统计学-第七章 方差分析
- 格式:ppt
- 大小:588.00 KB
- 文档页数:61
旗开得胜1第七章 假设检验与方差分析 习题答案一、名词解释用规范性的语言解释统计学中的名词。
1. 假设检验:对总体分布或参数做出某种假设,然后再依据抽取的样本信息,对假设是否正确做出统计判断,即是否拒绝这种假设。
2. 原假设:又叫零假设或无效假设,是待检验的假设,表示为 H 0,总是含有等号。
3. 备择假设:是零假设的对立,表示为 H 1,总是含有不等号。
4. 单侧检验:备择假设符号为大于或小于时的假设检验。
5. 显著性水平:原假设为真时,拒绝原假设的概率。
6. 方差分析:是检验多个总体均值是否相等的一种统计分析方法。
二、填空题根据下面提示的内容,将适宜的名词、词组或短语填入相应的空格之中。
1. u ,nx σμ0-,标准正态; ),(),(2/2/+∞--∞nz nz σσααY2. 参数检验,非参数检验3. 弃真,存伪4. 方差旗开得胜25. 卡方, F6. 方差分析7. t ,u8. nsx 0μ-,不拒绝9. 单侧,双侧10.新产品的废品率为5% ,0.01 11.相关,总变异,组间变异,组内变异12.总变差平方和=组间变差平方和+组内变差平方和 13.连续,离散 14.总体均值 15.因子,水平 16.组间,组内 17.r-1,n-r18. 正态,独立,方差齐三、单项选择从各题给出的四个备选答案中,选择一个最佳答案,填入相应的括号中。
1.B 2.B 3. B 4.A 5.C 6.B 7.C 8.A 9.D 10.A 11.D 12.C四、多项选择从各题给出的四个备选答案中,选择一个或多个正确的答案,填入相应的括号中。
1.AC 2.A 3.B 4.BD 5. AD五、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。
1. 在任何情况下,假设检验中的两类错误都不可能同时降低。
( ×)样本量一定时2. 对于两样本的均值检验问题,若方差均未知,则方差分析和t检验均可使用,且两者检验结果一致。
方差分析简述方差分析也是统计检验的一种。
由英国著名统计学家:R.A.FISHER推导出来的,也叫F检验。
190240290340分组正常钙组中剂量钙(1.0%)高剂量钙(1.5%)1X 2X 3X X(2) 计算检验统计量可根据表7-5的公式来计算出离均差平方和、自由度、均方和F值。
从已知正态总体N(10,52)进行随机抽样,共抽取了k=10组样本,每组样本的样本含量n i=20,可算出各组的均数和标准差,得表7-7的结果。
如果采用t检验作两两比较,其比较次数为(1)10(101)45 222k k km⎛⎫--====⎪⎝⎭从理论上讲10个样本均来自同一正态总体N(10,52),应当无差异,但我们用两样本t检验时,已经规定犯第一类错误的概率不超过α=0.05,本次实验实际犯第一类错误的频率为5/45≈0.11,显然比所要控制的0.05要大。
因此不能直接用前面学过的两样本t检验对多样本均数作两两比较,而应采用专用的两两比较的方法。
(2) 计算检验统计量首先将三个样本均数由大到小排列,并编组次:, =11()2A B A B A B X X A BX X X X q S MS n n νν---==+误差误差(3) 确定值并作出推断结论自由度ν误差和对比组内包含组数a查附表4的q界值表得q界值,将算得的q值与相应q界值进行比较得各组的p值。
(3) 确定P值并作出推断结论自由度ν误差和实验组数 (不含对照组)查附表5.2的Dunnett –t(q, )界值表,得q,临界值,用计算得到的q,与临界值进行比较,得P值 。
(2) 计算检验统计量=11()A B A B A B X X A BX X X X t S MS n n νν---==+误差误差。
统计学中的方差分析方法统计学是现代社会中最重要的学科之一,它基于大量的数据和数学模型,研究人类社会和自然环境中各种现象和规律。
其中,方差分析是统计学中最基本的分析方法之一,它常常被用来分析各种因素对某个变量的影响。
