基于以太网的智能电表
- 格式:pptx
- 大小:1.16 MB
- 文档页数:12
基于以太网技术的用电信息采集系统光纤信道组网建设作者:刘勇锋来源:《中国科技纵横》2013年第20期【摘要】随着我国经济的发展,社会对电的需求量不断增加,电力企业对电网建设的投入也不断加大。
而在电力营销体系当中,电能计量是其中重要的环节之一。
智能电表作为一种新型电费计量装置,具有电能计量、信息存储及处理、实时监测、自动控制、信息交互等功能,其本地及远程通信接口与用电信息采集后台连接,可即时获悉客户用电信息。
相对以往的普通电能表,除基本计量功能外,支持双向计量、自动采集、阶梯电价、冻结、控制、监测等功能,具有高可靠性、高安全等级、大存储容量等特点。
【关键词】电力营销以太网技术智能电表信息采集1 系统建设规模用电信息采集系统2014年度光纤通信信道的建设区域主要为:淮北城郊区域110kV青龙山变电站、35kV刘庄工业园变电站、35kV烈山变电站、35kV蔡里变电站、全部10kV公用配电线路接入配变和电力用户的光纤覆盖,建设光缆总长度为300公里。
其中主干光缆采用48芯光缆,长度为70公里;分支光缆采用36芯、24芯及12芯光缆,长度分别为35公里、60公里和135公里;配置设备1178台套,其中本期配置OLT设备4台;ONU设备970台;1:16无源光分路器200只;三层接入交换机4台。
实现城郊区域4个变电站、17条10kV配电线路、970台配变的光纤全覆盖。
2 系统建设方案远程通信综合选用有源光纤以太网络(AON)、无源光纤以太网络(EPON)、小型无线专网、无线公网(GPRS/CDMA/3G等)等多种通信技术为用电信息采集系统主站系统和采集终端之间提供全面统一的通信通道。
本地通信可以选用低压载波、RS485等多种通信技术,提供采集终端到电能表之间的通信通道。
公变建设方案:窄带载波集中器+窄带载波采集器+智能表通信模式本方案集中器与采集器之间采用窄带载波作为本地区域集中的通信信道,采集器与电能表之间采用RS-485总线通信方式。
第58卷0引言M odbus 协议定义了一个控制器能够认识使用的消息结构,而不管它们是经过何种网络进行通信的。
因此,底层通信方式可以使用R S232、R S485等串行链路,也可以使用TCP/I P 以太网链路。
在M odbus 网络上通信时,控制器必须要知道该网络中其他设备的地址,才能识别按地址发来的消息,并作出相应行为。
而智能电表是智能电网数据采集的基本设备之一,承担着原始电能数据采集、计量和传输的任务,是实现信息集成、分析优化和信息展现的基础。
智能电表除了具备传统电能表基本用电量的计量功能以外,为了适应智能电网和新能源的使用它还具有双向多种费率计量功能、用户端控制功能、多种数据传输模式的双向数据通信功能、防窃电功能等智能化的功能。
1系统构成本文所述的一种基于M odbus Tcp 协议的FX 5U 与智能电表通讯的方法,所选用硬件由三菱PLC\FX 5U -80M R ,三菱触摸屏G S2107-W TBD -N 和安科瑞智能电表A PM 800组成,其中PLC 和电表使用M odbusTcp 协议数据通讯,智能电表数据在触摸屏内显示。
2软件通讯配置2.1智能电表网络I P 设置首先用双绞线B 类网线连接智能电表以太网模块和电脑,同时给仪表通电。
此时,电脑显示器中的右下角出现本地连接现已连接上,则可继续下一步操作。
否则,仪表断电,检查网线,网络设置。
进入电脑操作系统(以W i n7为例),使用鼠标点击右下角网络图标,点击“打开网络与共享中心”,点击更改适配器设置,右击本地连接,点击属性,双击I nt er net协议版本4(TCP/I Pv4),进入如图1所示页面。
选择“使用下面的I P 地址”,并填入I P 地址192.168.1.110(同一个子网即可),子网掩码255.255.255.0,默认网关192.168.1.1(D N S 部分可以不填)。
点击“确定”及“本地连接属性”页面的确定,等待系统配置完毕。
四川理工学院课程设计书学院计算机学院专业物联网工程20121班课程无线传感器网络题目现代小区智能电表课程设计教师符长友学生胥玉环刘依粒胡伟杰宋治桦设计时间:2014年7月5日至2017年7月11日前言近年来,在低碳经济、绿色节能及可持续发展思想的推动下,如何进一步提高电网效率,积极应对环境挑战,提高供电可靠性和电能质量,完善电力用户服务,适应更加开放的能源及电力市场化环境需要,对未来电网的发展提出了更高的要求。
智能电网的概念应运而生并成为全球电力行业共同研究和探讨的热点,支撑中国乃至全球智能电网的将是通信技术、信息处理技术和控制技术。
