组合预测⽅法的风电场短期风速预测[期刊论⽂]-太阳能学报 2011(4)30.孟天星.张厚升基于差分⾃回归滑动平均模型的风电场短期风速预测[期刊论⽂]-科学技术与⼯程 2013(33)2012(3)32.李东福.董雷.礼晓飞.廖毅基于多尺度⼩波分解和时间序列法的风电场风速预测[期刊论⽂]-华北电⼒⼤学学报 2012(2)33.赵辉.李斌.李彪.岳有军基于⼩波变换的ARMA-LSSVM短期风速预测[期刊论⽂]-中国电⼒ 2012(4)34.冬雷.王丽婕.郝颖.胡国飞.廖晓钟基于⾃回归滑动平均模型的风⼒发电容量预测[期刊论⽂]-太阳能学报2011(5)35.彭怀午.刘⽅锐.杨晓峰基于组合预测⽅法的风电场短期风速预测[期刊论⽂]-太阳能学报 2011(4)36.龙军.莫群芳.曾建基于随机规划的含风电场的电⼒系统节能优化调度策略[期刊论⽂]-电⽹技术 2011(9)37.张涛.张新燕.王维庆基于神经⽹络的风功率预测问题研究[期刊论⽂]-四川电⼒技术 2013(1)38.李赢.潘艳红.杜兴科风电在时空尺度上的描述[期刊论⽂]-电⽹与清洁能源 2013(3)39.张江昆.常太华.孟洪民.刘⽩杨.胡阳.张超基于ARIMA与Elman神经⽹络的短期风速组合预测⽅法[期刊论⽂]-电⼦世界2013(18)40.赵⾼强.傅(王乐)基于量⼦粒⼦群-径向基神经⽹络模型的风速预测[期刊论⽂]-内蒙古⼤学学报(⾃然科学版) 2011(1)41.黄⽂杰.傅砾.肖盛.郭世繁基于模糊层次分析法的风速短期预测组合模型[期刊论⽂]-现代电⼒ 2010(3)42.刘洪伯.王幸福基于EEMD与ARMA的短期风功率预测研究[期刊论⽂]-⿊龙江科技信息 2013(36)43.周专.姚秀萍.王维庆.任华.申盛召基于ICA-NN的短期风功率预测研究[期刊论⽂]-四川电⼒技术 2013(5)44.王德明.王莉.张⼴明基于遗传BP神经⽹络的短期风速预测模型[期刊论⽂]-浙江⼤学学报(⼯学版) 2012(5)45.吴俊利.张步涵.王魁基于Adaboost的BP神经⽹络改进算法在短期风速预测中的应⽤[期刊论⽂]-电⽹技术2012(9)46.陈盼.陈皓勇.叶荣基于多尺度形态学分析的风速预测[期刊论⽂]-电⼒系统保护与控制 2010(21)47.周培毅.张新燕基于时间序列与⽀持向量机的风电场风速预测研究[期刊论⽂]-陕西电⼒ 2009(12)48.吴栋梁.王扬.郭创新.刘毅.⾼振兴电⼒市场环境下考虑风电预测误差的经济调度模型[期刊论⽂]-电⼒系统⾃动化 2012(6)49.冯双磊.王伟胜.刘纯.戴慧珠基于物理原理的风电场短期风速预测研究[期刊论⽂]-太阳能学报 2011(5)50.Fan Gaofeng.Pci Zheyi.Xin Yaozhong.Han Ruiguo Achievements and Prospects of Wind Power Prediction [期刊论⽂]-电⽓(英⽂版) 2011(5)51.吴栋梁.王扬.郭创新.杨健基于改进GMDH⽹络的风电场短期风速预测[期刊论⽂]-电⼒系统保护与控制 2011(2)52.冯双磊.王伟胜.刘纯.戴慧珠基于物理原理的风电场短期风速预测研究[期刊论⽂]-太阳能学报 2011(5)53.LIU Hui.TIAN Hong-qi.LI Yan-fei Short-term forecasting optimization algorithms for wind speed along Qinghai-Tibet railway based on different intelligent modeling theories[期刊论⽂]-中南⼤学学报(英⽂版) 2009(4)54.孙斌.姚海涛.刘婷基于⾼斯过程回归的短期风速预测[期刊论⽂]-中国电机⼯程学报 2012(29)55.刘辉.⽥红旗.CHEN Chao.李燕飞基于⼩波分析法与神经⽹络法的⾮平稳风速信号短期预测优化算法[期刊论⽂] -中南⼤学学报(⾃然科学版) 2011(9)56.李有亮.⾼⼭风电并⽹后⼤电⽹充裕性评估研究现状与展望[期刊论⽂]-华东电⼒ 2011(3)57.马彦宏.汪宁渤.马明.刘光途.赵龙基于神经⽹络的酒泉风电基地超短期风电功率预测⽅法[期刊论⽂]-电⼒建58.范⾼锋.裴哲义.⾟耀中风电功率预测的发展现状与展望[期刊论⽂]-中国电⼒ 2011(6)59.范宏.陈成优.⾦义雄短期风电功率的预测⽅法[期刊论⽂]-上海电⼒学院学报 2013(1)60.常蕊.朱蓉.柳艳⾹.何晓凤基于均⽣函数的风电场风速短临预报模型[期刊论⽂]-⽓象 2013(2)61.杨淑莹.王丽贤.⽜廷伟.邓飞基于粒⼦滤波优化的滚动式时间序列多步预测[期刊论⽂]-系统⼯程与电⼦技术2012(6)62.严欢.卢继平.覃俏云.张宜阳基于多属性决策和⽀持向量机的风电功率⾮线性组合预测[期刊论⽂]-电⼒系统⾃动化 2013(10)63.陈茜关于风电场输出功率预测技术发展的综述[期刊论⽂]-⼭西电⼒ 2012(2)64.刘⽂华关于风电场输出功率预测技术发展的综述[期刊论⽂]-中国科技成果 2012(1)65.洪翠.林维明.温步瀛风电场风速及风电功率预测⽅法研究综述[期刊论⽂]-电⽹与清洁能源 2011(1)66.陈丹丹.李永光.张莹.刘祥风电场风速预测的研究⽅法[期刊论⽂]-上海电⼒学院学报 2011(3)67.王耀霞基于Hilbert-Huang变换和最⼩⼆乘⽀持向量机的电⼒市场出清电价预测[期刊论⽂]-电⼦测量技术2010(9)引⽤本⽂格式:潘迪夫.刘辉.李燕飞.PAN Di-fu.LIU Hui.LI Yan-fei基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[期刊论⽂]-电⽹技术 2008(7)。
