09第9讲第六章 方差分析第一节 方差分析的基本原理与步骤
- 格式:pdf
- 大小:393.43 KB
- 文档页数:4
第一节方差分析的基本原理与步骤方差分析有很多类型,无论简单与否,其基本原理与步骤是相同的。
本节结合单因素试验结果的方差分析介绍其原理与步骤。
一、线性模型与基本假定假设某单因素试验有k个处理,每个处理有n次重复,共有nk个观测值.这类试验资料的数据模式如表6-1所示.表6—1k个处理每个处理有n个观测值的数据模式处理观测值合计平均A1 x11 x12 …x1j …x 1nA2 x21 x22 …x2j …x 2n……A i x i1 x i2 …x ij …x in……A k x k1 x k2 …x kj …x kn xk .合计表中表示第i个处理的第j个观测值(i=1,2,…,k;j=1,2,…,n );表示第i个处理n 个观测值的和;表示全部观测值的总和;表示第i个处理的平均数;表示全部观测值的总平均数;可以分解为(6—1)表示第i个处理观测值总体的平均数。
为了看出各处理的影响大小,将再进行分解,令(6—2)(6—3)则(6-4)其中μ表示全试验观测值总体的平均数,是第i个处理的效应(treatmenteffects)表示处理i对试验结果产生的影响。
显然有(6—5)εij是试验误差,相互独立,且服从正态分布N(0,σ2)。
(6—4)式叫做单因素试验的线性模型(linearmodel)亦称数学模型。
在这个模型中表示为总平均数μ、处理效应αi、试验误差εij之和。
由εij相互独立且服从正态分布N(0,σ2),可知各处理Ai(i=1,2,…,k)所属总体亦应具正态性,即服从正态分布N(μi,σ2)。
尽管各总体的均数可以不等或相等,σ2则必须是相等的.所以,单因素试验的数学模型可归纳为:效应的可加性(additivity)、分布的正态性(normality)、方差的同质性(homogeneity).这也是进行其它类型方差分析的前提或基本假定。
若将表(6-1)中的观测值xij(i=1,2,…,k;j=1,2,…,n)的数据结构(模型)用样本符号来表示,则(6—6)与(6—4)式比较可知,、、分别是μ、(μi-μ)=、(xij-)=的估计值。
方差分析_精品文档方差分析(Analysis of Variance,简称ANOVA)是一种用于比较两个或更多个群体均值是否存在显著差异的统计方法。
它是一种非参数统计方法,适用于正态分布的数据,可以帮助我们理解不同因素对于观测变量的影响程度以及它们之间是否存在交互作用。
方差分析的基本原理是将总体方差拆分为组内方差和组间方差。
组间方差表示了不同群体之间的差异,组内方差则表示了同一群体内的个体差异。
通过比较组间方差与组内方差的大小,判断不同群体均值是否存在显著差异。
方差分析可以分为单因素方差分析和多因素方差分析。
单因素方差分析主要用于比较一个因素(或处理)对观测变量的影响,例如比较不同药物对于治疗效果的影响;而多因素方差分析则可以同时考虑多个因素的影响,并探究它们之间是否存在交互作用。
方差分析的基本步骤如下:1.建立假设:根据实际问题,建立相应的原假设(H0)和备择假设(H1)。
原假设通常是认为各组均值相等,备择假设则是认为各组均值不全相等。
2.收集数据:根据实验设计,对不同处理组进行观测,获取相应的数据。
3.计算统计量:计算组间方差和组内方差,进行方差分析,得到统计量(F值)。
4.判断显著性:根据计算出的F值和自由度,查找F分布表,计算出P值(显著性水平)。
5.做出结论:根据P值,结合原假设和备择假设,判断不同群体均值是否存在显著差异。
方差分析的优点在于可以同时比较多个群体均值,减少了多次独立t 检验的错误率。
此外,方差分析也可以用于研究不同因素的交互作用,帮助我们更全面地理解数据。
然而,方差分析也有一些限制。
首先,方差分析要求数据满足正态分布假设,如果数据不满足正态分布,则结果可能不准确。
其次,方差分析对样本量要求较高,特别是对于多因素方差分析,需要足够的样本量才能得到可靠的结果。
