级数理方程试题+答案
- 格式:doc
- 大小:166.50 KB
- 文档页数:5
数理方程习题答案数理方程习题答案数理方程是数学中一门重要的学科,它研究的是各种各样的方程。
在学习数理方程的过程中,习题是不可或缺的一部分。
通过解习题,我们可以加深对数理方程的理解,掌握解题的方法和技巧。
在这篇文章中,我将为大家提供一些数理方程习题的答案,希望能对大家的学习有所帮助。
1. 求解方程:2x + 5 = 17。
解:将方程化简,得到2x = 17 - 5,即2x = 12。
再将等式两边同时除以2,得到x = 6。
所以方程的解为x = 6。
2. 求解方程组:2x + y = 73x - 2y = 4解:可以使用消元法来求解这个方程组。
首先,将第一个方程乘以2,得到4x + 2y = 14。
然后将第二个方程与这个结果相加,得到7x = 18。
再将等式两边同时除以7,得到x = 18/7。
将x的值代入第一个方程,可以求得y的值为y = 7 - 2x = 7 - 2(18/7) = 7 - 36/7 = 7/7 - 36/7 = -29/7。
所以方程组的解为x = 18/7,y = -29/7。
3. 求解二次方程:x^2 - 5x + 6 = 0。
解:可以使用因式分解法来求解这个二次方程。
首先,将方程化简,得到(x - 2)(x - 3) = 0。
根据乘积为零的性质,可以得到x - 2 = 0或者x - 3 = 0。
解这两个方程,可以得到x = 2或者x = 3。
所以方程的解为x = 2或者x = 3。
4. 求解三次方程:x^3 - 3x^2 + 2x - 4 = 0。
解:可以使用综合除法来求解这个三次方程。
首先,将方程按照降幂排列,得到x^3 - 3x^2 + 2x - 4 = 0。
然后,尝试将方程的第一项x^3除以x的最高次数x^3,得到商为1。
将这个商乘以方程的所有项,得到x^3 - 3x^2 + 2x - 4 - (x^3 - 3x^2 + 2x - 4) = 0。
化简这个等式,可以得到0 = 0。
长沙理工大学考试试卷…………………………………………………………………………………………………………………试卷编号 拟题教研室(或教师)签名 教研室主任签名…………………………………………………………………………………………………………………课程名称(含档次) 数学物理方程与特殊函数 课程代号专 业 层次(本、专) 本 科 考试方式(开、闭卷) 闭卷一.判断题:(本题总分25分,每小题5分)1.二阶线性偏微分方程062242=+++-y x yy xy xx u u u u u 属于椭圆型; ( )2.定解问题的适定性包括解的稳定性、解的唯一性和解的存在性; ( )3.如果格林函数),(0M M G 已知,且它在Γ+Ω上具有一阶连续偏导数,又若狄利克雷问题⎩⎨⎧=Ω∈=∆Γ ).,,(|,),,(0z y x f u z y x u 在Γ+Ω上具有一阶连续偏导数的解存在,那么其解可表示为=)(0M u dS nG z y x f ⎰⎰Γ∂∂-),,(; ( ) 4.设)(x P n 为n 次Legendre 多项式,则0)()(111050358⎰-=dx x P x P ; ( )5.设)(x J n 为n 阶Bessel 函数,则[])()(021ax xJ a ax xJ dxd =. ( ) 二.解答题:(本题总分65分) 1.(本小题15分)设有一根长为l 的均匀细杆,它的表面是绝热的,如果它的端点温度为1),0(u t u =,2),(u t l u =,而初始温度为0T ,写出此定解问题.2.(本小题20分)利用固有函数法求解下面的定解问题⎪⎪⎩⎪⎪⎨⎧====><<+=.0),(,0),0(,0)0,(,0)0,(),0,0(cos sin 2t l u t u x u x u t l x l x t A u a u x x t xx tt πω 其中ω,A 是常数.3.(本小题15分)求出方程xy u u yy xx =+的一个特解.第 1 页(共 2 页)4.(本小题15分)用试探法求解拉普拉斯方程狄氏问题:⎩⎨⎧+=≤≤<=∆ .sin cos ),()20,(,0),(22θθθπθθB A R u R r r u 三.证明题:(本题总分10分) 证明:函数⎰+-+++-=atx at x ds s a at x at x t x u )(212)()(),(ψϕϕ是下面的齐次方程的初值问题 ⎪⎩⎪⎨⎧==>+∞<<-∞=).()0,(),()0,(),0,(2x x u x x u t x u a u txx tt ψϕ 的解.第 2 页(共 2 页)长沙理工大学试卷标准答案课程名称: 数学物理方程与特殊函数(B) 试卷编号:03一.判断题:(本题总分25分,每小题5分)1.×; 2.√; 3.√; 4.√; 5.×.二.解答题:(本题总分65分)1.(本小题15分)泛定方程:xx t u a u 2=,)0,0(><<t l x ; …………………5分 边界条件:1),0(u t u =,2),(u t l u =; …………………10分 初始条件:0)0,(T x u =. …………………15分2.