智能电表作为智能电网建设的重要基础装备,加快智能电表产业链整合,促进其产业化,对于电网实现信息化、自动化和互动化具有支撑作用。
基于以上分析,本文研究旨在基于AT89C51单片机的智能电表的设计。
本次设计基于单片机AT89C51是以微处理器或微控制器芯片为核心的可以存储大量的测量信息并具有对测量结果进行实时分析、综合和做出各种判断能力的仪器。
一般具有自动测量功能,强大的数据处理能力,进行自动调零和单位换算功能,能进行简单的故障提示,具有操作面板和显示器,有简单的报警功能。
本文主要包括以下三个方面的工作:(1)智能电表的设计背景、优点及发展现状本文首先分析智能电表的设计背景,其次讨论智能电表的优点及相关的应用。
(2)智能电表的硬件和软件实现分析智能电表应该具备的功能,给出该仪表的总体设计框图;详细讨论了该电路的核心芯片选取、数据采集电路的设计、通信电路及输入输出系统的实现并给出了核心芯片.AT89C51的详细参数;使用结构化程序设计手段,利用单片机C语言程序实现按键的扫描并处理程序、数据的采集及后续的算法程序、红外或RS485通信方式的自动抄表程序、CPU卡的读写操作程序以及段式LCD的显示驱动程序。
(3)设计的结论分析、不足及未来的展望阐述了设计的测试结果并对结论进行了分析,给出了设计中的不足之处,并提出了将来的修改意见及改进之处,对智能电表的未来进行展望。
电力系统中智能电能表的使用方法与数据采集技巧智能电能表是一种新型的电力计量设备,具备集数据采集、通信、储存、显示等功能于一体的特点,被广泛应用于电力系统中。
本文将介绍智能电能表的使用方法与数据采集技巧,以帮助读者更好地了解和应用这一新兴的智能设备。
一、智能电能表的使用方法1. 安装与连接智能电能表的安装与连接过程与传统的电能表类似,首先需要确保安全电路断开,然后根据接线图和安装说明将电能表与电路正确连接。
安装完成后,恢复安全电路,确保电能表正常运行。
2. 参数设置智能电能表具备多种参数设置功能,可以根据具体需求进行灵活配置。
常见的参数设置包括时间、电价、数据采集间隔等。
通过按照说明书进行设置,可以根据实际情况进行灵活调整。
3. 数据读取智能电能表具备显示屏和通信接口,可以方便地读取电力数据。
通过按下显示屏上的相应按键,可以查看电流、电压、功率等实时数据。
同时,智能电能表还支持通过通信接口连接电力管理系统,实现数据远程读取和管理。
二、智能电能表的数据采集技巧1. 技术准备进行智能电能表数据采集之前,需要进行一些技术准备工作。
首先,需要确保采集设备与智能电能表之间的通信接口匹配,可以通过USB接口、以太网接口或其他通信方式进行连接。
其次,需要下载并安装相应的数据采集软件,以便进行数据读取和处理。
2. 数据读取采集智能电能表的数据时,可以通过数据采集软件进行读取。
在软件中,设置与智能电能表通信的相关参数,例如通信接口类型、通信端口号等。
然后,通过软件进行数据读取,可以获取到智能电能表传输的实时数据。
3. 数据处理与分析采集到的智能电能表数据可以进行进一步的处理和分析。
首先,可以将数据导入电力管理系统,进行数据存储和管理。
其次,可以利用数据处理软件进行数据分析,例如绘制曲线图、计算能耗等。
通过对数据的分析,可以更好地了解电力系统的运行情况,为电力管理提供参考依据。
4. 数据安全与隐私保护在进行智能电能表数据采集时,需要注意保护数据的安全性和隐私性。
智能电能表概述一.定义随着微电子技术的不断发展,集成了CPU、存储器、定时器/计数器、并行和串行接口、看门狗、前置放大器甚至A/D、D/A转换器等电路在一块芯片上的超大规模集成电路芯片(即单片机)出现了。
以单片机为主体,将计算机技术与测量控制技术结合在一起,又组成了所谓的“智能化测量控制系统”,也就是智能仪器。
其中传感器拾取被测参量的信息并转换成电信号,经滤波去除干扰后送入多路模拟开关;由单片机逐路选通模拟开关将各输入通道的信号逐一送入程控增益放大器,放大后的信号经A/D转换器转换成相应的脉冲信号后送入单片机中;单片机根据仪器所设定的初值进行相应的数据运算和处理(如非线性校正等);运算的结果被转换为相应的数据进行显示和打印;同时单片机把运算结果与存储于片内闪速存储器或电可擦除存贮器内的设定参数进行运算比较后,根据运算结果和控制要求,输出相应的控制信号(如报警装置触发、继电器触点等)。
此外,智能仪器还可以与PC机组成分布式测控系统,由单片机作为下位机采集各种测量信号与数据,通过串行通信将信息传输给上位机——PC机,由PC机进行全局管理。
智能电能表就是智能仪器的其中一种。
智能电能表是由测量单元、数据处理单元、通信单元等组成,具有电能量计量、数据处理、实时监测、自动控制、信息交互等功能的电能表。
