数理方程试题2008A
- 格式:doc
- 大小:60.50 KB
- 文档页数:2
2008年普通高等学校招生全国统一考试(山东卷)理科数学全解全析(1)满足M ⊆{}1234,,,a a a a 且{}{}12312,,,M a a a a a ⋂=的集合M 的个数是().1A ().2B ().3C ().4D2.设z 的共轭复数是z ,若4z z +=,8z z ⋅=,则zz等于 ().A i ().B i - ().1C ± ().D i ±【标准答案】:D 。
【试题分析】 可设2z b i =+,由8z z ⋅=得248, 2.b b +==±()2222.88i z z i z ±===±【高考考点】: 共轭复数的概念、复数的运算。
【易错提醒】: 可能在以下两个方面出错:一是不能依据共轭复数条件设2z bi =+简化运算;二是由248b +=只求得 2.b =【学科网备考提示】: 理解复数基本概念并进行复数代数形式的四则运算是复数内容的基本要求,另外待定系数法、分母实数化等解题技巧也要引起足够重视。
3、函数ln cos ()22y x x ππ=-<<的图象是5.已知4cos()sin 365παα-+=,则7sin()6πα+的值是 23().5A -23().5B 4().5C - 4().5D 【标准答案】:C 。
【试题分析】:334cos()sin cos sin 36225παααα-+=+=,134cos sin 225αα+=, 7314sin()sin()sin cos .66225ππαααα⎛⎫+=-+=-+=- ⎪ ⎪⎝⎭【高考考点】: 三角函数变换与求值。
【易错提醒】: 不能由334cos()sin cos sin 36225παααα-+=+=得到134c o s s i n 225αα+=是思考受阻的重要体现。
【学科网备考提示】:三角变换与求值主要考查诱导公式、和差公式的熟练应用,其间会涉及一些计算技巧,如本题中的为需而变。
2008年高考数学第七章(直线和圆的方程)试题集锦2008年普通高等学校招生全国统一考试文科数学(必修+选修I) 3.原点到直线052=-+y x 的距离为 A.1 B.3 C. 2 D.56.设变量y x ,满足约束条件:⎪⎩⎪⎨⎧-≥≤+≥222x y x x y ,则y x z 3-=的最小值A.-2B. -4C. -6D. -87设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a A. 1 B.21 C. -21 D.-12008年普通高等学校招生全国统一考试理科数学(全国Ⅱ) (5)同文科第6题(11)等腰三角形两腰所在直线的方程分别为02=-+y x 和047=--y x ,原点在等腰三角形的底边上,则底边所在直线的斜率为 A .3 B. 2 C. 31- D. 21-(14)设曲线axey =在点(0,1)处的切线与直线012=++y x 垂直,则a= .2008年普通高等学校招生全国统一考试文科数学(必修1+选修Ⅰ) (4)曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为 (A)30°(B)45°(C)60° (D)12°(10)若直线by ax +=1与图122=+y x 有公共点,则(A)122≤+b a(B) 122≥+b a (C)11122≤+ba(D)11122≥+ba(13)若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ) 7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( )A .2B .12C .12-D .2-10.若直线1x y ab+=通过点(cos sin )M αα,,则( )A .221a b +≤B .221a b +≥C .22111ab+≤ D .22111ab+≥13.同文科第13题2008年普通高等学校招生全国统一考试(四川)数 学(文史类)6、同理科第4题2008年普通高等学校招生全国统一考试(四川卷)理科数学说明:2008年是四川省高考自主命题的第三年,因突遭特大地震灾害,四川六市州40县延考,本卷为非延考卷. 一、选择题:(5'1260'⨯=)4.直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位后所得的直线为( )A .1133y x =-+ B .113yx =-+C .33y x =-D .113yx =+解析:本题有新意,审题是关键.旋转90︒则与原直线垂直,故旋转后斜率为13-.再右移1得1(1)3y x =--.选A .本题一考两直线垂直的充要条件,二考平移法则.辅以平几背景之旋转变换.14.已知直线:60l x y -+=,圆22:(1)(1)2C x y -+-=,则圆C 上各点到直线l 的距离的最小值是答案: 解析:所求最小值=圆心到到直线的距离-圆的半径.圆心(1,1)到直线60x y -+=的距离d=2008年普通高等学校招生全国统一考试(重庆卷)数学试题卷(文史类)(3)曲线C :cos 1.sin 1x y θθ=-⎧⎨=+⎩(θ为参数)的普通方程为(A)(x -1)2+(y +1)2=1 (B) (x +1)2+(y +1)2=1 (C) (x -1)2+(y -1)2=1(D) (x -1)2+(y -1)2=1(15)已知圆C : 22230x y x ay +++-=(a 为实数)上任意一点关于直线l :x -y +2=0 的对称点都在圆C 上,则a = .2008年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类) (3)圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是(A)相离 (B)相交 (C)外切 (D)内切(15)直线l 与圆x 2+y 2+2x-4y+a=0(a<3)相交于两点A ,B ,弦AB 的中点为(0,1),则直线l 的方程为 .2008年普通高等学校招生全国统一考试(天津卷)数学(文史类)2.设变量x y ,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x 则目标函数5z x y =+的最大值为( )A .2B .3C .4D .515.已知圆C 的圆心与点(21)P -,关于直线1y x =+对称.直线34110x y +-=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为 . 2008年普通高等学校招生全国统一考试(天津卷)数学(理工农医类) (2)同文科第2题 。
第七章 直线和圆的方程三 圆的方程【考点阐述】圆的标准方程和一般方程.圆的参数方程. 【考试要求】(6)掌握圆的标准方程和一般方程,了解参数方程的概念。
理解圆的参数方程. (7)会判断直线、圆的位置关系。
【考题分类】(一)选择题(共15题)1.(安徽卷理8文10)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .[B .(C .[33-D .(33-解:设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1x y -+=有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3k k k ≤+≤,选择C 另外,数形结合画出图形也可以判断C 正确。
2.(北京卷理7)过直线y x =上的一点作圆22(5)(1)2x y -+-=的两条切线12l l ,,当直线12l l ,关于y x =对称时,它们之间的夹角为( ) A .30B .45C .60D .90【标准答案】: C【试题分析一】: 过圆心M 作直线l :y=x 的垂线交与N 点,过N 点作圆的切线能够满足条件,不难求出夹角为600。
【试题分析二】:明白N 点后,用图象法解之也很方便 【高考考点】: 直线与圆的位置关系。
【易错提醒】: N 点找不到。
【备考提示】: 数形结合这个解题方法在高考中应用的非常普遍,希望加强训练。