最后,方差分析只能告诉我们群体均值是否存在显著差异,而不能确定具体差异的大小,这需要通过其他统计方法进行进一步分析。
第六章方差分析第一节方差分析概述一.方差分析的定义[用途]定义:用途方差分析也称为变异数分析,是在教育与心理研究中最常用的变量分析方法,其主要功能在于分析测量或实验数据中不同来源的变异对总变异的贡献大小,从而确定测量或实验中因素对反应变量是否存在显著影响。
即用于置信度不变情况下的多组平均数之间的差异检验。
它既可以比较两个以上的样本平均数的差异检验,也可以应用于一个因素多种水平以及多个因素有多种水平的数据分析。
二.方差分析的作用方差分析主要应用于两种以上实验处理的数据分析,同时匕徽两个以上的样本平均数,推断多组资料的总体均数是否相同,也即检验多组数据之间的均数差异是否有统计意义。
在这个意义,也可以将其理解为平均数差异显著性检验的扩展。
当我们用多个t检验来完成这一过程时,相当于从t分布中随机抽取多个t值,这样落在临界范围之外的可能大大增加,从而增加了I型错误的概率,我们可以把方差分析看作t检验的增强版。
方差分析一次检验多组平均数的差异,降低了多次进行两组平均数检验所带来的误差。
在进行方差分析时,设定的假设是综合虚无假设,即假设样本所归属的所有总体的平均数都相等。
如果检验的结果是存在显著性差异,只能说明多组平均数之间存在显著性差异,但是无法确定究竟哪些组之间存在显著性差异,此时需要运用事后检验的方法来确定。
三.方差分析的相关概念一(一)数据的变异(1)变异:统计中的变异是普遍存在的7一般意义上的变异是指标志(包括品质标志和数量标志)在总体单位之间的不同表现。
可变标志的属性或数值表现在总体各单位之间存在的差异,统计上称之为变异,这是广义上的变异,即包括了品质标志和数量标志,有时仅指品质标志和在总体单位之间的不同表现。
注:随机性,即变异性。
(2)组间变异[组间差异]:组间变异表示处理间变异,主要指由于接受不同的实验处理(实验处理效应)而造成的各组之间的变异,可以用两个平均数之间的离差来表示,可将组间离差平方和记为SS AO组间差异可用组间方差来表征,用符号MS B表示。
第六章第⼀节⽅差分析基本原理教学内容及组织安排:教学内容及组织安排:回顾卡⽅检验和T检验讲授的有关知识,引进⽅差分析的概念。
第六章⽅差分析⽅差分析的定义⽅差分析(Analysis of variance,ANOV A):⼜叫变量分析,是英国著名统计学家R . A . Fisher于20世纪提出的。
它是⽤以检验两个或多个均数间差异的假设检验⽅法。
它是⼀类特定情况下的统计假设检验,或者说是平均数差异显著性检验的⼀种引伸。
⽅差分析的基本功能t检验法适⽤于样本平均数与总体平均数及两样本平均数间的差异显著性检验,但在⽣产和科学研究中经常会遇到⽐较多个处理优劣的问题,即需进⾏多个平均数间的差异显著性检验。
这时,若仍采⽤t检验法就不适宜了。
这是因为:1、检验过程烦琐例如,⼀试验包含5个处理,采⽤t检验法要进⾏ =10次两两平均数的差异显著性检验;若有k个处理,则要作 k(k-1)/2次类似的检验。
2、⽆统⼀的试验误差,误差估计的精确性和检验的灵敏性低对同⼀试验的多个处理进⾏⽐较时,应该有⼀个统⼀的试验误差的估计值。
若⽤ t 检验法作两两⽐较,由于每次⽐较需计算⼀个,故使得各次⽐较误差的估计不统⼀,同时没有充分利⽤资料所提供的信息⽽使误差估计的精确性降低,从⽽降低检验的灵敏性。
例如,试验有5个处理,每个处理重复6次,共有30个观测值。
进⾏t检验时,每次只能利⽤两个处理共12个观测值估计试验误差,误差⾃由度为 2(6-1)=10 ;若利⽤整个试验的30个观测值估计试验误差,显然估计的精确性⾼,且误差⾃由度为5(6-1)=25。
可见,在⽤t检法进⾏检验时,由于估计误差的精确性低,误差⾃由度⼩,使检验的灵敏性降低,容易掩盖差异的显著性。
3、推断的可靠性低,检验的 I 型错误率⼤即使利⽤资料所提供的全部信息估计了试验误差,若⽤t 检验法进⾏多个处理平均数间的差异显著性检验,由于没有考虑相互⽐较的两个平均数的秩次问题,因⽽会增⼤犯 I型错误的概率,降低推断的可靠性。
