9第八章聚合物的力学性质
- 格式:pdf
- 大小:2.30 MB
- 文档页数:89
聚合物的分子结构与物理性质聚合物是由大量重复单元构成的高分子化合物。
随着科技的发展,聚合物在人类生产和生活中的应用越来越广泛。
然而,聚合物的性质和应用取决于其分子结构,因此对聚合物分子结构与物理性质的研究尤为重要。
一、聚合物的分子结构聚合物的分子结构与其化学和物理性质密切相关。
聚合物的分子结构与单体种类、聚合方法、反应条件以及控制试剂的种类和用量等有关。
聚合物的分子结构可以从宏观和微观两个层面进行描述。
从宏观上看,聚合物的分子结构可以分为线性、支化、交联和聚集态等。
线性聚合物的分子链呈直线状排列,没有分支;支化聚合物的分子链上存在分支,分支可以根据分支链的数量和长度不同分为两种:分子段分支和侧链分支;交联聚合物的分子链之间通过交联点互相连结,呈网络状结构;而聚集态分子则是由数个分子组成的复合物。
从微观上看,聚合物的分子结构是由化学键和官能团组成的。
根据化学键的性质,聚合物分子的结构可以分为三类:相邻两个重复单元之间的化学键称为主链键;主链键以外的化学键称为辅助键,辅助键决定了聚合物分子的分支情况;在分子中存在的其他化学基团称为官能团,它们通过化学反应与其他分子发生反应,改变聚合物分子的性质。
聚合物的分子结构图如下图所示:二、聚合物的物理性质聚合物的物理性质主要包括力学性质、热学性质、电学性质以及光学性质等。
力学性质是指聚合物在力的作用下发生的变形和断裂等现象。
聚合物的弹性模量、拉伸强度、抗拉伸应变、屈服强度、断裂伸长率等是衡量聚合物力学性质的重要指标。
热学性质是指聚合物在不同温度下表现出来的性质。
聚合物的热稳定性、玻璃转移温度、熔融温度、热膨胀系数等是衡量聚合物热学性质的指标。
电学性质是指聚合物在电场作用下表现出来的性质。
聚合物的电导率、介电常数、击穿场强等是衡量聚合物电学性质的指标。
光学性质是指聚合物在光的作用下表现出来的性质。
聚合物的透光性、发光性、荧光性等是衡量聚合物光学性质的指标。
三、聚合物分子结构的控制通过控制聚合物分子结构可以使聚合物具有更好的性能和更广泛的应用。
第八章聚合物的屈服和断裂本章学习目的:1、熟悉聚合物应力-应变曲线、从该曲线所能获得的重要信息,以及各种因素对应力-应变曲线的影响。
2、熟悉屈服现象和机理,银纹、剪切带的概念,了解屈服判据。
3、熟悉聚合物的强度、韧性和疲劳等概念。
4、掌握聚合物强度的影响因素、增强方法和增强机理。
5、掌握聚合物韧性的影响因素、增韧方法和增韧机理。
了解断裂理论。
8.1 聚合物的塑性和屈服8.1.1 聚合物的应力-应变行为应力-应变试验是使用最广泛、非常重要而又实用的力学实验。
应力-应变试验在拉力F的作用下,试样沿纵轴方向以均匀的速率被拉伸,直到试样断裂为止(见图8-1)。
图8-1 拉伸应力-应变试验试验时, 测量加于试样上的载荷和相应标线间长度的改变(Δl=l-l0)。
若试样的初始截面积为A0,标距的原长为l0,则应力σ=F/A0,应变ε=Δl/l0。
从实验测得的应力、应变数据可绘制出应力-应变曲线,见图8-2。
图8-2 典型非晶态聚合物的拉伸应力-应变曲线应力-应变曲线反映的材料的力学性质:力 学 参 量 力 学 性 质弹性 刚性屈服点 弹性(强弱、硬软和脆韧)断裂伸长 延性屈服应力 (或断裂强度、抗拉强度) 强度应力应变曲线下部的面积(断裂能) 韧性弹性线下部的面积 回弹性“软”和“硬”用于区分模量的低或高。
“弱”和“强”是指强度的大小。
“脆”是指无屈服现象且断裂伸长很小。
“韧”是指用一定的负荷就可克服链段运动或分子位移所需的能量,使运动发生,且形变大,材料就韧。