3.(广东卷文6)经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是 A 、10x y ++= B 、10x y +-= C 、10x y -+= D 、10x y --= 【解析】易知点C 为(1,0)-,而直线与0x y +=垂直,我们设待求的直线的方程为y x b =+,将点C 的坐标代入马上就能求出参数b 的值为1b =,故待求的直线的方程为10x y -+=,选C.(或由图形快速排除得正确答案.)4.(湖北卷理9)过点(11,2)A 作圆22241640x y x y ++--=的弦,其中弦长为整数的共有 A. 16条 B. 17条 C. 32条 D. 34条解:圆的标准方程是:222(1)(2)13x y ++-=,圆心(1,2)-,半径13r =过点(11,2)A 的最短的弦长为10,最长的弦长为26,(分别只有一条)还有长度为11,12,25 的各2条,所以共有弦长为整数的221532+⨯=条。
第七章 直线和圆的方程一 直线的方程【考点阐述】直线的倾斜角和斜率,直线方程的点斜式和两点式.直线方程的一般式.两条直线平行与垂直的条件.两条直线的交角.点到直线的距离. 【考试要求】(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.(2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系. 【考题分类】(一)选择题(共3题)1.(全国Ⅱ卷理11)等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为( ) A .3 B .2C .13-D .12-【答案】A【解析】1,02:11-==-+k y x l ,71,047:22==--k y x l ,设底边为kx y l =:3 由题意,3l 到1l 所成的角等于2l 到3l 所成的角于是有371711112211+-=-+⇒+-=+-k k k k k k k k k k k再将A 、B 、C 、D 代入验证得正确答案是A【高考考点】两直线成角的概念及公式【备考提示】本题是由教材的一个例题改编而成。
(人教版P49例7) 2.(全国Ⅱ卷文3)原点到直线052=-+y x 的距离为( ) A .1 B .3C .2D .5【答案】D 【解析】52152=+-=d【高考考点】点到直线的距离公式3.(四川卷理4文6)直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( )(A)1133y x =-+ (B)113y x =-+ (C)33y x =- (D)113y x =+ 【解】:∵直线3y x =绕原点逆时针旋转090的直线为13y x =-,从而淘汰(C),(D )又∵将13y x =-向右平移1个单位得()113y x =--,即1133y x =-+ 故选A ;【点评】:此题重点考察互相垂直的直线关系,以及直线平移问题;【突破】:熟悉互相垂直的直线斜率互为负倒数,过原点的直线无常数项;重视平移方法:“左加右减”;(二)填空题(共2题)1.(江苏卷9)如图,在平面直角坐标系xoy 中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点(0,)P p 在线段AO上的一点(异于端点),这里p c b a ,,,均为非零实数,设直线CP BP ,分别与边AB AC ,交于点F E ,,某同学已正确求得直线OE 的方程为01111=⎪⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-y a p x c b ,请你完成直线OF的方程: ( ▲)011=⎪⎪⎭⎫⎝⎛-+y a p x 。
2008年全国统一考试数学卷(全国新课标.理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.参考公式:样本数据12,,,n x x x 的标准差s =其中x 为样本平均数 柱体体积公式V Sh = 其中S 为底面面积,h 为高锥体体积公式13V Sh =其中S 为底面面积,h 为高球的表面积,体积公式24R S π=,334R V π=其中R 为球的半径第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数2sin()(0)y x ωϕω=+>在区间[]0,2π的图像如下:A .1B .2C .12D .132.已知复数1z i =-,则21zz -=A .2B .2-C .2iD .2i -3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为A .518B .34C .2D .784.设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =A .2B .4C .152D .1725.右面的程序框图,如果输入三个实数a 、b 、c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的A .c x >B .x c >C .c b >D .b c >6.已知1230a a a >>>,则使得2(1)1(1,2,3)i a x i -<=都成立的x 取值范围是A .11(0,)a B .12(0,)a C .31(0,)a D .32(0,)a7.23sin 702cos 10--=A .12B .2C .2D 28.平面向量,a b共线的充要条件是A .,a b方向相同B .,a b两向量中至少有一个为零向量C .R λ∃∈,b a λ=D .存在不全为零的实数12,λλ,120a b λλ+=9.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有A .20种B .30种C .40种D .60种10.由直线12x =,2x =,曲线1y x=及x 轴所围成图形的面积是A .154B .174C .1ln 22D .2ln 211.已知点P 在抛物线24y x =上,那么点P 到点(2,1)Q -的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为A .1(,1)4-B .1(,1)4C .(1,2)D .(1,2)-12.某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为A .B .C .4D .第Ⅱ卷(非选择题共90分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.已知向量(0,1,1)a =- ,(4,1,0)b = ,||a b λ+=且0λ>,则λ= .14.双曲线221916xy-=的右顶点为A ,右焦点为F .过点F 平行双曲线的一条渐近线的直线与双曲线交于点B ,则△A F B 的面积为 .15.一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,那么这个球的体积为 .16.从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm ),结果如下: 甲 品种 271 273 280 285 285 287 292 294 295 301 303 303 307 308 310 314 319 323 325 325 328 331 334 337 352 乙 品种284 292 295 304 306 307 312 313 315 315 316 318 318 320322322324327329331333336337343356由以上数据设计了如下茎叶图:根据以上茎叶图,对甲乙两品种棉花的纤维长度比较,写出两个统计结论:① . ② .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知数列{}n a 是一个等差数列,且21a =,55a =-. (1)求{}n a 的通项n a ;(2)求{}n a 的前n 项和n S 的最大值.18.