北邮《数字信号处理》Matlab实验——周期序列的谱分析
- 格式:pdf
- 大小:553.00 KB
- 文档页数:7
信号与系统实验报告实验三周期信号的频谱分析学院专业班级学号指导教师实验报告评分:_______实验三 周期信号的频谱分析一、实验目的1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法;2、观察截短傅里叶级数而产生的“Gibbs 现象”,了解其特点以及产生的原因;3、掌握各种典型的连续时间非周期信号的频谱特征。
二、实验容实验前,必须首先阅读本实验原理,读懂所给出的全部例程序。
实验开始时,先在计算机上运行这些例程序,观察所得到的信号的波形图。
并结合例程序应该完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序。
实验前,一定要针对下面的实验项目做好相应的实验准备工作,包括事先编写好相应的实验程序等事项。
Q3-1 编写程序Q3_1,绘制下面的信号的波形图:-+-=)5cos(51)3cos(31)cos()(000t t t t x ωωω∑∞==10)cos()2sin(1n t n n nωπ其中,ω0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos(ω0t)、cos(3ω0t)、cos(5ω0t) 和x(t) 的波形图,给图形加title ,网格线和x 坐标标签,并且程序能够接受从键盘输入的和式中的项数。
抄写程序Q3_1如下: clear,%Clear all variablesclose all,%Close all figure windowsdt = 0.00001; %Specify the step of time variable t = -2:dt:4; %Specify the interval of time w0=0.5*pi; x1=cos(w0.*t); x2=cos(3*w0.*t); x3=cos(5*w0.*t);N=input('Type in the number of the harmonic components N='); x=0; for q=1:N;x=x+(sin(q*(pi/2)).*cos(q*w0*t))/q; endsubplot(221)plot(t,x1)%Plot x1axis([-2 4 -2 2]);grid on,title('signal cos(w0.*t)')subplot(222)plot(t,x2)%Plot x2axis([-2 4 -2 2]);grid on,title('signal cos(3*w0.*t))')subplot(223)plot(t,x3)%Plot x3axis([-2 4 -2 2])grid on,title('signal cos(5*w0.*t))')执行程序Q3_1所得到的图形如下:Q3-2给程序Program3_1增加适当的语句,并以Q3_2存盘,使之能够计算例题1中的周期方波信号的傅里叶级数的系数,并绘制出信号的幅度谱和相位谱的谱线图。
数字信号处理实验报告实验名称:数字信号处理实验学生姓名:班级:班内序号:1.实验要求假设信号x(n) 由下述信号组成:请选择合适的长度N 和窗函数,用DFT 分析其频谱,得到清楚的三根谱线。
2.实验代码和实验结果N = 1000; % Length of DFTn = [0:1:N-1];xn = 0.001*cos(0.45*n*pi)+sin(0.3*n*pi)-cos(0.302*n*pi-pi/4);Xk = fft(xn,N);k=[0:1:N-1];subplot(5,1,1);stem(k,abs(Xk(1:1:N)));title('DFT x(n)');xlabel('k');axis([140,240,0,6])subplot(5,1,2);stem(k, abs(Xk(1:1:N)),'r');%画出sin(0.3npi)-cos(0.302npi-pi/4) axis([140,160,0,6]);title('sin(0.3*pi*n)-cos(0.302*pi*n) ');xlabel('k');subplot(5,1,3);stem(k, 1000*abs(Xk(1:1:N)),'g');%画出0.001*cos(0.45npi)axis([220,230,0,6]);title('cos(0.45*pi*n) ');xlabel('k');subplot(5,1,4);stem(k,0.01*abs(Xk(1:1:N)),'k');%画%sin(0.3npi)-cos(0.302npi-pi/4)axis([140,160,0,6]);title('sin(0.3*pi*n)-cos(0.302*pi*n) ');xlabel('k');subplot(5,1,5);stem(k, 10*abs(Xk(1:1:N)),'m');%画出0.001*cos(0.45npi)axis([220,230,0,6]);title('cos(0.45*pi*n) ');xlabel('k');结论:由上图及过程可知,当DFT变换长度为1000时所得到的谱线非常理想。
MATLAB 信号频谱分析实验报告实验目的本实验旨在使用MATLAB软件进行信号频谱分析,包括对信号的时域分析和频域分析,以及频谱图的绘制和解读。
实验步骤1. 准备工作在开始实验之前,首先需要安装MATLAB软件,并启动软件。