基于时间序列分析的风电功率预测模型研究随着全球能源需求的不断增加,可再生能源逐渐成为了人类能源产业领域的热门话题之一。
风能作为可再生能源的代表之一,在发展方面也得到了越来越多的支持和关注。
风能发电具有天然的优势,如无污染、可再生、高效等,因此越来越多的国家和地区开始投资和建设风电场。
而对于风电场来说,提高风电的预测精度是提升风电场效益不可或缺的一部分。
1. 风电功率预测的意义在风电场的运营管理中,风电功率预测是极为重要的一环。
风电场的发电效益和安全经营都离不开准确的功率预测。
功率预测可以减少电力系统对传统火电的依赖,提高电力系统的环保性和安全性。
因此,建立具有预测功率的能力的模型是非常必要的。
2. 时间序列分析的基本原理时间序列分析是一种用于分析时间序列数据的方法。
时间序列数据是指在一段连续的时间内收集到的一系列连续时间上的观测值。
时间序列分析可以提取不同频率和不同方面的信息,并可以在不同的场景中应用,如预测、模型选择和诊断等。
时间序列分析的基本原理是根据数据的特征(如变化趋势、季节性、循环性和随机性)建立模型,进而对未来的数据进行预测。
时间序列分析的核心是选择适当的模型和参数,并使用最优化算法估计这些模型参数。
3. 风电功率预测模型的建立目前,常用的风电功率预测方法包括基于人工神经网络、支持向量机、回归树等。
其中,基于时间序列分析的方法一直是风电功率预测领域的重要研究方向,具有一定的优势。
建立基于时间序列分析的预测模型的主要步骤包括:(1)数据获取:收集风速和风电功率的历史数据,评估数据质量,对低质量数据进行清洗和处理。
(2)数据探索和分析:对历史数据进行可视化和描述性统计分析,了解数据的分布、特性和相关性。
(3)模型选择:根据数据特点和需求选择合适的模型,如ARIMA、SARIMA、VAR、VARMA等。
(4)模型训练和优化:使用历史数据进行模型训练和参数估计,选择适当的评估指标,如均方误差、平均绝对百分比误差、相关系数等,对模型进行评估和优化。
基于奇异值分解的自混合干涉信号降噪方法作者:郭晴叶会英来源:《现代电子技术》2019年第09期摘 ;要:构建光反馈自混合干涉理论模型,通过Matlab仿真分析验证理论模型的正确性。
利用奇异值分解的方法确定Hankle矩阵,对矩阵进行奇异值分解,构造逼近矩阵对含噪自混合干涉信号进行降噪处理。
在适度反馈机制下,选取不同的光反馈水平因子[C]值进行仿真。
对降噪前后信号波形进行仿真分析,实验结果表明奇异值分解改善了信号的光滑性,起到了降噪的效果;通过对降噪前后所测位移精度的对比,精度的提高表明奇异值分解的降噪方法在自混合干涉信号噪声处理方面的有效性。
关键词:光反馈; 自混合干涉; 奇异值分解; 降噪; OFSMI信号; 条纹计数法中图分类号: TN247⁃34 ; ; ; ; ; ; ; ; ; ; ; ; 文献标识码: A ; ; ; ; ; ; ; ; ; ; ; ; ;文章编号:1004⁃373X(2019)09⁃0026⁃05Singular value decomposition based denoising method of self⁃mixing interference signalGUO Qing1, 2, YE Huiying1(1. College of Information Engineering, Zhengzhou University, Zhengzhou 450001,China;2. College of Information and Electronic Engineering, Shangqiu Institute of Technology,Shangqiu 476000, China)Abstract: The theoretical model of optical feedback self⁃mixing interference (OFSMI)system is constructed, and its correctness is verified with Matlab simulation analysis. The method based on singular value decomposition (SVD) is