(本小题满分12分)如图,已知点P 在正方体1111A B C D A B C D -的对角线1BD 上,60PDA ∠=. (1)求D P 与1C C 所成角的大小; (2)求D P 与平面11AA D D 所成角的大小.27 28 29 30 31 32 33 34 351 37 5 5 05 4 2 8 7 3 39 4 0 8 5 5 37 4 124 2 35 56 8 8 4 6 72 5 0 2 2 4 7 9 13 6 7 3 6甲乙D 1PA 1B 1C 1ABCD19.(本小题满分12分)A 、B 两个投资项目的利润率分别为随机变量1X 和2X .根据市场分析,1X 和2X 的分布列分别为(1)在A 、B 两个项目上各投资100万元,1Y 和2Y 分别表示投资项目A 和B 所获得的利润,求方差1D Y 、2D Y ;(2)将(0100)x x ≤≤万元投资A 项目,100x -万元投资B 项目,()f x 表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求()f x 的最小值,并指出x 为何值时,()f x 取到最小值.(注:2()D aX b a D X +=)20.(本小题满分12分)在直角坐标系xOy 中,椭圆22122:1(0)x y C a b ab+=>>的左、右焦点分别为1F 、2F .2F 也是抛物线22:4C y x =的焦点,点M 为1C 与2C 在第一象限的交点,且25||3M F =.(1)求1C 的方程;(2)平面上的点N 满足12M N M F M F =+,直线l ∥M N ,且与1C 交于A 、B 两点,若0O A O B ⋅=,求直线l 的方程.21.(本小题满分12分)设函数1()(,)f x ax a b Z x b=+∈+,曲线()y f x =在点(2,(2))f 处的切线方程为3y =.(1)求()y f x =的解析式;(2)证明:曲线()y f x =的图像是一个中心对称图形,并求其对称中心;(3)证明:曲线()y f x =上任一点处的切线与直线1x =和直线y x =所围三角形的面积为定值,并求此定值.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号.22.(本小题满分10分)【选修4-1:几何选讲】如图,过圆O 外一点M 作它的一条切线,切点为A ,过A 作直线A P 垂直直线O M ,垂足为P . (1)证明:2OM OP OA ⋅=;(2)N 为线段A P 上一点,直线N B 垂直直线O N ,且交圆O 于B 点.过B 点的切线交直线O N 于K .证明:90OKM ∠= 23.(本小题满分10分)【选修4-4:坐标系与参数方程】已知曲线1cos :sin x C y θθ=⎧⎨=⎩(θ为参数),曲线22:2x C y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数).(1)指出1C ,2C 各是什么曲线,并说明1C 与2C 公共点的个数;(2)若把1C ,2C 上各点的纵坐标都压缩为原来的一半,分别得到曲线1C ',2C '.写出1C ',2C '的参数方程.1C '与2C '公共点的个数和1C 与2C 公共点的个数是否相同?说明你的理由. 24.(本小题满分10分)【选修4-5:不等式选讲】 已知函数()|8||4|f x x x =---. (1)作出函数()y f x =的图像; (2)解不等式|8||4|2x x --->.2008年全国统一考试数学卷(全国新课标.理)参考答案一、选择题,本题考查基础知识,基本概念和基本运算能力13. 14.15.16.三、解答题 17.2008年普通高等学校统一考试(海南、宁夏卷)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数2sin()(0)y x ωϕω=+>)在区间[]02π,的图像如下:那么ω=( ) A .1 B .2 C .21 D .31解:由图象知函数的周期T π=,所以22Tπω=2.已知复数1z i =-,则122--z z z =( ) A .2iB .2i -C .2D .2-解:1z i =-∵,222(1)2(1)22111z z i i i z i i-----===-----∴,故选B3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( ) A .185 B .43 C .23 D .87解:设顶角为C ,因为5,2l c a b c ===∴,由余弦定理x222222447cos 22228a b cc c c C abc c+-+-===⨯⨯4.设等比数列{}n a 的公比q =2,前n 项和为S n ,则24a S =( )A .2B .4C .215 D .217解:414421(1)1215122a q S q a a q---===-5.右面的程序框图,如果输入三个实数a ,b ,c ,要求输出这三 个数中最大的数,那么在空白的判断框中,应该填入下面四个选 项中的( )A .c x >B .x c >C .c b >D .b c >解:变量x 的作用是保留3个数中的最大值,所以第二个条件结构的判断框内语句为“c x >”, 满足“是”则交换两个变量的数值后输出x 的值结束程序,满足“否”直接输出x 的值结束程序.6.已知1230a a a >>>,则使得2(1)1(123)i a x i -<=,,都成立的x 取值范围是( ) A .110a ⎛⎫ ⎪⎝⎭,B .120a ⎛⎫ ⎪⎝⎭,C .310a ⎛⎫ ⎪⎝⎭,D .320a ⎛⎫ ⎪⎝⎭,解:22222(1)120()0i i i i ia x a x a x a x x a -<⇒-<⇒-<,所以解集为2(0,)ia ,又123222a a a <<,因此选B .7.23sin 702cos 10-=-( ) A .12B.2C .2 D2解:22223sin 703cos 203(2cos 201)22cos 102cos 102cos 10----===---,选C .8.平面向量a ,b 共线的充要条件是( ) A .a ,b 方向相同B .a ,b 两向量中至少有一个为零向量C .λ∈R ∃,λ=b aD .存在不全为零的实数1λ,2λ,12λλ+=0a b 解:注意零向量和任意向量共线.9.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有( ) A .20种 B .30种 C .40种 D .60种 解:分类计数:甲在星期一有2412A =种安排方法,甲在星期二有236A =种安排方法,甲在星期三有222A =种安排方法,总共有126220++=种 10.由直线12x =,x =2,曲线1y x=及x 轴所围图形的面积为( )A .154B .174C .1ln 22D .2ln 2解:如图,面积22112211ln |ln 2ln2ln 22S x x===-=⎰11.已知点P 在抛物线24y x =上,那么点P 到点(21)Q -,的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A .114⎛⎫- ⎪⎝⎭,B .114⎛⎫⎪⎝⎭,C .(12),D .(12)-,解:点P 到抛物线焦点距离等于点P 到抛物线准线距离,如图PF PQ PS PQ +=+,故最小值在,,S P Q 三点共线时取得,此时,P Q 的纵坐标都是1-,所以选A .(点P 坐标为1(,1)4-)12.某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为( ) A.B.C .4D.解:结合长方体的对角线在三个面的投影来理解计算.如图设长方体的高宽高分别为,,m n k ,由题意得==1n ⇒=a =b =,所以22(1)(1)6a b -+-=228a b ⇒+=,22222()282816a b a ab b ab a b +=++=+≤++=∴ 4a b ⇒+≤当且仅当2a b ==时取等号.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分. 13.已知向量(011)=-,,a ,(410)=,,b,λ+=a b 0λ>,则λ= .解:由题意(4,1,)λ+-λλa b =2216(1)29(0)λλλ⇒+-+=>3λ⇒=14.设双曲线221916xy-=的右顶点为A ,右焦点为F .过点F 平行双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为 .