此时断裂伸长、断裂应力和断裂功都较高。
8.1.1.1 非晶态聚合物应力-应变曲线中:A 点:弹性极限点,A 点时对应的模量—拉伸模量E ;Y 点:屈服点,Y 点时对应的应力—屈服应力(屈服强度)σy ;Y 点时对应的应变—屈服应变(屈服伸长率)εy ,B 点:断裂点,B 点对应的应力—断裂应力(断裂强度)σB —抗拉强度,B 点对应的应变—断裂伸长率εB 。
聚合物的力学性能与分子结构在我们的日常生活和众多工业领域中,聚合物材料扮演着举足轻重的角色。
从塑料制品到橡胶制品,从纤维材料到涂料胶粘剂,聚合物无处不在。
而决定这些聚合物材料性能优劣的关键因素之一,便是其力学性能与分子结构。
首先,让我们来了解一下什么是聚合物的力学性能。
简单来说,力学性能就是聚合物在受到外力作用时所表现出的特性。
这包括强度、刚度、韧性、延展性、耐磨性等等。
比如,塑料椅子需要有足够的强度来承受人的体重,汽车轮胎则需要具备良好的韧性和耐磨性。
那么,聚合物的分子结构又是如何影响这些力学性能的呢?分子结构就像是聚合物的“基因密码”,决定了它的性质。
分子链的长度是一个重要因素。
一般来说,分子链越长,聚合物的强度和粘度往往越高。
想象一下,一条长长的分子链就像一根长长的绳子,众多这样的长链交织在一起,形成了一个强大的网络,使得材料更能抵抗外力的破坏。
分子链的柔性也对力学性能有着显著影响。
柔性好的分子链能够更容易地弯曲和变形,从而使聚合物具有较好的延展性和韧性。
比如,橡胶的分子链就具有很高的柔性,所以它能够被拉伸很大的程度而不断裂。
分子链的规整度同样不容忽视。
规整度高的分子链能够更紧密地排列,分子间的相互作用力更强,从而提高聚合物的强度和刚度。
而规整度低的分子链排列较为混乱,材料的性能相对就会较差。
除了分子链本身的特性,分子间的相互作用也在很大程度上决定了聚合物的力学性能。
分子间如果存在较强的氢键、范德华力等相互作用,会使得聚合物具有更高的强度和耐热性。
此外,聚合物的交联结构也会对力学性能产生重大影响。
交联就像是在分子链之间搭建了“桥梁”,使得整个结构更加稳固。
高度交联的聚合物通常具有优异的强度和耐热性,但延展性会较差;而交联程度较低的聚合物则具有较好的延展性,但强度相对较低。
为了更直观地理解这些概念,我们以聚乙烯(PE)为例。
高密度聚乙烯(HDPE)具有较高的结晶度和规整度,分子链排列紧密,因此具有较高的强度和硬度;而低密度聚乙烯(LDPE)的结晶度和规整度较低,分子链排列较为疏松,所以它的强度和硬度相对较低,但延展性更好。
聚合物材料的力学性能研究一、引言聚合物材料因其优异的物理性质和低成本的生产工艺在工业中被广泛使用,然而聚合物材料的力学性能成为了影响其应用范围的一个关键因素。
在工程应用中,聚合物材料必须具备一定的力学性能,例如强度、韧性、刚度等。
因此,研究聚合物材料的力学性能具有极其重要的意义。
本文将分别从强度、韧性和刚度三个方面探讨聚合物材料的力学性能研究。
二、聚合物材料的强度研究强度是指受力材料最大承受力的能力。
在聚合物材料中,强度受到化学结构、晶化程度和制备工艺等因素的影响。
其中,聚合物的化学结构对其强度性能的影响最大,因为它决定了聚合物的分子量、分子量分布和化学键的类型和数量。
此外,影响聚合物材料的强度还包括晶化程度和制备工艺等因素。
研究表明,化学结构和分子量是影响聚合物材料强度的最主要因素。
其中,分子量的大小和分子量分布的宽窄对聚合物材料的强度影响极大。
较高的分子量和较窄的分子量分布可以提高聚合物材料的强度。
而分子量过高或分子量分布过窄会导致聚合物材料的加工难度增加,从而影响其生产工艺。