2. 信号生成在MATLAB的命令窗口中,通过使用信号发生器生成一个信号。
可以选择使用正弦波、方波、三角波等不同类型的信号进行频谱分析。
3. 信号时域分析使用MATLAB的时域分析函数,如plot函数,绘制生成的信号的时域波形图。
plot(t, x);title('信号的时域波形图');xlabel('时间');ylabel('幅值');其中,t表示时间轴上的时间点,x表示生成的信号。
4. 信号频域分析使用MATLAB的频域分析函数,如fft函数,将时域信号转换为频域信号。
X = fft(x);可以通过计算得到信号的频率分量f和幅度谱A。
L = length(x);f = Fs*(0:(L/2))/L;A = abs(X/L);A = A(1:L/2+1);其中,Fs表示信号的采样率。
5. 绘制频谱图使用MATLAB的绘图函数,如plot函数,将频域信号的频谱绘制成图表。
plot(f, A);title('信号的频谱图');xlabel('频率');ylabel('幅值');6. 频谱图解读通过观察频谱图,可以分析信号在不同频率上的能量分布情况。
高幅度的频率分量表示信号在该频率上具有较大的能量,低幅度的频率分量表示信号在该频率上具有较小的能量。
7. 实验总结通过本次实验,我们学习了如何使用MATLAB进行信号的时域分析和频域分析。
时域分析可以帮助我们观察信号在时域上的变化情况,频域分析可以帮助我们了解信号在不同频率上的能量分布情况。
通过绘制频谱图,我们可以直观地观察信号的频谱特征,并进行进一步的信号分析和处理。
matlab信号频谱分析实验报告《MATLAB信号频谱分析实验报告》摘要:本实验利用MATLAB软件对不同信号进行频谱分析,通过对信号的频谱特征进行分析和比较,探讨了不同信号的频谱特性及其应用。
实验结果表明,MATLAB信号频谱分析工具能够有效地帮助我们理解信号的频谱特性,为信号处理和通信系统设计提供了重要的参考依据。
引言:信号频谱分析是信号处理和通信领域中的重要内容之一,通过对信号的频谱特性进行分析,可以帮助我们了解信号的频率分布、能量分布和相位特性,为信号处理和通信系统设计提供重要的参考依据。
MATLAB作为一种强大的信号处理工具,提供了丰富的频谱分析函数和工具,能够帮助我们快速准确地分析信号的频谱特性。
实验目的:1. 掌握MATLAB中常用的信号频谱分析函数和工具;2. 对不同类型的信号进行频谱分析,比较它们的频谱特性;3. 探讨不同信号的频谱特性及其应用。
实验内容:1. 使用MATLAB中的fft函数对不同类型的信号进行频谱分析;2. 对比分析不同信号的频谱特性,包括频率分布、能量分布和相位特性;3. 分析不同信号的频谱特性对信号处理和通信系统设计的影响。
实验步骤:1. 生成不同类型的信号,包括正弦信号、方波信号和三角波信号;2. 使用MATLAB中的fft函数对生成的信号进行频谱分析;3. 分析不同信号的频谱特性,包括频率分布、能量分布和相位特性;4. 对比分析不同信号的频谱特性,探讨其应用和影响。
实验结果:1. 正弦信号的频谱特性:频率集中在一个点上,能量分布均匀,相位特性明显;2. 方波信号的频谱特性:频率分布为奇次谐波,能量分布不均匀,相位特性复杂;3. 三角波信号的频谱特性:频率分布为奇次谐波,能量分布均匀,相位特性简单。
实验结论:1. 正弦信号的频谱特性与其频率、幅值和相位有关,能够直观地反映信号的频率和相位特性;2. 方波信号的频谱特性包含丰富的谐波成分,能够用于频率多重复用通信系统的设计;3. 三角波信号的频谱特性简单明了,适合于频率调制和解调系统的设计。
数字信号处理软件实验——MatLab仿真实验报告学院:电子工程学院班级:2013211202姓名:学号:实验一:数字信号的 FFT 分析1、实验内容及要求(1) 离散信号的频谱分析:设信号 此信号的0.3pi 和 0.302pi 两根谱线相距很近,谱线 0.45pi 的幅度很小,请选择合适的序列长度 N 和窗函数,用 DFT 分析其频谱,要求得到清楚的三根谱线。
(2) DTMF 信号频谱分析用计算机声卡采用一段通信系统中电话双音多频(DTMF )拨号数字 0~9的数据,采用快速傅立叶变换(FFT )分析这10个号码DTMF 拨号时的频谱。
2、实验目的通过本次实验,应该掌握:(a) 用傅立叶变换进行信号分析时基本参数的选择。
(b) 经过离散时间傅立叶变换(DTFT )和有限长度离散傅立叶变换(DFT ) 后信号频谱上的区别,前者 DTFT 时间域是离散信号,频率域还是连续的,而 DFT 在两个域中都是离散的。
(c) 离散傅立叶变换的基本原理、特性,以及经典的快速算法(基2时间抽选法),体会快速算法的效率。
(d) 获得一个高密度频谱和高分辨率频谱的概念和方法,建立频率分辨率和时间分辨率的概念,为将来进一步进行时频分析(例如小波)的学习和研究打下基础。
(e) 建立 DFT 从整体上可看成是由窄带相邻滤波器组成的滤波器组的概念,此概念的一个典型应用是数字音频压缩中的分析滤波器,例如 DVD AC3 和MPEG Audio 。
3.设计思路及实验步骤1)离散信号的频谱分析:该信号中要求能够清楚的观察到三根谱线。
由于频率0.3pi 和0.302pi 间隔非常小,要清楚的显示,必须采取足够大小的N ,使得分辨率足够好,至少到0.001单位级,而频率0.45pi 的幅度很小,要清楚的观察到它的谱线,必须采取幅度够大的窗函数,使得它的频谱幅度变大一些。
同时还要注意频谱泄漏的问题,三个正弦函数的周期(2pi/w )分别为20,40,1000,所以为了避免产生频谱泄漏(k=w/w0为整数),采样点数N 必须为1000的整数倍。