在本文中,我们将详细介绍方差分析方法的基本原理和应用。
一、方差分析的基本原理方差分析是利用方差的性质分析多组数据之间的差异或相似性的方法。
它是以方差分解为基础的,通过对总方差、组间平方和和组内平方和的分解,来度量实验因素对实验变量的影响。
在具体的研究过程中,我们通常将所研究的因素分为不同的组别,并在每个组别中测量实验变量的值,随后运用方差分析方法来分析不同组别之间的差异。
在方差分析中,我们通常采用F检验法来判断差异的显著性。
通过计算F值并与临界值进行比较,得出数据是否符合研究假设的结果。
如果F值大于临界值,则说明差异是显著的,反之则说明差异不显著。
F检验法在实际应用中非常广泛,适用于大多数实验设计和数据类型。
二、方差分析的应用方差分析方法可以用于各种不同类型的数据分析,如一元方差分析、双因素方差分析、三因素方差分析等等。
下面我们将分别介绍它们的应用。
1. 一元方差分析一元方差分析是指只有一个自变量和一个因变量的分析方法,也就是说只有一个因素影响一个变量。
一元方差分析通常用于分析实验组与对照组之间的差异或者不同处理方式对实验结果的影响等。
例如,我们要研究不同肥料对作物产量的影响,我们可以将实验分成几组,每组采用不同的肥料,最后对产量进行测量。
接着通过方差分析法来比较每组之间产量的差异,最后确定哪种肥料更适合提高作物产量。
2. 双因素方差分析双因素方差分析是指有两个自变量和一个因变量的分析方法,也就是说有两个因素对一个变量产生影响。
双因素方差分析通常用于研究两种或多种因素的交互效应。
例如,我们要研究不同机器和不同操作员对产品质量的影响,我们可以先在不同机器上制造同种产品,然后再让不同的操作员进行操作。
统计学方差分析方差分析(Analysis of Variance,缩写为ANOVA)是一种常用的统计学方法,广泛应用于数据分析中。
它的主要目的是用于比较多个样本群体之间的均值是否存在显著差异。
通过方差分析,可以确定因素对于不同组之间的差异程度有无显著影响。
方差分析的基本原理是将数据进行分解,并据此计算各部分之间的均方差(mean square),然后通过比较这些均方差的比值,得出各部分对总体的贡献程度,并进行显著性检验。
在方差分析中,数据通常被分为几个不同的组别,每个组别称为一个因素(factor)。
每个因素可以有不同的水平(level),例如性别因素可以有男和女两个水平。
而一个水平下的所有观测值构成一个处理(treatment)或条件(condition)。
方差分析的基本模型是一种线性模型,假设因变量与自变量之间存在线性关系。
对于单因素方差分析,它的模型可以表示为:Y=μ+α+ε其中,Y表示因变量,μ表示总体的平均值,α表示组别之间的差异,ε表示组内误差。
方差分析的目标是判断组别之间的差异(α)与组内误差(ε)的比值是否显著。
方差分析的核心思想是通过计算均方差,评估不同因素水平之间的差异是否显著。
均方差是方差与其自由度的比值,用于度量数据的离散程度。
通过计算组间均方差(MSTr)和组内均方差(MSE),我们可以得出F值,进而进行显著性检验。
F值是组间均方差与组内均方差的比值F = (MSTr / dfTr) / (MSE / dfE)其中,dfTr表示组间自由度,dfE表示组内自由度。
在统计学中,F值与显著性水平相关。
当F值大于显著性水平对应的临界值时,我们可以拒绝原假设,认为组别之间存在显著差异。
否则,我们不能拒绝原假设,即组别之间的差异不显著。
方差分析不仅可以应用于单因素情况,还可以扩展到多因素情况。
多因素方差分析可以用于研究多个自变量对因变量的影响,并评估这些自变量之间是否存在交互作用。
统计学中的方差分析方法方差分析(Analysis of Variance,简称ANOVA)是统计学中常用的一种假设检验方法,用于比较两个或更多个样本均值是否存在差异。
它通过分析不同组之间的方差来评估组内和组间的变异情况,进而得出结论。
一、方差分析的基本思想方差分析基于以下两个基本假设:1. 原假设(H0):各总体均值相等,即样本所来自的总体没有差异;2. 备择假设(H1):各总体均值不相等,即至少存在一个样本来自于与其他样本不同的总体。