此外,化学结构的差异也会对聚合物材料的强度产生不同的影响。
例如在聚乙烯和聚丙烯等同属于烯烃类聚合物材料中,不饱和度的增加会降低其强度,而在芳香族聚合物材料中,饱和度的增加反而会降低其强度。
三、聚合物材料的韧性研究韧性是指材料在受冲击载荷时形变和吸收能量的能力。
聚合物材料的韧性受到其结晶度、分子量和分子量分布等因素的影响。
研究表明,增加聚合物材料的结晶度可以提高其韧性。
这是由于高结晶度会使聚合物分子之间的相互作用变强,从而增加聚合物材料的强度和韧性。
分子量和分子量分布的影响也与强度类似,即分子量和分子量分布的增加可以提高聚合物材料的韧性,但过高的分子量和过窄的分子量分布会影响材料的加工和生产。
此外,制备工艺也对聚合物材料的韧性产生影响。
例如,在高速注塑成型中,熔融聚合物材料受到剪切力的作用,从而影响其晶化程度和结晶形态,进而影响聚合物材料的韧性。
7.3聚合物的力学性质聚合物作为材料使用时,对它性质的要求最重要的还是力学性质。
比如作为纤维要经得起拉力;作为塑料制品要经得起敲击;作为橡胶要富有弹性和耐磨损等等。
聚合物的力学性质,主要是研究其在受力作用下的形变,即应力-应变关系。
7.3.1应力-应变曲线7.3.1.1什么是应力和应变当材料在外力作用下,而材料不能产生位移时,它的几何形状和尺寸将发生变化,这种形变称为应变。
材料发生形变时内部产生了大小相等但方向相反的反作用力抵抗外力,定义单位面积上的这种反作用力为应力。
材料受力方式不同,形变方式也不同。
常见的应力和应变有:(1)张应力、张应变和拉伸模量材料受简单拉伸时(图7-34),张应力:张应变(又称伸长率):拉伸模量(又称杨氏模量):(2)(剪)切应力、(剪)切应变和剪切模量应力方向平行于受力平面,如图7-35所示。
切应力切应变剪切模量还有一个材料常数称泊松(Poisson)比,定义为在拉伸试验中,材料横向单位宽度的减小与纵向单位长度的增加的比值(注:加负号是因为Δm为负值)可以证明没有体积变化时,υ=0.5,橡胶拉伸时就是这种情况。
其他材料拉伸时,υ<0.5.υ与E和G之间有如下关系式:因为0<υ≤0.5,所以2G<E≤3G。
也就是说E>G,即拉伸比剪切困难,这是因为在拉伸时高分子链要断键,需要较大的力;剪切时是层间错动,较容易实现。
7.3.1.2强度极限强度是材料抵抗外力破坏能力的量度,不同形式的破环力对应于不同意义的强度指标。
极限强度在实用中有重要意义。
(1)抗张强度在规定的试验温度、湿度和试验速度下,在标准试样(通常为哑铃形,见图7-36)上沿轴向施加载荷直至拉断为止。
抗张强度定义为断裂前试样承受的最大载荷P与试样的宽度b和厚度d的乘积的比值。
抗张强度(2)冲击强度是衡量材料韧性的一种强度指标。
定义为试样受冲击载荷而折断时单位截面积所吸收的能量。
冲击强度式中:W为冲断试样所消耗的功;b为试样宽度;d为试样厚度。
聚合物的结构与热力学性质聚合物是由大量分子通过共价键连接而成的高分子化合物。
聚合物的结构和热力学性质对于其在不同领域的应用具有重要的意义。
本文将从聚合物的分子结构和热力学性质两方面进行论述。
一、聚合物的分子结构聚合物的分子结构对于聚合物的物理和化学性质具有决定性的作用。
聚合物的分子结构可以通过不同的方式描述,例如分子量、形状、分子构型等。
1. 分子量分子量是衡量聚合物分子大小的主要指标,通常通过摩尔质量或相对分子质量来表示。
聚合物的分子量越大,通常意味着聚合物的物理性质更高,例如强度、韧性等。
2. 形状聚合物的形状可以通过它们的链结构来描述,主要有线性聚合物、支化聚合物和交联聚合物三种。