解:双曲线的右顶点坐标(3,0)A ,右焦点坐标(5,0)F ,设一条渐近线方程为43y x =,建立方程组224(5)31916y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩,得交点纵坐标3215y =-,从而132********A F B S =⨯⨯= 15.一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 .解:令球的半径为R ,六棱柱的底面边长为a ,高为h ,显然有R =,且219624863a V h h a ⎧⎧==⨯⨯=⎪⎪⇒⎨⎨⎪⎪==⎩⎩1R ⇒=34433V R ππ⇒== 16.从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm ),结果如下:甲品种:271 273 280 285 285 287 292 294 295 301 303 303 307 308 310 314 319 323 325 325 328 331 334 337 352乙品种:284 292 295 304 306 307 312 313 315 315 316 318 318 320 322 322 324 327 329 331 333 336 337 343 356 由以上数据设计了如下茎叶图根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论: ① ;② .解:1.乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度).2.甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大). 3.甲品种棉花的纤维长度的中位数为307mm ,乙品种棉花的纤维长度的中位数为318mm . 4.乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知{}n a 是一个等差数列,且21a =,55a =-.(Ⅰ)求{}n a 的通项n a ; (Ⅱ)求{}n a 前n 项和S n 的最大值.解:(Ⅰ)设{}n a 的公差为d ,由已知条件,11145a d a d +=⎧⎨+=-⎩,解出13a =,2d =-.所以1(1)25n a a n d n =+-=-+. (Ⅱ)21(1)42n n n S na d n n -=+=-+24(2)n =--.所以2n =时,n S 取到最大值4. 18.(本小题满分12分)如图,已知点P 在正方体A B C D A B C D ''''-的对角线BD '上,60P D A ∠=︒. (Ⅰ)求DP 与C C '所成角的大小;(Ⅱ)求DP 与平面AA D D ''所成角的大小.3 1 277 5 5 0 28 45 4 2 29 2 58 7 3 3 1 30 4 6 79 4 0 31 2 3 5 5 6 8 88 5 5 3 32 0 2 2 4 7 97 4 1 33 1 3 6 734 32 35 6甲乙A 'C 'D '解:如图,以D 为原点,D A 为单位长建立空间直角坐标系D xyz -. 则(100)D A =,,,(001)C C '=,,.连结B D ,B D ''. 在平面BB D D ''中,延长D P 交B D ''于H .设(1)(0)D H m m m => ,,,由已知60DH DA <>=,, 由cos D A D H D A D H D A D H =<> ,可得2m =2m =所以122D H ⎛⎫= ⎪ ⎪⎝⎭,.(Ⅰ)因为0011cos 2DH CC ⨯++⨯'<>==,,所以45DH CC '<>=,.即D P 与C C '所成的角为45.(Ⅱ)平面AA D D ''的一个法向量是(010)D C =,,.因为01101cos 2D H D C ⨯++⨯<>==,, 所以60DH DC <>=,. 可得D P 与平面AA D D ''所成的角为30 .19.(本小题满分12分)A B ,两个投资项目的利润率分别为随机变量X 1和X 2.根据市场分析,X 1和X 2的分布列分别为(Ⅰ)在A B ,两个项目上各投资100万元,Y 1和Y 2分别表示投资项目A 和B 所获得的利润,求方差DY 1,DY 2;(Ⅱ)将(0100)x x ≤≤万元投资A 项目,100x -万元投资B 项目,()f x 表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求()f x 的最小值,并指出x 为何值时,()f x 取到最小值.(注:2()D aX b a D X +=)解:(Ⅰ)由题设可知1Y 和2Y 的分布列分别为150.8100.26EY =⨯+⨯=,221(56)0.8(106)0.24D Y =-⨯+-⨯=,220.280.5120.38EY =⨯+⨯+⨯=,2222(28)0.2(88)0.5(128)0.312D Y =-⨯+-⨯+-⨯=.(Ⅱ)12100()100100xx f x D Y D Y -⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭2212100100100x x D Y D Y -⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭22243(100)100x x ⎡⎤=+-⎣⎦ 2224(46003100)100x x =-+⨯, 当6007524x ==⨯时,()3f x =为最小值.20.(本小题满分12分) 在直角坐标系xOy 中,椭圆C 1:2222by ax +=1(a >b >0)的左、右焦点分别为F 1,F 2.F 2也是抛物线C 2:24y x =的焦点,点M 为C 1与C 2在第一象限的交点,且|MF 2|=35.(Ⅰ)求C 1的方程;(Ⅱ)平面上的点N 满足21MF MF MN +=,直线l ∥MN ,且与C 1交于A ,B 两点,若0OA OB = ,求直线l 的方程.20.解:(Ⅰ)由2C :24y x =知2(10)F ,.设11()M x y ,,M 在2C 上,因为253M F =,所以1513x +=,得123x =,13y =.M 在1C 上,且椭圆1C 的半焦距1c =,于是222248193 1.a bb a ⎧+=⎪⎨⎪=-⎩, 消去2b 并整理得 4293740a a -+=, 解得2a =(13a =不合题意,舍去).故椭圆1C 的方程为22143xy+=.(Ⅱ)由12M F M F M N +=知四边形12M F N F 是平行四边形,其中心为坐标原点O ,因为l M N ∥,所以l 与O M 的斜率相同,故l的斜率323k ==.设l的方程为)y x m =-.由223412)x y y x m ⎧+=⎪⎨=-⎪⎩,,消去y 并化简得 22916840x mx m -+-=. 设11()A x y ,,22()B x y ,,12169m x x +=,212849m x x -=.因为OA OB ⊥,所以12120x x y y +=.121212126()()x x y y x x x m x m +=+--2121276()6x x m x x m =-++22841676699m m m m -=-+ 21(1428)09m =-=.所以m =.此时22(16)49(84)0m m ∆=-⨯->,故所求直线l的方程为y =-,或y =+.21.(本小题满分12分) 设函数1()()f x ax a b x b=+∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3.(Ⅰ)求()f x 的解析式:(Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心;(Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值.21.解:(Ⅰ)21()()f x a x b '=-+,于是2121210(2)a b a b ⎧+=⎪+⎪⎨⎪-=+⎪⎩,,解得11a b =⎧⎨=-⎩,,或948.3a b ⎧=⎪⎪⎨⎪=-⎪⎩,因a b ∈Z ,,故1()1f x x x =+-.