智能电表通过用户交费对智能IC卡充值并输入电表中,电表才能供电,表中电量用完后自动拉闸断电,从而有效地解决上门抄表和收电费难的问题。
并对用户的购电信息实行微机管理,方便进行查询、统计、收费及打印票据等。
智能电表较普通机械式电能表有着计量更精准、智能扣费、电价查询、电量记忆、余额报警、信息远程传送的优势。
对电力公司而言,采用智能电表可省去人工抄表的成本,并且减少窃电的损失。
除此之外,电力公司利用智能电表取得客户的用电量资料后,再用Internet的方式实时回传给用户参考,客户可据以分散用电的时间(因尖峰时段费率高),作电力使用的管理,达到节省电费成本的效益。
基于物联网的智能电表系统设计与实现随着科技的不断发展和进步,越来越多的新兴技术被应用于社会生活中。
物联网技术就是其中之一,它可以将设备、传感器等物理对象与互联网连接起来,通过数据传输和互联互通实现设备之间的自动化协同和智能化控制。
在能源领域,智能电表作为物联网应用之一,受到了广泛的关注和重视。
本文将探讨基于物联网的智能电表系统的设计与实现。
一、智能电表系统的需求及目标智能电表作为一种新型的电力计量设备,已经代替了传统机械式电表,其通过数字芯片技术实时测量电能使用量,并将统计数据传输到云平台,实现电能的远程读取、监控和控制。
智能电表系统的需求主要从以下几个方面考虑:(1)提高计量准确度:采用数字芯片技术,精度可达到三位小数。
(2)实现远程监控:电表数据通过互联网传输到云平台,管理人员可以无需到现场即可进行远程监控和管理。
(3)实现远程控制:通过云平台控制智能电表,可以实现远程开关电路、限流、限功率等功能。
(4)可视化数据管理:智能电表系统支持多种统计图表展示,以便管理人员及时掌握系统运行状态和能耗情况。
(5)灵活可扩展:智能电表系统应具备灵活性和可扩展性,采用标准化的接口和协议设计,方便与其他系统进行集成和互联。
二、智能电表系统的架构智能电表系统主要由以下几个部分构成:物理硬件部分、通信通讯部分、云平台和Web应用程序。
物理硬件包括智能电表、电表采集器、采集器和云平台之间的通信模块等;通信通讯部分包括以太网、GPRS、WiFi等无线网络技术;云平台是数据的处理、分析、储存中心,Web应用程序提供数据展示和用户操作界面。
(1)物理硬件部分智能电表:采用数字式电表,能够实时监测电流、电压、功率、电能等数据。
电表采集器:采用微型计算机技术,通过串口或IO口进行数据采集,将数据上传到数据收集中心。
采集器和云平台之间的通信模块:主要是实现采集器和云平台之间的数据通信和互联。
(2)通信通讯部分以太网:可实现局域网内部分机房之间的数据采集和传输,数据传输速度快,稳定性高,适合数据量大的场合。
基于DLMS/COSEM协议的智能电表设计更新于2012-09-24 06:50:36 文章出处:互联网DLMS信息编码COSEM协议1引言目前自动抄表系统(AMR)已在我国电能计量部门得到了广泛的应用,它为电能管理的现代化创造了良好的条件。
但是由于国内没有实现电能表通信协议的统一,使得通信协议互不兼容,不利于电能管理系统的集成、维护和升级。
DLMS/COSEM 通信协议是国际电工委员会为解决自动抄表系统和计量系统中的数据采集,仪表安装、维护,系统集成等问题提出的新的电能表通信标准。
它以良好的系统互连性和互操作性成为迄今为止较为完善的电表通信协议标准。
DLMS/COSEM通信协议标准已经被IEC采纳作为国际标准,即IEC62056系列。
本文采用该标准设计了满足AMR发展要求的电能表。
2自动抄表系统组成自动抄表系统大体由三部分构成:电能表、通信网络、数据交互设备。
电能表是指具有数据存储以及通信交换能力的电力仪表;通信网络是指在电能表和数据交换设备之间进行数据传输的通道;数据交换设备则是需要与电能表进行数据通信、采集或调校电能表的设备,如抄表主台。
电能表、数据交换设备、传输网络是自动抄表系统的基础,而自动抄表系统的核心是通信协议标准,因此,选择一个合适的通信标准对构建自动抄表系统显得至关重要。
3 IEC62056系列标准传统的电能表通信协议采用面向虚拟设备的设计方法,即面向电表的设计方法,在协议中仅包含被访问设备和数据的地址,数据的数值。
该种协议的特点是原理简单, 对仪表和系统开发的要求不高,但是在与不同的设备集成时,需要编制特定的驱动程序。
目前国内运用最广泛的DL/T645多功能电能表通信协议就是采用此方法。
IEC62056标准致力于满足所有计量仪表与自动抄表系统的应用要求,满足不同设备系统之间的集成,它以兼容性、独立性、扩展性作为其实现目标。
兼容性即不同厂商产品相互兼容、新开发产品与现存产品兼容;独立性即产品与通信介质、制造厂商等无关;扩展性即易于对现存系统进行扩展(仪表具备即插即用特性)、仪表功能可扩展。