线性聚合物是具有简单线性链结构的聚合物,链上没有分支或截面。
线性聚合物具有较高的可塑性和高分子化学反应活性。
支化聚合物是指在聚合物主链上部分碳原子上连接有支链结构的聚合物。
支化的聚合物较线性聚合物具有更高的熔点和稠度,同时也更耐热。
交联聚合物是指具有三维网络结构的聚合物,它们可以在较小的应变下保持形状。
交联聚合物具有较高的强度和硬度。
3. 分子构型分子构型是指聚合物分子在空间中的三维排列方式。
聚合物的分子构型决定了它的物理性质。
例如,一些交联聚合物是由于大量立体交联原因才得以形成,这使得材料很难变形,很难拉伸,具有优良的耐久性能。
二、聚合物的热力学性质聚合物的热力学性质指的是聚合物在热力学方面所表现出的各种性质,包括聚合物的热稳定性、热膨胀系数、热导率、玻璃转移温度和熔点等。
1. 热稳定性聚合物的热稳定性是指聚合物在高温下不分解或少分解的能力。
聚合物的热稳定性取决于聚合物的分子结构和环境条件。
例如,分子量越大的聚合物或支化聚合物比线形聚合物具有更高的热稳定性,因为它们具有更多的分支和交联。
2. 热膨胀系数热膨胀系数是指物体在温度变化过程中的体积膨胀量与初始体积的比值。
聚合物的热膨胀系数取决于聚合物的分子结构和温度。
实验七 聚合物的动态力学性能1. 实验目的要求1.1 掌握使用DMA Q800型动态力学分析仪测定聚合物的复合模量、储能模量和损耗模量的原理及方法。
1.2 能够通过数据分析,了解聚合物的结构特性。
2. 实验原理当样品受到变化着的外力作用时,产生相应的应变。
在这种外力作用下,对样品的应力-应变关系随温度等条件的变化进行分析,即为动态力学分析。
动态力学分析是研究聚合物结构和性能的重要手段,它能得到聚合物的储能模量(E '),损耗模量(E '')和力学损耗(tan δ),这些物理量是决定聚合物使用特性的重要参数。
同时,动态力学分析对聚合物分子运动状态的反映十分灵敏,考察模量和力学损耗随温度、频率以及其它条件的变化的特性可得聚合物结构和性能的许多信息,如阻尼特性、相结构及相转变、分子松弛过程、聚合反应动力学等等。
本实验采用DMA Q800型动态力学分析仪分析聚合物在一定频率下,动态力学性能随温度的变化。
如果在试样上加一个正弦应力σ,频率为ω,振幅为0σ,则应变ε也可以以正弦方式改变,应力与应变之间有一相位差δ,可分别表示为:0sin t εεω=0sin()t σσωδ=+式中0σ和0ε分别为应力和应变的幅值,将应力表达式展开:00cos sin()sin cos t t σσδωδσδω=++应力波可分解为两部分,一部分与应力同相位,峰值为0cos σδ,与储存的弹性能有关,另一部分与应变有90°的相位差,峰值为0sin σδ,与能量的损耗有关。
定义储能模量(E '),损耗模量(E '')和力学损耗(tan δ):00(/)cos E σεδ'= 00(/)sin E σεδ''=sin tan cos E E δδδ''=='复数模量可表示为:*E E iE '''=+其绝对值为:E =在交变应力作用下,样品在每一周期内所损耗的机械能可通过下式计算:320()()W t d t E φεσπε''∆==∆与E''成正比,因此,样品损耗机械能的能力高低可以用E''或tanδ值的大小来W衡量。
聚合物的性质和用途聚合物是一种由许多单元分子连接而成的高分子化合物,这些单元分子可以是相同的也可以是不同的,聚合物常见于塑料、橡胶和纤维等材料中。
聚合物具有许多特殊的性质和用途,下面就让我们来深入了解一下聚合物的性质和用途。
1.聚合物的结构和性质聚合物分子可以视为一条长链,链上的每个单元分子称为单体,这些单体结合形成了聚合物分子。
