拉格朗日乘子法
- 格式:docx
- 大小:12.64 KB
- 文档页数:1
拉格朗⽇乘⼦法拉格朗⽇乘数法(Lagrange multiplier)有很直观的⼏何意义。
举个2维的例⼦来说明:假设有⾃变量x和y,给定约束条件g(x,y)=c,要求f(x,y)在约束g下的极值。
我们可以画出f的等⾼线图,如下图。
此时,约束g=c由于只有⼀个⾃由度,因此也是图中的⼀条曲线(红⾊曲线所⽰)。
显然地,当约束曲线g=c 与某⼀条等⾼线f=d1相切时,函数f取得极值。
两曲线相切等价于两曲线在切点处拥有共线的法向量。
因此可得函数f(x,y)与g(x,y)在切点处的梯度(gradient)成正⽐。
于是我们便可以列出⽅程组求解切点的坐标(x,y),进⽽得到函数f的极值。
想法就是:能够碰到极⼤极⼩值点的必要条件是:梯度场与切空间垂直,也就是梯度场不能够有任何流形切空间上的分量,否则在切空间⽅向有分量,在流形上沿分量⽅向⾛,函数值会增加,沿反⽅向⾛,函数值会减少,不可能为局部极⼩或者极⼤值点。
⼀.⼀个基本的例⼦:假设你⽣活在三维欧⽒空间中,z⽅向的坐标数值上代表海拔⾼度。
如果你会飞,那么anyway,你想飞多⾼飞多⾼,所以你的海拔可以任意⾼也可以任意⼩,根本就没有最⼤值。
假定你是⼀个普通⼈类,你在⼀座⼭上,你的⽬标是爬到⼭顶,也就是说你希望⾃⼰的海拔⾜够⾼:当你真正到达⼭腰时,很容易“只缘⾝在此⼭中,不识此⼭真⾯⽬”,这时候如何判断是真的在往上爬呢,还是在往下⾛呢?在⾁眼所能看见的⼩范围内,你可以通过周边的局部地形来判断,假设它⼤概是这样:你就知道应该往⾼处(⼤概为红箭头⽅向)⾛,⽽不是绿箭头⽅向。
当然不⼀定⼀直沿这个⽅向直线式上升,可能还需要⾛到某个地⽅,再次做⼀下这种局部的考察,调整⼀下⽅向,保证⾃⼰能向⾼处⾛。
不过,什么是“⾼”的⼀边?这个概念究竟是如何形成的?我们知道,海拔,我们希望能够找到⼭⾯上的海拔最⾼点(⼭顶)。
梯度关于梯度⼀个很⾃然的结论就是:沿梯度⽅向是f增长最快的⽅向,反⽅向是下降最快的⽅向。
拉格朗日乘子法不等式约束拉格朗日乘子法是寻找函数在一组约束下的极值方法。
1、等式约束形式:(x是d维向量)min f(x)s.t. h(x) = 0.写成如下形式:min f(x)+lambda*h(x)(lambda为参数)s.t. h(x) = 0.发现两者是等价的。
记:拉格朗日函数L(x,lambda) = f(x)+lambda*h(x).发现约束条件h(x)=0,其实就是对拉格朗日函数L(x,lambda)关于lambda求偏导等于0得到,略去该约束,继而原约束优化问题就转化成了对拉格朗日函数L(x,lambda)的无约束优化问题(即令L 关于x和lambda的偏导等于0求解)。
几何解释:原目标函数f(x)取得最小化点x*时,可以得到如下结论:a.约束曲面上的任意点x,该点的梯度正交于约束曲面;b.在最优点x*,目标函数在该点的梯度正交于约束曲面(可以反正:若目标函数梯度与约束曲面不正交,则总可以在约束曲面上移动该点使目标函数进一步减小)。
所以,在最优点x*,梯度▽f(x*)和▽h(x*)的方向相同或相反,即存在lambda!=0,使:▽f(x*)+lambda*▽h(x*)=0. (1式)定义拉格朗日函数:L(x,lambda) = f(x)+lambda*h(x).令L(x,lambda)对x的偏导数等于0,得到1式;令L(x,lambda)对lambda的偏导数等于0,得到约束条件h(x)=0。
于是,原约束优化问题转化为无约束优化问题。
2、不等式约束形式:min f(x)s.t. g(x) <= 0.同样定义拉格朗日函数L(x,lambda) = f(x)+lambda*g(x).此时,首先看目标函数f(x)在无约束条件下的最优点,显然要么在g(x)<=0的区域内,要么在g(x)>0的区域内。
若f(x)在无约束条件下的最优点在g(x)<=0区域内,则约束条件g(x)<=0不起作用(即可直接求min f(x),得到的结果必然满足g(x)<=0),相当于lambda=0;若f(x)在无约束条件下的最优点不在g(x)<=0区域内,则f(x)在约束条件下的最优点必然在g(x)<=0区域边界,即在边界g(x)=0上。
运筹学拉格朗日乘子法
拉格朗日乘子法是一种常用的运筹学方法,用于求解等式约束的最优化问题。
其基本原理和过程如下:
1. 定义拉格朗日函数:将目标函数和约束条件用拉格朗日乘子法表示,构造一个新的函数,称为拉格朗日函数。
2. 求驻点:对拉格朗日函数求导,使其等于0,得到一组驻点。