二、一元方差分析(One-way ANOVA)一元方差分析适用于只有一个自变量的情况,它将样本根据自变量分为两个或多个组,然后比较这些组之间的均值差异。
下面以一个简单的案例来说明一元方差分析。
假设我们要研究三种不同肥料对植物生长的影响,我们将随机选取三个试验区,分别施用A、B和C三种不同的肥料,每个试验区都观察到了相应植物的生长情况(例如植物的高度)。
我们的目标是通过方差分析来判断这些不同肥料是否对植物的生长有显著的影响。
在执行一元方差分析之前,我们首先需要验证方差齐性的假设。
如果各组样本的方差相等,我们就可以继续使用方差分析进行比较。
常用的方差齐性检验方法有Bartlett检验和Levene检验。
在通过方差齐性检验后,我们可以进行一元方差分析。
分析结果将提供两个重要的统计量:F值和P值。
F值表示组间均方与组内均方的比值,P值则表示了接受原假设的概率。
如果P值较小,则说明组间的差异是显著的,我们可以拒绝原假设,接受备择假设,即不同肥料对植物生长有显著影响。
三、多元方差分析(Two-way ANOVA)多元方差分析适用于有两个以上自变量的情况,分析对象的均值差异可以归因于两个或多个自变量的相互作用。
这种分析方法常用于研究两个或多个因素对实验结果的影响情况。
以品牌和价格对手机销量的影响为例,我们假设品牌和价格是两个自变量,手机销量是因变量。
我们可以将样本分成不同的组合,比如将不同品牌的手机按不同的价格段进行分类。
应用统计单项选择题-第07章-方差分析1.单选题:关于方差分析中的SSA和SSE,正确的说法是()。
A. SSA和SSE反映了随机因素带来的影响B. SSA和SSE反映了系统因素带来的影响C. SSA所表现的是组间差异既包括随机因素,也包括系统因素D. SSE所表现的是组内差异既包括随机因素,也包括系统因素解答: C2.单选题:利用“方差分析表”进行方差分析时,该表不包括的项目有()。
A. 方差来源B. 离差平方和及其分解C. 各离差平方和的自由度D. 原假设的统计判断解答: D3.单选题:下面不属于单因素方差分析中所需的平方和是()。
A. SSTB. SSAC. SSED. SSR解答: D4.单选题:与假设检验相比,方差分析方法可以使犯第I类错误的概率()。
A. 提高B. 降低C. 等于0D. 等于1解答: B5.单选题:方差分析中,错误说法是()。
A. 如果方差分析只针对一个因素进行,称为单因素方差分析B. 如果同时针对多个因素进行,称为多因素方差分C. 方差分析就是通过不同方差的比较,作出接受原假设或拒绝原假设的判断D. 方差分析不可以对若干平均值是否相等同时进行检验解答: D6.单选题:以下对方差分析叙述不正确的是()。
A. 方差分析可以对若干平均值是否相等同时进行检验B. 进行方差分析要求各水平下的样本容量相同C. 离差平方和能分解为组内方差与组间方差的和D. 方差分析方法在社会科学领域也大有用武之地解答: B7.单选题:下列式子错误的是()。
A. F=MSE/MSAB. MSA=SSA/(r-1)C. MSE=SSE/(n-r)D. SST=SSE+SSA解答: A8.单选题:方差分析所研究的是()。
A. 分类型自变量对分类型因变量的影响B. 分类型自变量对数值型自变量的影响C. 分类型因变量对数值型自变量的影响D. 分类型自变量对数值型因变量的影响解答: D9.单选题:若方差分析中,所提出的原假设是H0:μ1=μ2=…=μk,备择假设是()。
第七章方差分析第一节方差分析的基本原理方差分析(Analysis of variance,简称ANOV A)是对多个总体均值是否相等这一假设进行检验的一种方法。
一、方差分析的内容1实例[例] 某饮料生产企业研制出一种新型饮料。
饮料的颜色共有四种,分别为橘黄色、粉色、绿色和无色透明。
这四种饮料的营养含量、味道、价格、包装等可能影响销售量的因素全部相同。
现从地理位置相似、经营规模相仿的五家超级市场上收集了前一期该种饮料的销售量情况,见表7—1。