(Ⅱ)证明:已知函数1y x =,21y x=都是奇函数.所以函数1()g x x x=+也是奇函数,其图像是以原点为中心的中心对称图形.而1()111f x x x =-++-.可知,函数()g x 的图像按向量(11)=,a 平移,即得到函数()f x 的图像,故函数()f x 的图像是以点(11),为中心的中心对称图形. (Ⅲ)证明:在曲线上任取一点00011x x x ⎛⎫+ ⎪-⎝⎭,.由0201()1(1)f x x '=--知,过此点的切线方程为2000200111()1(1)x x y x x x x ⎡⎤-+-=--⎢⎥--⎣⎦. 令1x =得0011x y x +=-,切线与直线1x =交点为00111x x ⎛⎫+ ⎪-⎝⎭,.令y x =得021y x =-,切线与直线y x =交点为00(2121)x x --,. 直线1x =与直线y x =的交点为(11),.从而所围三角形的面积为00000111212112222121x x x x x +---=-=--.所以,所围三角形的面积为定值2.请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分.做答时,用2B 铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)选修4-1:几何证明选讲如图,过圆O 外一点M 作它的一条切线,切点为A ,过A 点作直线A P 垂直直线O M ,垂足为P .(Ⅰ)证明:2OM OP OA = ;(Ⅱ)N 为线段A P 上一点,直线N B 垂直直线O N ,且交圆O 于B 点.过B 点的切线交直线O N 于K .证明:90OKM = ∠.解:(Ⅰ)证明:因为M A 是圆O 的切线,所以O A A M ⊥.又因为A P O M ⊥.在R t O A M △中,由射影定理知,2OA OM OP = .(Ⅱ)证明:因为B K 是圆O 的切线,B N O K ⊥.同(Ⅰ),有2OB ON OK = ,又O B O A =, 所以O P O M O N O K = ,即O N O M O PO K=.又N O P M O K =∠∠,所以O N P O M K △∽△,故90OKM OPN ==∠∠.23.(本小题满分10分)选修4-4;坐标系与参数方程已知曲线C 1:cos sin x y θθ=⎧⎨=⎩,(θ为参数),曲线C 2:22x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数).(Ⅰ)指出C 1,C 2各是什么曲线,并说明C 1与C 2公共点的个数;(Ⅱ)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线12C C '',.写出12C C '',的参数方程.1C '与2C '公共点的个数和C 21C 与公共点的个数是否相同?说明你的理由. 解:(Ⅰ)1C 是圆,2C 是直线.1C 的普通方程为221x y +=,圆心1(00)C ,,半径1r =. 2C 的普通方程为0x y -+=.因为圆心1C 到直线0x y -+=的距离为1,所以2C 与1C 只有一个公共点. (Ⅱ)压缩后的参数方程分别为1C ':cos 1sin 2x y θθ=⎧⎪⎨=⎪⎩,(θ为参数); 2C ':24x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数).化为普通方程为:1C ':2241x y +=,2C ':122y x =+,联立消元得2210x ++=, 其判别式24210∆=-⨯⨯=,所以压缩后的直线2C '与椭圆1C '仍然只有一个公共点,和1C 与2C 公共点个数相同.24.(本小题满分10分)选修4-5:不等式选讲 已知函数()84f x x x =---. (Ⅰ)作出函数()y f x =的图像; (Ⅱ)解不等式842x x --->. 解:(Ⅰ)44()2124848.xf x x xx⎧⎪=-+<⎨⎪->⎩,≤,,≤,图像如下:(Ⅱ)不等式842x x--->,即()2f x>,由2122x-+=得5x=.由函数()f x图像可知,原不等式的解集为(5)-∞,.。
方程(组)的应用题一.选择题1.(2008年浙江省衢州市)某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x,则下面所列方程正确的是( )A、 B、C、 D、答案:A2.(2008年四川巴中市)巴中日报讯:今年我市小春粮油再获丰收,全市产量预计由前年的45万吨提升到50万吨,设从前年到今年我市的粮油产量年平均增长率为,则可列方程为()A.B.C.D.答案:B3.(2008 河北)某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为,根据题意,下面所列方程正确的是()A.B.C.D.答案:A4.(2008湖北襄樊)某种药品零售价经过两次降价后的价格为降价前的81%,则平均每次降价()A.10%B.19%C.9.5%D.20%答案:A5.(2008四川达州市)某商品原价100元,连续两次涨价后售价为120元,下面所列方程正确的是()A.B.C.D.答案:B6.(2008年浙江省衢州)某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x,则下面所列方程正确的是( )A、 B、C、 D、答案:A7. (2008年荆州)甲、乙、丙三家超市为了促销一种定价均为m元的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品最划算应到的超市是()A.甲B.乙C.丙D. 乙或丙答案:B8.(2008年庆阳市)某商品经过两次连续降价,每件售价由原来的55元降到了35元.设平均每次降价的百分率为x,则下列方程中正确的是()A.55 (1+x)2=35 B.35(1+x)2=55C.55 (1-x)2=35 D.35(1-x)2=55答案:C9.(2008齐齐哈尔)5月23日8时40分,哈尔滨铁路局一列满载着2400吨“爱心”大米的专列向四川灾区进发,途中除3次因更换车头等原因必须停车外,一路快速行驶,经过80小时到达成都.描述上述过程的大致图象是()答案:D10.(2008年四川省宜宾市)小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x月后他能捐出100元,则下列方程中能正确计算出x的是( )A. 10x+20=100B.10x-20=100C. 20-10x=100D.20x+10=100 答案:A11.(2008 湖北荆门)用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用x,y表示矩形的长和宽(x>y),则下列关系式中不正确的是( )(A) x+y=12 . (B) x-y=2.(C) xy=35. (D) x+y=144.答案:D12.(2008山东东营)某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为()A.26元 B.27元 C.28元D.29元答案:C13.(2008湖南株洲)5.“鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔?”解决此问题,设鸡为只,兔为只,则所列方程组正确的是A.B.C.D.答案:C二、填空题1. (2008新疆乌鲁木齐市)乌鲁木齐农牧区校舍改造工程初见成效,农牧区最漂亮的房子是学校.2005年市政府对农牧区校舍改造的投入资金是5786万元,2007年校舍改造的投入资金是8058.9万元,若设这两年投入农牧区校舍改造资金的年平均增长率为,则根据题意可列方程为.答案:2.(2008泰州市)一种药品经过两次降价,药价从原来每盒60元降至现在的48.6元,则平均每次降价的百分率是.答案:10%3.(2008 河南实验区)在一幅长50cm,宽30cm的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个规划土地的面积是1800cm,设金色纸边的宽为cm,那么满足的方程为答案:+40-75=04. (2008 山东临沂)某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,则该厂四、五月份的月平均增长率为________.