used to denoise the self⁃mixing interference signal with noise by means of determination of the Hankle matrix, SVD of matrix and construction of approximation matrix. By means of moderate feedback mechanism, the different optical feedback level factor [C ]values are selected for simulation, and the simulation analysis is carried out for the signal waveforms before and after denoising. The experimental results show that the SVD can improve the smoothness of the signal, and denoise the signal; in comparison with the measured displacement accuracy before and after signal denoising, the effectiveness of SVD⁃based denoising method is verified by accuracy improvement in the aspect of noise processing of self⁃mixing interference signal.Keywords: optical feedback; self⁃mixing interference; singular value decomposition; denoising; OFSMI signal; fringe counting method0 ;引 ;言激光器输出的光在传播途中由于外部物体的阻挡,会出现反射或散射现象,导致一部分光再次折回到激光器的内腔,这部分光与激光器腔内的光相混合,影响激光器输出功率、频率,这种现象称为光反馈自混合干涉(Optical Feedback Self⁃Mixing Interference,OFSMI),产生的信号称为OFSMI信号。
328振动、测试与诊断第29卷《盔蛞鑫表3奇异值降噪后的识别结果图5p-LSCF稳定图(30%噪声)图6降噪后的p-LSCF稳定图(30%噪声)4结论利用奇异值分解技术对频响函数进行降噪,可以显著地提高信噪比。
使用GARTEUR飞机模型进行数值仿真,在同样条件下降噪前后的识别结果表明,在噪声不太强的情况(10%噪声),由于P—LSCF算法本身具有较强的抗干扰能力,所以降噪后参数识别精度变化不是很大。
在大噪声情况下(30%),频响函数经过降噪,模态参数识别精度得到了明显改善,尤其是阻尼的识别,说明了该降噪方法具有一定的实用性。
参考文献傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000.张令弥.振动测试与动态分析[M].北京:航空工业出版社,1992.吕志民,张武军,徐金梧.基于奇异谱的降噪方法及其在故障诊断技术中的应用口].机械工程学报,1999,35(3):85—88.杨文献,任兴民,姜节胜.基于奇异熵的信号降噪技术研究口].西北工业大学学报,2001,19(3):368—371.胡广书.数字信号处理[M].北京:清华大学出版社,2003.杨文献,姜节胜.机械信号奇异熵研究[J].机械工程学报,2000,36(12):9-13.修春波,刘向,张宇河.相空问重构延迟时间与嵌入维数的选择[J].北京理工大学学报,2003,23(2):219—224.GuillaumeP。
VerbovenP,VanlanduitS,eta1.Apoly-referenceimplementationoftheleast-squarescomplexfrequencydomainestimator[C]//Proceed—ingsofthe21thInternationalModalAnalysisConfer—ence.USA,Kissimmee:s.n.],2003.第一作者简介;孙鑫晖男,1979年3月生,博士研究生。
基于奇异值分解的混沌时间序列Volterra预测
陆振波;蔡志明;姜可宇
【期刊名称】《武汉理工大学学报(交通科学与工程版)》
【年(卷),期】2007(031)004
【摘要】提出一种用于混沌时间序列预测的奇异值分解Volterra滤波器.在Volterra滤波系数计算过程中,采用奇异值分解的方法得到线性方程组的最小二乘解.4种混沌序列的预测实验表明:该滤波器对混沌流的预测性能远优于NLMS自适应Volterra滤波器,前者的一步预测相对误差比后者小3~4个数量级.