(本小题20分) 泛定方程相应的齐次方程满足齐次边界条件的固有函数系为⎭⎬⎫⎩⎨⎧l x n πcos ,故可设方程的解为∑∞==0cos)(),(n n lx n t u t x u π, ……………5分 将它代入泛定方程,得l x t A l x n t u l a n t u n n n πωππcos sin cos )()(02=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+''∑∞=, ……………10分 于是),1(0)()(2≠=⎪⎭⎫ ⎝⎛+''n t u l a n t u n n π .s i n )()(121t A t u l a t u ωπ=⎪⎭⎫ ⎝⎛+'' ……………12分 由初始条件,得 ),2,1(0)0()0( =='=n u u n n …………14分显然,当1≠n 时,0)(=t u n ;当1=n 时,解上面的微分方程得ττπωτπd t l a A a l t u t)(sin sin )(01-=⎰第1页(共3页)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⋅=t l a l at l a a Al ωππωπωπsin sin 122, ……………18分 故所求的解为 l x t l a l at l a a Al t x u πωππωπωπcos sin sin 1),(22⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⋅=。
参考答案与试题解析A组一.(共30小题)1.在方程、、、中,无理方程共有()、2.三角形的三条边长分别为2、k、4,若k满足方程k2﹣6k+12﹣=0,则k的值()﹣3.已知,则x等于(),先化简再求值即可得出答案.解:已知∴原式可化简为:+34.若,则x+y的值为()=a不能为负,5.方程的所有解的和为()解:方程时,时,6.已知四个方程①;②;③;④,其中有实数解的方C D原方程可化为8.已知下列关于x的方程:①;②+1=0;③+2x=7;④﹣7=0;⑤+=2;⑥﹣=.C±或是二元二次方程是分式方程是无理方程D.先移项得到=C DC D、∵、∵,∴、∵14.方程的解的情况是()此题需将方程变形为,再分三种情况讨论,即可得出方程解的解:将方程变形为,即,即成为B组15.如果满足=a的实数x恰有6个值,那么a的取值范围是()C D=|﹣)|时,=a=,;)|时,=a=,≥﹣)|时,=a=,;时,16.方程+=12的实数解个数为()时,=8+17.已知a为非负实数,若关于x的方程至少有一个整数根,则a可能取值的个数为()=ya=,18.方程的根为()C D==020.在方程、、、中,无理方程的个数有()、C D=,去掉分母后、因为22.下列方程中,无实根的方程是()C D24.(2006•闸北区一模)下列方程中有实数解的方程是()+1=0 =x﹣2 C++1=0 D=、由于≥+1C DCC D 、∵,而C DC D。
第一章曲线论§ 1 向量函数1.证明本节命题3、命题5 中未加证明的结论略2.求证常向量的微商等于零向量。
证:设,为常向量,因为所以。
证毕3.证明证:证毕4.利用向量函数的泰勒公式证明:如果向量在某一区间所有的点其微商为零,则此向量在该区间上是常向量。
证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。
所以,,根据数量函数的Lagrange 中值定理,有其中,,介于与之间。
从而上式为向量函数的0 阶Taylor 公式,其中。
如果在区间上处处有,则在区间上处处有,从而,于是。
证毕5.证明具有固定方向的充要条件是证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。
充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是为常向量,于是,,即具有固定方向证毕因为,故,从而6.证明平行于固定平面的充要条件是。
证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此充分性:设,即,其中,如果,根据第5 题的结论知, 具有固定方向, 则某个数量函数, 为单位常向量,任取一个与 垂直的单位常向量 ,于是作以 为法向量过原点的平面 ,则 平行于 。
如果 ,则 与 不共线, 又由 可知, , ,和 共面,于是 ,,那么 ,这说明 与共线,从而,根据第 5 题的结论知, 具有固定方向,则 可表 示为,其中 为某个数量函数, 为单位常向量,作以为法向 量,过原点的平面 ,则 平行于 §2 曲线的概念1. 求圆柱螺线 在点 的切线与法平面的方程。
解: ,点 对应于参数 ,于是当 时, ,,于是切线的方程为:法平面的方程为2. 求三次曲线 在点 处的切线和法平面的方程。
解: ,当 时, , , 于是切线的方程为:法平面的方程为3. 证明圆柱螺线 的切线和 轴成固定角 证:可表示为 ,其中 为其中 , 为数量函数, 令 证毕令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则证毕4.求悬链线从起计算的弧长解:5.求抛物线对应于的一段的弧长解:6. 求星形线,的全弧长。
作业参考答案3、在(,ππ-)这个周期上,2()f x x x =+,试将它展开为傅立叶级数,又在本题所得展开式中置x π=,由此验证222211112346π++++=解:因为2()f x x x =+在(,ππ-)上满足狄氏定理,可以展开为傅立叶级数 又 l π=所以()0101()cos sincos sin k k k k k k k k f x a a x b x l l a a kx b kx ππ∞=∞=⎛⎫=++ ⎪⎝⎭=++∑∑23201111()d 2233a x x x x πππππππ--=+==⎰ 21()cos d k a x x kx xπππ-=+⎰()()22312sin cos sin 2cos sin xkx kx kx kx kx kx kx k k k πππππππππ---=+++-()241k k =- 21()sin d k b x x kx xπππ-=+⎰()()22312sin cos 2sin cos cos xkx kx kx kx kx kx kx k k k πππππππππ---=-+--()121k k +=- 所以 ()()1221142()1cos 1sin 3k k k f x kx kx kk π∞+=⎛⎫=+-+- ⎪⎝⎭∑222,,,x x x x x ππππππ⎧+-<<⎪==-⎨⎪=⎩令x π=代入上式得:()()()()122222211142141cos 1sin 1133k k k k k k kx kx k k kπππ∞∞+==⎛⎫⎛⎫+-+-=+-⨯-= ⎪ ⎪⎝⎭⎝⎭∑∑ 所以有222211112346π++++=得证5.