新型饮料在五家超市的销售情况表解:从表7—1中看到20个数据各不相同,什么原因使其不同呢?2产生的原因①是销售地点的影响;②是饮料颜色的影响。
A 有可能是抽样的随机性造成的;B 有可能是由于人们对不同颜色有所偏爱。
可以将上述问题就归结为一个检验问题——检验饮料颜色对销售量是否有影响,即要检验各个水平的均值k μμμ,,21 是否相等。
二、方差分析的原理1基本概念因素:一个独立的变量就称为一个因素。
如,颜色水平:将因素中不同的现象称为水平。
(每一水平也称为一组) 单因素方差分析:方差分析只针对一个因素进行。
多因素方差分析:同时针对多个因素进行分析。
观察值之间的差异产生来自于两个方面:①是由因素中的不同水平造成系统性差异的; ②是由于抽选样本的随机性产生的差异。
方差分析数据结构表7-2在一元情形下假设:ik i2i1X ,,X ,X ,i=1,2…n j ,j=1,2,…k,为来自总体)N(2σ,μ的随机样本。
如果假设k H μμμ=== 210:也可表达为 j j αμμ+=其中j α是第j 个水平的偏差。
如果各水平下均值相等,则可以表述为: 0:210====k H ααα对于第j 个因素有ij j ij X εαμ++=其中()2,0~σεN ij 为独立同分布随机变量。
对于观察值则有)()(j ij j ij x x x x xx -+-+=将式两端减去x 然后平方,得))((2)()()(222j ij j j ij j ij x x x x x x x x x x --+-+-=-等式两边求和,有也即如上例可以建立如下的假设:43210:μμμμ===H ;43211,,,:μμμμH 不全相等。
统计学中的方差分析在统计学中,方差分析(Analysis of Variance,简称ANOVA)是一种常用的数据分析方法,用于比较两个或更多个样本均值之间的差异。
它可以帮助研究人员确定这些差异是否是由于随机变异导致的,或者是否存在其他因素对样本均值产生显著影响。
方差分析的基本理念是将总体方差分解为不同来源的方差,以评估各个因素对总体方差的影响程度。
一般情况下,将总体方差分解为组内方差和组间方差两部分。
组内方差反映了同一组内个体之间的差异程度,而组间方差则反映了不同组之间的差异程度。
方差分析的数学模型可以通过以下公式表示:$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij}$$其中,$Y_{ij}$表示第i组中第j个个体的观测值,$\mu$为总体均值,$\alpha_i$为第i组的固定效应,$\epsilon_{ij}$为误差项。
通过方差分析可以检验组间因素($\alpha_i$)对于总体均值是否具有显著影响。
在进行方差分析之前,需要满足以下几个前提条件:1. 独立性:样本观测值彼此之间应独立,即每个观测值的产生不会受到其他观测值的影响。
2. 正态性:每个组内的观测值应呈正态分布,这样才能保证方差分析的结果准确性。
3. 方差齐性:每个组内的观测值应具有相同的方差,即不同组之间的方差应该相等。
方差分析有两种常见的类型:单因素方差分析和多因素方差分析。
单因素方差分析适用于只有一个自变量(或因素)的情况下,用于比较不同水平(或处理)之间的均值差异。
例如,一个研究人员想要比较不同药物治疗方法对疾病恢复时间的影响,可以使用单因素方差分析。
多因素方差分析适用于具有两个或更多个自变量(或因素)的情况。
它可以帮助研究人员分析多个因素之间的相互作用效应。
例如,一个研究人员想了解不同年龄、性别和教育程度对于工资水平的影响,可以使用多因素方差分析。
方差分析的结果可以通过计算统计量F值来判断不同因素对于总体均值的显著影响。