【总页数】4页(P672-675)
【作者】陆振波;蔡志明;姜可宇
【作者单位】海军工程大学电子工程学院,武汉,430033;海军工程大学电子工程学院,武汉,430033;海军工程大学电子工程学院,武汉,430033
【正文语种】中文
【中图分类】TP27
【相关文献】
1.基于改进局域Volterra自适应滤波器的风电功率混沌时间序列预测模型 [J], 王兰;李华强;吴星;王羽佳
2.基于Volterra级数的RLS自适应算法的混沌时间序列预测 [J], 束慧;陈卫兵
3.混沌时间序列的Volterra级数多步预测研究 [J], 白建东;叶德谦;李春兴
4.多变量混沌时间序列Volterra自适应实时预测 [J], 方芬
5.基于稀疏Volterra滤波器混沌时间序列自适应预测 [J], 陆振波;蔡志明;姜可宇
因版权原因,仅展示原文概要,查看原文内容请购买。
基于奇异值分解降噪方法的大型风机故障诊断研究刘佳音;于晓光;金鹏飞;李宏坤【摘要】利用奇异值分解降噪方法对大型风机异常振动信号进行降噪处理,并应用MATLAB软件实现.首先将含噪的测量信号构成的矩阵分解成有用信号空间与噪声空间,采用三种不同的奇异值阈值选取方法,即奇异值差分谱方法、特征均值方法以及奇异值中值方法,对两个空间的奇异值矩阵处理后,再重构信号,实现测量信号的降噪,从而凸显故障的信息特征.利用计算数据和图像说明不同奇异值阈值选取方法的降噪效果,得出奇异值中值方法对大型风机异常振动信号降噪效果最佳.在此基础上对信号进行频谱分析,可以实现对大型风机故障的高效准确诊断.【期刊名称】《辽宁科技大学学报》【年(卷),期】2016(039)004【总页数】8页(P284-291)【关键词】大型风机;奇异值分解;奇异值阈值;降噪;故障诊断【作者】刘佳音;于晓光;金鹏飞;李宏坤【作者单位】辽宁科技大学机械工程与自动化学院,辽宁鞍山 114051;辽宁科技大学机械工程与自动化学院,辽宁鞍山 114051;辽宁科技大学机械工程与自动化学院,辽宁鞍山 114051;大连理工大学机械工程学院,辽宁大连 116024【正文语种】中文【中图分类】TH165大型风机是广泛应用于石油、化工、电力等行业的一种旋转机械,对国民经济的发展具有非常重要的意义。
在大型风机的各种故障中,常见的故障类型有不平衡故障、不对中故障以及机械松动故障等。
一旦大型风机出现故障,将会造成较为严重的经济损失。
在某些情况下,还会导致环境污染、损害人身安全等严重后果。
因此对大型风机异常振动信号的研究具有重要意义[1]。
通常大型风机振动非常强烈,现场采集的故障信号中含有较大的噪声,影响大型风机故障诊断的准确性,所以有必要对其进行降噪处理,让故障特征信号凸显出来。
因此如何降低振动信号中的噪声干扰,提取信号的故障特征,是实现风机故障诊断必须解决的关键问题。
基于多位置NWP与主成分分析的风电功率短期预测王丽婕;冬雷;高爽【摘要】数值天气预报(NWP)信息对风电功率短期预测模型的准确性起着重要作用.考虑风电场周围多个位置的NWP信息,提出聚类分析与主成分分析相结合的方法对风力发电功率短期预测迸行研究.通过聚类分析提取历史数据中与预测日NWP 最相近的样本,然后用主成分分析法对样本日信息进行处理,获得更加准确反映风电场特性的参数.通过对依兰风电场的发电功率进行预测,证实了该方法的有效性,其准确度比基于单位置NWP的预测模型提高了4.65%.【期刊名称】《电工技术学报》【年(卷),期】2015(030)005【总页数】6页(P79-84)【关键词】风电功率预测;数值天气预报;多位置;主成分分析;聚类分析【作者】王丽婕;冬雷;高爽【作者单位】北京信息科技大学电气工程系北京100192;北京理工大学自动化学院北京100081;北京理工大学自动化学院北京100081【正文语种】中文【中图分类】TM614随着风力发电技术的不断发展,风电单机容量和并网型风电场的规模都在不断增加,在电力需求中所占比例也越来越大。
如果穿透率过高,风速的间歇性和波动性将会对电力系统的安全稳定运行以及电能质量带来不利影响[1]。
如果能对风速和风电功率进行较准确的预测,可大幅降低电网旋转备用容量,从而有效降低风力发电系统成本,并为电网运行调度提供可靠的依据[2]。
风电功率预测按照预测的时间长度可分为超短期预测和短期预测。
超短期预测主要使用风电场SCADA系统记录的风速、功率等历史数据来建模,可预测的尺度一般是几个小时,主要用于对风电场的运行进行控制和稳定电能质量。
短期预测必须使用数值天气预报(NWP)数据,能预测提前几十个小时到几天的发电量,用于电网调度及风电功率竞价上网[3]。
我国用于风电场发电功率预测的专用数值天气预报的开发较晚,所以之前很多研究及成果都集中在风电功率的超短期预测上。
文献[4,5]所采用的主成分分析法是对SCADA系统采集的风速、风向、温度、湿度等进行处理,仅能预测未来几小时的发电功率。