方差分析(一):方差分析的基本原理本文转自SAS知识(ID: SASadvisor),摘自《深入解析SAS —数据处理、分析优化与商业应用》回复「朝阳35处」可查看「说人话的大数据」系列合辑方差分析可以用来判断几组观察到的数据或者处理的结果是否存在显著差异。
本文介绍的方差分析(Analysis of Variance,简称ANOVA)就是用于检验两组或者两组以上样本的均值是否具备显著性差异的一种数理统计方法。
方差分析在实际应用中,常常需要判断几组观察到的数据或者处理的结果是否存在显著差异。
比如,想要了解不同地区的信用卡用户在月均消费水平上是否存在差异就是多组数据是否存在差异的示例,至于不同处理的结果是否存在差异的示例也有很多,例如,几种用于缓解手术后疼痛的药品,它们之间的治疗效果即药效持续的平均时间是否存在差异,实际上考察的就是不同的处理(将药品作用于患者)其结果是否存在差异。
若上述的信用卡月均消费水平或治疗效果存在差异,那么这种差异是统计显著的吗?也就是说,这种差异是某一个或几个因素作用的结果吗?例如是由于地区差异或不同的药物引起的吗?还是纯粹随机误差(譬如说随机抽样过程)的体现呢?本系列文章介绍的方差分析(Analysis of Variance,简称ANOVA)就是用于检验两组或者两组以上样本的均值是否具备显著性差异的一种数理统计方法。
方差分析的基本原理在方差分析中,我们把要考察其均值是否存在显著差异的指标变量称为响应变量,对响应变量取值有影响的其他变量称为因素。
例如,信用卡消费水平和治疗效果为响应变量,地区和药品则为因素。
在方差分析中,因素的取值应为离散型的,其不同的取值称为水平。
例如,每一个具体地区或者每一种药品都对应着一个水平。
根据因素的个数,方差分析可以分为单因素方差分析和多因素方差分析。
方差分析的模型为了更好地解释方差分析的模型,首先来看看单因素的情形。
考虑如下示例:现有四种用于缓解术后疼痛的药品1、2、3和4,为了研究它们的治疗效果是否存在显著差异,对每一种药品都进行了4次试验。
SSt==-∑C nT i 7.4428.1520764378323352335356=-++++ SSe=SST-SSt=603.2-442.7=160.5 进而计算各部分方差:68.11047.4422==t s 7.10155.1602==e s二、F 分布与F 检验1.F 分布设想在一正态总体N (μ,σ2)中随机抽取样本含量为n 的样本k 个,将各样本观测值整理成表6-1的形式。
此时的各处理没有真实差异,各处理只是随机分的组。
因此,由上式算出的2t S 和2e S 都是误差方差2σ的估计量。
以2e S 为分母,2t S 为分子,求其比值。
统计学上把两个方差之比值称为F 值。
即 22/e t S S F =F 具有两个自由度:)1(,121-==-==n k df k df e t νν。
F 值所具有的概率分布称为F 分布。
F 分布密度曲线是随自由度df 1、df 2的变化而变化的一簇偏态曲线,其形态随着df 1、df 2的增大逐渐趋于对称,如下图所示。
F 分布的取值范围是(0,+∞),其平均值F μ=1。
用)(F f 表示F 分布的概率密度函数,则其分布函数)(αF F 为:⎰0=<=αααF dF F f F F P F F )()()(因而F 分布右尾从αF 到+∞的概率为:⎰+∞=-=≥αααFdF F f F F F F P )()(1)(附表F 值表列出的是不同1ν和2ν下,P (F ≥αF )=0.05和P (F ≥αF )=0.01时的F 值,即右尾概率α=0.05和α=0.01时的临界F 值,一般记作F 0.05,F 0.01。
如查F 值表,当v 1=3,v 2=18时,F 0.05=3.16,F 0.01=5.09,表示如以v 1=df t =3,v 2=df e =18在同一正态总体中连续抽样,则所得F 值大于3.16的仅为5%,而大于5.09的仅为1%。
2.F 测验F 值表是专门为检验2t S 代表的总体方差是否比2e S 代表的总体方差大而设计的。