第七章 方差分析、统计效力方差分析原理:综合的F检验应用:两个以上平均数之间的差异检虚无假设:H0:μ1 = μ2 = μ3方差可分解,实验数据的总变异分解为若干不同来源的分变异,一般分为组内变异和组间变异组内变异:实验误差、被试差异等组间变异:不同实验条件造成的变异考察F = 组间均方/ 组内均方的显著性方差分析的前提总体正态分布变异互相独立各实验条件的方差齐性方差分析的步骤a. 求总和方、组间和方、组内和方b. 求总自由度、组间自由度、组内自由度c. 求组间均方、组内均方d. 计算F观测值e. 列方差分析表f. 查F表求F临界值g. 作判断符号系统K = 处理条件或组的数目n i = 第i 组的被试数目,若每组被试相等,则为n N = Σn i = 总被试数T i = ΣX ij = 每个组分数值的和 G = ΣX ij = 所有分数的总和 P = 每个被试的观察数目 单因素完全随机方差分析例:检验三个不同的学习方法的效应。
将学生随机分配到3个处理组 方法 A :让学生只读课本, 不去上课. 方法 B :上课,记笔记,不读课本.方法 C :不读课本,不去上课, 只看别人的笔记解:虚无假设H 0:μ1 = μ2 = μ3 ,三种方法学习效果没有差异 备择假设:至少有一个组和其他不同G=30, N=15, 215G ==, 2106,3XK ==∑SS 总= ΣX 2 - G 2 / N =106 – 900 / 15 = 106 – 60 = 46 SS 组内= SS 1 + SS 2 + SS 3 = 6 + 6 + 4 = 16SS组间= Σ(T2/n i) - G2/N = 52/5 + 202/5 + 52/5 - 302/15 = 5 + 80 + 5 –60 = 30实际SS组间可以用SS总- SS组内快速求得,但不推荐df总= N – 1 = 15 -1 = 14df组内= N –K = 15 - 3 = 12df组间= K – 1 = 3 – 1 = 2MS组内= SS组内/ df组内= 16/12 = 1.333MS组间= SS组间/ df组间= 30/2 = 15F obs = MS组间/ MS组内= 15 / 1.333 = 11.25F0.05(2, 12) = 3.88F obs = 11.25 > F0.05(2, 12) = 3.88所以拒绝H0,至少有一组和其他不同事后检验N-K检验HSD检验Scheffe检验……注意:不能用两两之间t检验,P = 1 - (1 - α)n,例如本例P = 1 - (1 –0.05)3 = 0.143随机区组设计的方差分析又称重复测量方差分析,单因素组内设计,相关组设计,被试内设计解:G = 305.5,N = 32,ΣX2 = 2934.91,K = 4, n = 8SS总= ΣX2 - G2 / N = 2934.91 –305.52 / 32 = 18.33SS组内= SS1 + SS2 + SS3 + SS4 = 2.8 + 3.14 + 1.535 + 1.429 = 8.894SS组内= SS被试间+ SS误差SS被试间=Σ(P2/K) - G2/N = 1544.49/4 + 1482.25/4 + 1584.04/4 + 1310.44/4 + 1303.21/4 + 1444/4 + 1755.61/4 + 1274.49/4 - 305.52/32 = 8.062SS误差= SS组内- SS被试间= 8.894 - 8.062 = 0.832SS组间= Σ(T2/n i) - G2/N = 80.82/8 + 79.62/8 + 75.42/8 + 69.72/8 –305.52/32 = 816.08 + 792.02 + 710.645 + 607.261 –2916.57 = 9.436df总= N – 1 = 32 -1 = 31df组内= N –K = 32 - 4 = 28df组间= K – 1 = 4 – 1 = 3df被试= n – 1 = 8 – 1 = 7df误差= df组内–df被试= 28 –7 = 21MS误差= SS误差/ df误差= 0.832/21 = 0.040MS组间= SS组间/ df组间= 9.436/3 = 3.145F obs = MS组间/ MS误差= 3.145 / 0.040 = 78.63F0.01(3, 21) = 4.87F obs = 78.63 > F0.01(3, 21) = 4.87所以拒绝H0,至少有一组和其他不同事后检验:略协方差分析在某些实际问题中,有些因素在目前还不能控制或难以控制,如果直接进行方差分析,会因为混杂因素的影响而无法得出正确结论。