(1)()cos ,(0,),(0)0,()0f x x x f f αππ=∈==作奇延拓,展为奇函数(sin 函数)1()sin k k f x b kx ∞==∑2cos sin d k b x kx x παπ=⎰2sin()sin()d 2k x k xx πααπ-++=⎰0111cos()cos()k x k x k k ππααπαα--⎡⎤=-++⎢⎥-+⎣⎦()()111cos cos 1cos cos 1k k k k παππαππαα--⎡⎤=-+-⎢⎥-+⎣⎦12221(1)cos ()k k k αππα+⎡⎤=+-⎣⎦- 12212()1(1)cos sin ,0()k k kf x kx x k απππα∞+=⎡⎤∴=+-<<⎣⎦-∑6. (1)2cos(/),(0,/2)(),(0)0,()00,(,)lx l x l f x f f l x l π∈⎧''===⎨ ∈⎩ 作偶延拓,展为偶函数(cos 函数)01()cos k k k x f x a a l π∞=⎛⎫=+ ⎪⎝⎭∑/2/200002111cos d cos d sin 2l l l x x x a x x l l l l l πππππ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰ /202cos cos d l k x k x a x l l l ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭⎰所以要讨论k =1的情况/221021cos d 2l x a x l l π⎛⎫== ⎪⎝⎭⎰ /202cos cos d l k x k x a x l l l ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭⎰/202111cos cos d 2l k k x x x l l l ππ⎡+-⎤⎛⎫⎛⎫= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎰ /211111sin sin 11l k k x x k l k l πππ⎡+-⎤⎛⎫⎛⎫=+ ⎪ ⎪⎢⎥+-⎝⎭⎝⎭⎣⎦11111sin sin 1212k k k k πππ⎡+-⎤⎛⎫⎛⎫=+ ⎪ ⎪⎢⎥+-⎝⎭⎝⎭⎣⎦120,212(1),2(41)m k m k m m π+ =+⎧⎪=-⎨ =⎪-⎩121112(1)2()cos cos ,02(41)m m x mf x x x l l m l ππππ+∞=-∴=++<<-∑ (2)()(1/),(0,),(0)0,()0f x a x l x l f f l ''=-∈==作偶延拓,展为偶函数(cos 函数)01()cos k k k x f x a a l π∞=⎛⎫=+ ⎪⎝⎭∑002(1/)d 22l aa a x l x l =-=⎰ 02(1)cos d l k x k x a a x l l l π⎛⎫=- ⎪⎝⎭⎰ 202221sin cos l a l k k k x x x l l k l l l ππππ-⎛⎫=+ ⎪⎝⎭()222202211421(21)k k n a a k n k n ππ=⎧⎪⎡⎤=--=⎨⎣⎦=+⎪+⎩220421()cos ,02(21)n a a n f x x x l n lππ∞=+∴=+<<+∑8.矩形波()f x 在(/2,/2)T T -这个周期上可以表示为0,/2/2(),/2/20,/2/2T x f x H x x T ττττ-<<-⎧⎪=<<-⎨⎪<<⎩试将它展为复数形式的傅立叶级数解:因为()f x 在(/2,/2)T T -上满足狄氏定理,可以展开为复数形式的傅立叶级数 又 2l T =2()k k ix ix lTkkk k f x c ec eππ∞∞=-∞=-∞==∑∑22/2/2/2/211()d d k k T i x i x T Tk T c f x e x He x T T ππττ--==⎰⎰ 2/2/22k ixTH T e T i k πττπ-⎛⎫=⎪-⎝⎭sin 2k k i i TT H e e H k k i k T πτπτπτππ-⎛⎫- ⎪== ⎪ ⎪⎝⎭当k =0时,/2/2/2/211()d d T k T H c f x x H x T T Tτττ--===⎰⎰ 2211()sin sin k k i x i x T Tk k H H k H k f x e e T k T k T ππτπτπτππ-∞=-∞=∴=++∑∑*****************************************************************3.把下列脉冲()f t 展开为傅立叶积分0,(),0,00,t T f t h T t h t T t T⎧⎪<-⎪⎪=--<<⎨⎪<<⎪>⎪⎩解:在(,)t ∈-∞∞,()f t 满足狄氏条件,且绝对可积,所以()f t 可以展开为付氏积分。