聚合物的性质和结构密切相关,不同的单体组成、链长和分支度数等结构参数会影响聚合物的性质。
聚合物的一般性质包括密度、硬度、弹性、熔点、玻璃化转变温度等,这些性质取决于聚合物的材料和结构。
例如,高密度聚乙烯的密度高,硬度高,而低密度聚乙烯的密度低,硬度低;聚氯乙烯硬而脆,聚丙烯硬而软。
聚合物分子中存在许多弱力相互作用,这些作用包括分子内氢键、范德瓦尔斯相互作用和疏水相互作用。
由于这些作用的存在,聚合物分子通常具有高分子量和高相对分子量,使得聚合物在物理、化学和力学性质等方面都具有独特的特性。
2.聚合物的用途由于聚合物具有多种不同的特性和性质,它们可以用于许多不同的应用场景。
以下是几种聚合物的常见应用:a.塑料塑料是一种广泛应用的聚合物材料,它们可以通过热塑性或热固性工艺加工成各种不同形状和尺寸的制品。
塑料的优点包括轻便、坚固、耐腐蚀、耐阻燃和成本低廉等。
然而,一些塑料(例如聚氯乙烯和聚苯乙烯)也具有很多不利影响,因为它们在环境中分解缓慢,大量堆积在自然界中。
因此,环保塑料和可降解塑料在塑料工业中变得越来越重要。
b.橡胶橡胶是一种弹性体,是从聚合物中制成的,具有吸震、防滑和耐磨损等特性。
橡胶广泛用于轮胎、地垫、密封圈、管道等领域。
由于橡胶的易老化性和涂覆性较差,现在一些改进材料如烯丙基橡胶和氯丁橡胶等也在生产中逐渐得到应用。
c.纤维聚合物纤维是一种视觉、感觉和性能极佳的纤维素材料,例如聚酯、尼龙、涤纶等等。
聚合物纤维具有高强度、弹性、耐磨损、耐腐蚀等特点,并且重量轻、便于加工和清洗,使它们成为时尚和体育用品的理想材料。
第一章高分子链的结构*近程结构:单个高分子内一个或几个结构单元的化学结构和立体化学结构。
又称高分子的一次结构。
*远程结构:整个分子的大小和在空间的形态,又称高分子的二次结构。
*构型:分子中由化学键所固定的原子在空间的几何排列。
*构象:由于围绕单键内旋转而产生的分子在空间的不同形态称作构象。
*键接结构:指聚合物大分子结构单元的连接方式。
*全同立构(等规立构):结构单元含有不对称碳原子C*的聚合物,C -C 链成锯齿状放在一个平面上。
当取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成。
*间同立构(间规立构):结构单元含有不对称碳原子C*的聚合物,C —C 链成锯齿状放在一个平面上。
当取代基相间的分布于主链平面的二侧或者说两种旋光异构单元交替键接。
无规立构:结构单元含有不对称碳原子C*的聚合物,C —C 链成锯齿状放在一个平面上。
当取代基在平面两侧作不规则分布或者说两种旋光异构体单元完全无规键接。
*柔顺性:高分子长链能发生不同程度卷曲的特性或者说高分子链能改变其构象的性质,简称柔性。
静态柔顺性:又称平衡态柔性,指的是高分子链处于较稳定状态时的卷曲程度。
*动态柔顺性:又称动力学柔性,指的是分子链从一种平衡态构象转变成另一种平衡态构象的容易程度。
*链段:高分子链上能独立运动的最小单元。
*等效自由结合链:在库恩统计法中,以链段为统计单元,链段看作刚性棒,自由连接,称为等效自由结合链。
*空间位阻参数σ:以σ来度量由于链的内旋转受阻而导致的分子尺寸增大程度的量度,σ愈小分子愈柔顺。
无扰尺寸A :因为均方末端距与键数n 成正比,而n 又比例于分子量M ,所以可以用单位分子量的均方末端距作为衡量分子柔性的参数,A 值愈小,分子链愈柔顺. 极限特征比C ∞:链均方末端距与自由结合链的均方末端距的比值,当n →∞时的极限值。
链的柔性愈大,则C ∞值愈小。
*均方末端距:线型高分子链的两端直线距离的平方的平均值。