统计学——方差分析概念和方法方差分析是一种用于比较两个或多个样本均值之间差异的统计分析方法。
它主要用于分析一个因变量和一个或多个自变量之间的关系,并判断这些自变量对因变量的影响是否存在显著差异。
方差分析主要包括以下几个概念和方法:1.因变量和自变量:方差分析中,我们首先需要明确研究的因变量和自变量。
因变量是我们感兴趣的变量,我们想要比较的两个或多个样本均值;而自变量是我们认为对因变量有影响的变量,可以是类别变量(如性别、教育程度等)或连续变量(如年龄、收入等)。
2.假设检验:在进行方差分析之前,我们需要假设样本均值之间没有显著差异,即为零假设(H0)。
然后,我们通过方差分析来检验零假设是否成立。
3.方差分析的类型:根据自变量的个数和类型的不同,方差分析可以分为单因素方差分析、多因素方差分析和混合方差分析。
单因素方差分析适用于只有一个自变量的情况,多因素方差分析适用于含有多个自变量的情况,而混合方差分析适用于自变量同时包含类别变量和连续变量的情况。
4.方差分析表:方差分析表是用来总结方差分析结果的常用工具。
在方差分析表中,我们可以看到组间方差(组间均方)、组内方差(组内均方)、总体方差(总体均方)以及统计量F值。
通过比较F值与给定的显著性水平,我们可以判断不同样本均值之间是否存在显著差异。
5.假设检验的步骤:进行方差分析时,需要按照以下几个步骤进行假设检验:a.建立假设:H0(样本均值没有显著差异)和H1(至少有一组样本的均值存在显著差异);b.计算各个组的均值;c.计算组间方差和组内方差;d.计算统计量F值;e.判断结果:通过比较F值和临界值来判断是否拒绝零假设。
6. 方差分析的扩展:在方差分析中,我们可以进行一些扩展的分析,如多重比较和建模。
多重比较是用来判断哪些组之间存在显著差异,常用的方法有Tukey法、Duncan法和Scheffe法等。
建模则是通过增加其他变量(如交互效应)来更好地解释因变量的变化。
统计学中的方差分析与假设检验方差分析(Analysis of Variance,简称ANOVA)是统计学中一种常用的假设检验方法,用于比较两个或多个样本的均值是否存在显著差异。
方差分析通过对不同组之间的方差进行比较,判断样本均值是否有统计学上的差异。
本文将介绍方差分析的基本原理和假设检验的步骤。
一、方差分析的基本原理方差分析是一种多个总体均值比较的方法,它通过计算组间离散度与组内离散度的比值来判断样本均值是否有显著差异。
方差分析的基本原理可以用以下公式表示:$$F=\frac{MS_{\text{between}}}{MS_{\text{within}}}$$其中,F为方差比值,$MS_{\text{between}}$为组间均方,$MS_{\text{within}}$为组内均方。
方差比值F的值越大,说明组间差异相对于组内差异的贡献越大,即样本均值之间的差异越显著。
通过查找F分布表,可以确定F值对应的显著性水平,从而判断样本均值是否有显著差异。
二、假设检验的步骤方差分析的假设检验可以分为以下几个步骤:1. 建立假设- 零假设(H0):各组样本的均值相等,即$\mu_1=\mu_2=...=\mu_k$- 备择假设(H1):至少有两个组样本的均值不相等,即$\mu_i\neq\mu_j$2. 计算组间均方- 组间均方$MS_{\text{between}}$的计算公式为:$MS_{\text{between}}=\frac{SS_{\text{between}}}{df_{\text{between}}}$ - 其中,$SS_{\text{between}}$为组间平方和,$df_{\text{between}}$为组间自由度。
3. 计算组内均方- 组内均方$MS_{\text{within}}$的计算公式为:$MS_{\text{within}}=\frac{SS_{\text{within}}}{df_{\text{within}}}$ - 其中,$SS_{\text{within}}$为组内平方和,$df_{\text{within}}$为组内自由度。