答案:10%5. (2008宁夏)某市对一段全长1500米的道路进行改造.原计划每天修米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了天.答案:6. (2008年山东省青岛市)为了帮助四川地震灾区重建家园,某学校号召师生自愿捐款.第一次捐款总额为20000元,第二次捐款总额为56000元,已知第二次捐款人数是第一次的2倍,而且人均捐款额比第一次多20元.求第一次捐款的人数是多少?若设第一次捐款的人数为,则根据题意可列方程为.答案:7. (08浙江温州)为了奖励兴趣小组的同学,张老师花92元钱购买了《智力大挑战》和《数学趣题》两种书.已知《智力大挑战》每本18元.《数学趣题》每本8元,则《数学趣题》买了本.答案:78.(08山东省日照市)书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为.答案:28元9.(2008年浙江省绍兴市)若买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元,则买4支圆珠笔、4本日记本需元.答案:1210.(2008年江苏省南通市)苹果的进价是每千克3.8元,销售中估计有5%的苹果正常损耗.为避免亏本,商家把售价应该至少定为每千克________元.答案:411.(2008 湖北恩施)一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本为元. 答案:12512.(2008 河北)图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是 g.答案:2013.(2008 河南)某商店一套夏装的进价为220元,按标价的80%销售可获利72元,则该服装的标价为元。
2008年普通高等学校招生全国统一考试(山东卷)理科数学第Ⅰ卷(共60分)参考公式:球的表面积公式:S =4πR 2,其中R 是球的半径.如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率:P n (k )=C kn p k (1-p )n-k (k =0,1,2,…,n ).如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ). 如果事件A 、B 相互独立,那么P (AB )=P (A )·P (B ).一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)满足M ⊆{a 1, a 2, a 3, a 4},且M ∩{a 1 ,a 2, a 3}={ a 1,a 2}的集合M 的个数是(A )1 (B)2 (C)3 (D)4 (2)设z 的共轭复数是z ,若z +z =4, z ·z =8,则zz等于 (A )i (B )-i (C)±1 (D) ±i (3)函数y =lncos x (-2π<x <2π=的图象是 ( A )(4)设函数f (x )=|x +1|+|x -a |的图象关于直线x =1对称,则a 的值为(A) 3 (B)2 (C)1 (D)-1(5)已知cos (α-6π)+sin α7sin()6πα+则的值是 (A )-532 (B )532 (C)-54 (D) 54(6)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是(A)9π (B )10π (C)11π (D) 12π(7)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手。
若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为(A )511 (B )681 (C )3061 (D )4081(8)右图是根据《山东统计年鉴2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎 叶图,图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表 示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数 的平均数为(A )304.6 (B )303.6 (C)302.6 (D)301.6 (9)(X -31x)12展开式中的常数项为(A )-1320 (B )1320 (C )-220 (D)220 (10)设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为(A )1342222=-y x (B)15132222=-y x(C)1432222=-y x (D)112132222=-y x(11)已知圆的方程为X 2+Y 2-6X -8Y =0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为(A )106 (B )206 (C )306 (D )406(12)设二元一次不等式组⎪⎩⎪⎨⎧≤-+≥+-≥-+0142,080192y x y x y x ,所表示的平面区域为M ,使函数y =a x (a >0,a ≠1)的图象过区域M 的a 的取值范围是(A )[1,3] (B)[2,10] (C)[2,9] (D)[10,9]第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)执行右边的程序框图,若p =0.8,则输出的n = 4 . (14)设函数f (x )=ax 2+c (a ≠0),若)()(01x f dx x f =⎰,0≤x 0≤1,则x 0的值为33. (15)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A , sin A )。
2008年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页.全卷满分150分,考试时间120分钟. 考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡背面规定的地方填写姓名和座位号后两位. 2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色笔迹签字笔在答题卡上书写,要求字体工整、笔迹清晰.作图题可用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色笔迹字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效. 4.考试结束,务必将试题卷和答题卡一并上交. 参考公式:如果事件A B ,互斥,那么()()()P A B P A P B +=+ 球的表面积公式24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式34π3V R =如果随机变量~()B n p ξ,,那么其中R 表示球的半径(1)D np p ξ=-.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数32(1)i i +=( ) A .2B .2-C .2iD .2i -2.集合{}|lg 1A y y x x =∈=>R ,,{}2112B =--,,,,则下列结论中正确的是( ) A .{}21A B =-- ,B .()(0)A B =-∞R ,ð C .(0)A B =+∞ ,D .(){}21A B =--R ,ð3.在平行四边形ABCD 中,AC 为一条对角线,若AB =(2,4),AC =(1,3),则BD=( )A .(24)--,B .(35)--,C .(35),D .(24),4.已知m n ,是两条不同直线,αβγ,,是三个不同平面,下列命题中正确的是( ) A .若m α∥,n α∥,则m n ∥ B .若αγ⊥, βγ⊥,则αβ∥ C .若m α∥,m β∥,则αβ∥ D .若m α⊥, n α⊥,则m n ∥ 5.