论方差分析的原理及应用方差分析(Analysis of Variance,ANOVA)是一种用于比较两个或多个组之间差异的统计方法,它通过比较组间变异与组内变异的大小来判断不同组之间的均值是否存在显著差异。
其原理和应用如下:1. 原理:方差分析的基本原理是将总变异分解为组间变异和组内变异。
组间变异是指不同组之间由于不同处理所导致的差异,而组内变异则是指同一组内由于个体差异或随机误差所导致的差异。
通过比较组间变异与组内变异的大小,可以判断组之间的均值是否有显著差异。
具体而言,方差分析通过计算F值来判断差异是否显著,F值越大说明差异越显著。
2. 应用:方差分析广泛应用于实验设计与分析、质量控制与品质改进、行业比较、社会科学研究等领域。
以下列举几个常见的应用场景:(1)实验设计与分析:在实验设计中,可以使用方差分析比较不同处理组的均值差异,以确定不同处理对实验结果的影响。
例如,药物疗效实验可以使用方差分析来比较不同药物组的治疗效果。
(2)质量控制与品质改进:方差分析可以用于比较不同生产批次、不同工厂或不同操作者之间的品质差异。
通过该方法可以确定是否存在显著差异,并进行改进措施。
(3)行业比较:在市场调查和企业竞争分析中,可以使用方差分析比较不同行业或不同企业之间的关键指标的差异情况。
这有助于了解行业趋势和发现优秀的企业经营模式。
(4)社会科学研究:方差分析可以用于比较不同组群之间的差异,如教育背景对收入的影响、不同地区对人口流动的影响等。
该方法可以帮助研究者理解社会现象,提供决策支持。
总之,方差分析是一种常用的统计方法,通过比较组间变异与组内变异的大小来判断不同组之间的均值是否存在显著差异。
它在实验设计与分析、质量控制与品质改进、行业比较、社会科学研究等领域都有重要的应用价值,帮助人们深入了解数据背后的差异及原因,并提供决策支持。
第六章方差分析第一节方差分析的基本原理上章介绍了1个或两个样本平均数的假设测验方法.本章将介绍k(k≥3)个样本平均数的假设测验方法,即方差分析(analysis of variance).方差分析就是将总变异剖分为各个变异来源的相应部分,从而发现各变异原因在总变异中相对重要程度的一种统计分析方法。
其中,扣除了各种试验原因所引起的变异后的剩余变异提供了试验误差的无偏估计,作为假设测验的依据。
因而,方差分析象上章的t测验一样也是通过将试验处理的表面效应与其误差的比较来进行统计推断的,只不过这里采用均方来度量试验处理产生的变异和误差引起的变异而已。
方差分析是科学的试验设计和分析中的一个十分重要的工具。
本章将在介绍方差分析基本原理和方法的基础上进一步介绍数学模型和基本假定。
一、自由度和平方和的分解方差是平方和除以自由度的商。
要将一个试验资料的总变异分解为各个变异来源的相应变异,首先必须将总自由度和总平方和分解为各个变异来源的相应部分.因此,自由度和平方和的分解是方差分析的第一步。
下面先从简单的类型说起。
设有k组数据,每组皆具n个观察值,则该资料共有nk个观察值,其数据分组如表6。
1.表6.1 每组具n个观察值的k组数据的符号表组别观察值(,i=1,2,…,k;j=1,2,…,n) 总和平均均方1 ……2 …………i…………k……在表6.1中,总变异是nk个观察值的变异,故其自由度,而其平方和则为:(6·1)(6·1)中的C称为矫正数:(6·2)这里,可通过总变异的恒等变换来阐明总变异的构成。
对于第i组的变异,有总变异为第1,2,…,k组的变异相加,利用上式总变异(6·1)可以剖分为:(6·3)即总平方和=组内(误差)平方和+处理平方和组间变异由k个的变异引起,故其自由度,组间平方和为:(6·4)组内变异为各组内观察值与组平均数的变异,故每组具有自由度和平方和;而资料共有组,故组内自由度,组内平方和为:(6·5)因此,得到表6.1类型资料的自由度分解式为:(6·6)总自由度DF T=组间自由度DF t+组内自由度DF e求得各变异来源的自由度和平方和后,进而可得:(6·7)若假定组间平均数差异不显著(或处理无效)时,(6·7)中与是的两个独立估值,均方用表示,也用表示,两者可以互换。