将函数πsin 23y x ⎛⎫=+ ⎪⎝⎭的图象按向量a 平移后所得的图象关于点π012⎛⎫- ⎪⎝⎭,中心对称,则向量a 的坐标可能为( ) A . π012⎛⎫-⎪⎝⎭, B .π06⎛⎫- ⎪⎝⎭, C .π012⎛⎫ ⎪⎝⎭, D .π06⎛⎫⎪⎝⎭, 6.设88018(1)x a a x a x +=+++ ,则01a a ,,,8a 中奇数的个数为( ) A .2 B .3 C .4 D .5 7.0a <是方程2210ax x ++=至少有一个负数根的( ) A .必要不充分条件 B .充分不必要条件C .充分必要条件D .既不充分也不必要条件8.若过点(40)A ,的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .[B .(C .⎡⎢⎣⎦D .⎛ ⎝⎭9.在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称,而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,则m 的值为( )A .e -B .1e-C .eD .1e10.设两个正态分布2111()(0)N μσσ>,和2222()(0)N μσσ>,的密度函数图象如图所示,则有( )A .1212μμσσ<<,B .1212μμσσ<>,C .1212μμσσ><,D .1212μμσσ>>,11.若函数()()f x g x ,分别为R 上的奇函数、偶函数,且满足()()x f x g x e -=,则有( ) A .(2)(3)(0)f f g << B .(0)(3)(2)g f f << C .(2)(0)(3)f g f <<D .(0)(2)(3)g f f <<12.12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是( )A .2283C AB .2686C AC .2286C AD .2285C A2008年普通高等学校招生全国统一考试(安徽卷)数 学 (理科)第Ⅱ卷 (非选择题共 90分)考生注意事项:请用0.5毫米黑色笔迹签字笔在答题卡上.....作答,在试题卷上答题无效.......... 二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. 13.函数2()f x =的定义域为 .14.在数列{}n a 中,542n a n =-,212n a a a an bn +++=+ ,n *∈N ,其中a ,b 为常数,则lim n n n nn a b a b →∞-+的值为 . 15.若A 为不等式组002x y y x ⎧⎪⎨⎪-⎩,,≤≥≤表示的平面区域,则当a 从2-连续变化到1时,动直线x y a +=扫过A 中的那部分区域的面积为 .16.已知点A ,B ,C ,D 在同一个球面上,AB ⊥平面BCD ,BC ⊥CD ,若AB =6,AC =132,AD =8,则B ,C 两点间的球面距离是 .三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分) 已知函数πππ()cos 22sin sin 344f x x x x ⎛⎫⎛⎫⎛⎫=-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (I )求函数()f x 的最小正周期和图象的对称轴方程.(II )求函数()f x 在区间ππ122⎡⎤-⎢⎥⎣⎦,上的值域.18.(本小题满分12分)如图,在四棱锥O -ABCD 中,底面ABCD 是边长为l 的菱形,π4ABC ∠=,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点. (I )证明:直线MN ∥平面OCD .(II )求异面直线AB 与MD 所成角的大小. (III )求点B 到平面OCD 的距离.19.(本小题满分12分)为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳.各株沙柳的成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望E ξ为3,标准差σξ为26. (Ⅰ)求n p ,的值,并写出ξ的分布列;(Ⅱ)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率. 20.(本小题满分12分) 设函数1()(01)ln f x x x x x=>≠且. (Ⅰ)求函数()f x 的单调区间;ABCM ON(Ⅱ)已知12axx >对任意(01)x ∈,成立,求实数a 的取值范围. 21.(本小题满分13分)设数列{}n a 满足10a =,311n n a ca c +=+-,*n ∈N 其中c 为实数.(Ⅰ)证明:[01]n a ∈,对任意*n ∈N 成立的充分必要条件是[01]c ∈,, (Ⅱ)设103c <<,证明:11(3)n n a c --≥,*n ∈N ; (Ⅲ)设103c <<,证明:222122113n a a a n c++⋯+>+--,*n ∈N .22. (本小题满分13分)设椭圆22221(0)x y C a b a b+=>>:过点M ,且左焦点为1(F .(Ⅰ)求椭圆C 的方程;(Ⅱ)当过点(41)P ,的动直线l 与椭圆C 相交于两不同点A ,B 时,在线段AB 上取点Q ,满足AP QB AQ PB =.证明:点Q 总在某定直线上.2008年普通高等学校招生全国统一考试(安徽卷)数学(理科)试题参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分60分. 1.A 2.D 3.B 4.D 5.C 6.A 7.B 8.C 9.B 10.A 11.D 12.C二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.[3)+∞, 14.1 15.74 16.4π3三、解答题17.本题主要考查三角函数式的化简,三角函数的图象及性质,区间上三角函数的值域等.考查运算能力和推理能力.本小题满分12分. 解:(Ⅰ)πππ()cos 22sin sin 344f x x x x ⎛⎫⎛⎫⎛⎫=-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1cos 22(sin cos )(sin cos )22x x x x x x =++-+221cos 22sin cos 2x x x x =+-1cos 22cos 22x x x =- πsin 26x ⎛⎫=- ⎪⎝⎭.∴周期2ππ2T ==. 由ππ2π()62x k k -=+∈Z ,得ππ23k x =+(k ∈Z ) ∴函数图象的对称轴方程为ππ23k x =+(k ∈Z ). (Ⅱ)ππ122x ⎡⎤∈-⎢⎥⎣⎦ ,,ππ5π2636x ⎡⎤∴-∈-⎢⎥⎣⎦,,因为π()sin 26f x x ⎛⎫=-⎪⎝⎭在区间ππ123⎡⎤-⎢⎥⎣⎦,上单调递增,在区间ππ32⎡⎤⎢⎥⎣⎦,上单调递减,所以当π3x =时,()f x 取得最大值1.又ππ11222f f ⎛⎫⎛⎫-=<= ⎪ ⎪⎝⎭⎝⎭ , ∴当π12x =-时,()f x取得最小值 ∴函数()f x 在ππ122⎡⎤-⎢⎥⎣⎦,上的值域为1⎡⎤⎢⎥⎣⎦. 18.本题主要考查直线与直线、直线与平面、平面与平面的位置关系、异面直线所成角及点到平面的距离等知识,考查空间想象能力和思维能力,利用综合法或向量法解决立体几何问题的能力.本小题满分12分.方法一(综合法):(Ⅰ)取OB 中点E ,连接ME NE ,. ME AB AB CD ∥,∥, ME CD ∴∥.又NE OC ∥,∴平面MNE ∥平面OCD . MN ∴∥平面OCD .(Ⅱ)CD AB ∥,MDC ∴∠为异面直线AB 与MD 所成的角(或其补角).作AP CD ⊥于点P ,连接MP . OA ⊥ 平面ABCD CD MP ∴⊥,.π42ADP DP ∠=∴=,.1πcos 23DP MD MDP MDC MDP MD ==∴∠==∠=∠= ,. 所以,AB 与MD 所成角的大小为π3. (Ⅲ)AD ∥平面OCD ,∴点B 和点A 到平面OCD 的距离相等,连接OP ,过点A 作AQ OP ⊥于点Q .AP CD OA CD CD ⊥⊥∴⊥,,平面OAP ,AQ CD ∴⊥. 又AQ OP AD ⊥∴⊥ ,平面OCD ,线段AQ 的长就是点A 到平面OCD 的距离.2OP ====, ABC D MO N Q P 第(18)题图AP DP ==223OA AP AQ OP ∴=== . 所以,点B 到平面OCD 的距离为23. 方法二(向量法):作AP CD ⊥于点P .如图,分别以AB AP AO ,,所在直线为x y z ,,轴建立直角坐标系.(000)(100)000(002)A B P D O ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,(001)10M N ⎛⎫⎪ ⎪⎝⎭,,,(Ⅰ)1144MN ⎛⎫=-- ⎪ ⎪⎝⎭ ,,022OP ⎛⎫=- ⎪ ⎪⎝⎭ ,,222OD ⎛⎫=-- ⎪ ⎪⎝⎭,. 设平面OCD 的法向量为()x y z =,,n ,则00OP OD ==,n n .即20220y z x y z -=⎪⎪⎨⎪-=⎪⎩,取z =(04=n .(11040MN ⎛⎫=-= ⎪ ⎪⎝⎭n , MN ∴∥平面OCD .(Ⅱ)设AB 与MD 所成的角为θ,(100)1AB MD ⎛⎫==- ⎪ ⎪⎝⎭,,,,1cos 2AB MD AB MD θ== ,π3θ∴=.AB 与MD 所成角的大小为π3.第(18)题图(Ⅲ)设点B 到平面OCD 的距离为d ,则d 为OB在向量(04=n 上的投影的绝对值. 由OB (102)=-,,,得2||3OB d ==n n . 所以,点B 到平面OCD 的距离为23. 19.本题主要考查二项分布的分布列、数学期望以及标准差的概念和计算,考查分析问题及解决实际问题的能力.本小题满分12分.解:由题意知,ξ服从二项分布1()B n p ,()(1)01k kn k n P k C p p k n ξ-==-= ,,,,.(Ⅰ)由233()(1)2E np np p ξσξ===-=,,得 112p -=,从而162n p ==,. ξ的分布列为(Ⅱ)记“需要补种沙柳”为事件A ,则()(3)P A P ξ=≤,得16152021()6432P A +++==,或156121()1(3)16432P A P ξ++=->=-=. 20.本题主要考查导数的概念和计算,利用导数研究函数的单调性,利用单调性求最值以及不等式的性质.本小题满分12分. 解:(Ⅰ)22ln 1()ln x f x x x +'=.若()0f x '=,则1z e=.列表如下:所以()f x 的单调增区间为10e ⎛⎫ ⎪⎝⎭,,单调减区间为11e ⎛⎫ ⎪⎝⎭,和()1+∞,.(Ⅱ)在12axx >两边取对数,得1ln 2ln a x x>. 由于01x <<,所以1ln 2ln a x x>. ① 由(Ⅰ)的结果知,当(01)x ∈,时,1()f x f a e ⎛⎫=- ⎪⎝⎭≤.为使①式对所有(01)x ∈,成立,当且仅当ln 2ae >-, 即ln 2a e >-.21.本题主要考查等比数列的求和、数学归纳法、不等式的性质,综合运用知识分析问题和解决问题的能力.本小题满分13分.解:(Ⅰ)必要性:10a = ,21a c ∴=-. 又2[01]a ∈ ,,011c ∴-≤≤,即[01]c ∈,. 充分性:设[01]c ∈,,对*n ∈N 用数学归纳法证明[01]c a ∈,.当1n =时,10[01]a =∈,.假设[01]k a ∈,(1k ≥), 则31111k k a ca c c c +=+-+-=≤且31110k k a ca c c +=+--≥≥,1[01]k a +∴∈,.由数学归纳法知,[01]n a ∈,对所有*n ∈N 成立. (Ⅱ)设103c <<,当1n =时,10a =.结论成立. 当2n ≥时,311n a a ca c -=+- ,()32111111(1)(1)n n n n n a c a c a a a ----∴-=-=-++. 103c <<,由(Ⅰ)知1[01]n a -∈,,21113n n a a --∴++≤且110n a --≥, 113(1)c n a c a -∴--≤.21112113(1)(3)(1)(3)(1)(3)n n c n n a c a c a c a c ----∴----= ≤≤≤≤.1*1(3)()n n a c n -∴-∈N ≥. (Ⅲ)设103c <<,当1n =时,2120213a c=>--.结论成立. 当2n ≥时,由(Ⅱ)知11(3)0n n c c -->≥,21212(1)1(1(3))12(3)(3)12(3)n n n n n a c c c c ----∴-=-+>-≥.2222221223n na a a a a a ∴+++=+++ 2112[3(3)(3)]n n c c c ->--+++ 2(1(3))113n c n c-=+--2113n c >+-- 22.本题主要考查直线、椭圆的方程及几何性质、线段的定比分点公式等基础知识、基本方法和分析问题、解决问题的能力.本小题满分13分.解:(Ⅰ)由题意:2222222211c a bc a b ⎧=⎪⎪+=⎨⎪⎪=-⎩,,.解得2242a b ==,. 所求椭圆方程为22142x y +=. (Ⅱ)方法一:设点Q A B ,,的坐标分别为1122()()()x y x y x y ,,,,,, 由题设知AP PB AQ QB ,,,均不为零,记AP AQ PB QBλ== . 则0λ>且1λ≠.又A P B Q ,,,四点共线,从而AP PB AQ QB λλ=-= ,. 于是12124111x x y y λλλλ--==--,. 121211x x y y x y λλλλ++==-+,. 从而22212241x x x λλ-=-, ………………① 2221221y y y λλ-=-.…………………② 又点A B ,在椭圆C 上,即221124x y +=,………………③222224x y +=,………………④①2+⨯②并结合③,④得424x y +=.即点()Q x y ,总在定直线220x y +-=上.方法二:设点()Q x y ,,11()A x y ,,22()B x y ,,由题设, PA PB AQ QB ,,,均不为零 且PA PB AQ QB= , 又P A Q B ,,,四点共线,可设PA AQ PB BQ λλ=-= ,(01λ≠±,).于是 114111x y x y λλλλ--==--,, ① 224111x y x y λλλλ++==++,. ② 由于11()A x y ,22()B x y ,在椭圆C 上,将①、②分别代入C 的方程2224x y +=,整理得 222(24)4(22)140x y x y λλ+--+-+=. ③ 222(24)4(22)140x y x y λλ+-++-+=. ④ ④-③,得8(22)0x y λ+-=.0λ≠ ,220x y ∴+-=.即点()Q x y ,总在定直线220x y +-=上.。
诚信保证
本人知晓我校考场规则和违纪处分条例的有关规定,保证遵守考场规则,诚实做人。
本人签字: 编号:
西北工业大学考试试题(卷)
2007-2008 学年第2学期
开课学院 电子信息学院 课程 数学物理方程与特殊函数 学时 32 考试日期 2008.4 .25 考试时间 2 小时 考试形式(闭)(A )卷 题号 一 二
三
四
五
六
七
八
总分
得分
考生班级
学 号 姓 名
一、(9分)写出直角坐标系二维齐次波动方程、热传导方程和拉普拉斯方程。
二、(10分)描述一下用格林函数法求解具有第一类边界条件拉普拉斯方程的思路。
三、(11分)写出一维波动方程的达朗贝尔公式、并指出其中各项的物理意义。
四、(19分)求解定解问题
⎪⎩
⎪⎨⎧≤≤=≤≤<=∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂=∇πθθθπθρθ
ρρρρρ20),(),1(20,1,0112222f u u
u u 五、(18分)求下面方程的特征函数,并求解定解问题
⎪⎪⎪⎩
⎪⎪⎪⎨
⎧≤≤=>=∂∂=∂∂><<+∂∂=∂∂10,
0)0,(0,0)
,1(),0(0,10sin 22x x u t x t u x
t u t x t
x
u
t u
2. 命题教师和审题教师姓名应在试卷存档时填写。
共2页 第1页。