3. 最优性条件:在驻点处,目标函数的梯度等于拉格朗日函数的梯度与约束函数梯度的线性组合,即满足KKT条件。
4. 最优解:如果驻点同时满足KKT条件和约束条件,则该驻点为最优解。
拉格朗日乘子法在求解优化问题时具有重要的应用,但也存在一定的局限性,如可能存在局部最优解等。
在实际应用中,需要根据具体问题的特点选择合适的算法和方法。
拉格朗日乘子法与拉格朗日方程拉格朗日乘子法与拉格朗日方程是应用数学中的两个重要概念,它们在优化问题和动力学中扮演着重要角色。
在本文中,我将深入探讨这两个概念的内涵和应用,帮助你更好地理解它们的意义和作用。
1. 拉格朗日乘子法的基本原理拉格朗日乘子法是一种数学工具,用于求解有等式约束的极值问题。
举例来说,当我们需要求一个函数在一些限制条件下的最大值或最小值时,拉格朗日乘子法可以帮助我们有效地解决这一问题。
具体来说,对于一个约束优化问题:\[ \max_{x} f(x) \]\[ s.t. g(x) = c \]其中,f(x)是我们需要优化的目标函数,g(x) = c表示约束条件。
使用拉格朗日乘子法,我们可以构建拉格朗日函数:\[ L(x, \lambda) = f(x) + \lambda(g(x) - c) \]其中,\(\lambda\)就是所谓的拉格朗日乘子。
通过对拉格朗日函数求偏导数,并令偏导数等于零,我们可以得到关于x和\(\lambda\)的方程,进而求解出最优解。
2. 拉格朗日方程的应用拉格朗日方程是描述一个动力学系统的经典物理学方程。
它可以从作用量原理出发推导得到,是描述系统运动方程的一种极其优美的形式。
具体而言,对于一个由广义坐标q和广义速度\(\dot{q}\)描述的动力学系统,它的拉格朗日函数可以表示为:\[ L(q, \dot{q}, t) = T - V \]其中,T代表系统的动能,V代表系统的势能。
根据欧拉-拉格朗日方程,我们可以得到系统的运动方程:\[ \frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) -\frac{\partial L}{\partial q} = 0 \]3. 个人观点和理解拉格朗日乘子法和拉格朗日方程都是非常有用的数学工具,它们在实际问题中的应用非常广泛。
在工程优化、经济学建模、物理学等领域,这两个工具都扮演着重要的角色。
lagrange乘子法
什么是拉格朗日乘子法?
在数学最优问题中,拉格朗日乘子法(Lagrange Multiplier,以数学家拉格朗日命名)是一种寻找变量受一个或多个条件限制的多元函数的极值的方法。
这种方法将一个有n 个变量与k 个约束条件的最优化问题转换为一个有n + k 个变量的方程组的极值问题,其变量不受任何约束。
这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数。
如何使用拉格朗日乘子法?
在机器学习的过程中,我们经常遇到在有限制的情况下,最大化表达式的问题。
如maximizef(x,y)s.t. \quad g(x,y)=0
此时我们就可以构造L(x,y,λ)=f(x,y)−λ⋅g(x,y) ,其中\lambda 称为拉格朗日乘子。
接下来要对拉格朗日表达式求导,令其为0,解方程即可。
1。
拉格朗日乘子优化方法拉格朗日乘子优化方法是一种常用于求解约束最优化问题的数学方法,可在给定约束条件下求取函数的极值。
这种方法由拉格朗日于18世纪末提出,主要用于求取单目标无约束最优化问题的极值,在20世纪50年代由卡鲁帕修斯扩展为求解带有等式约束和不等式约束的问题。
拉格朗日乘子优化方法的基本思想是将含有约束的最优化问题转化为一个不含约束的问题,通过引入拉格朗日乘子将约束条件融入目标函数中,从而将约束问题转化为非约束问题。
这种方法的核心是构造拉格朗日函数,通过求取该函数的极值来达到优化目标。
首先,我们来看一个简单的例子。
假设有一个最优化问题:最大化:f(x,y)约束条件:g(x,y)=0其中,f(x,y)是目标函数,g(x,y)是约束条件。
我们可以构造拉格朗日函数L(x,y,λ),它为目标函数加上约束条件的乘子乘以约束条件的无约束形式,即:L(x,y,λ)=f(x,y)+λg(x,y)其中,λ称为拉格朗日乘子,用于调整目标函数和约束条件之间的关系。
然后,我们可以求取L(x,y,λ)的偏导数,并令其等于零,即:∂L/∂x=∂f/∂x+λ∂g/∂x=0(1)∂L/∂y=∂f/∂y+λ∂g/∂y=0(2)∂L/∂λ=g(x,y)=0(3)从方程(1)和(2)中,我们可以得到与λ无关的x和y的表达式,即:∂f/∂x+λ∂g/∂x=0∂f/∂y+λ∂g/∂y=0通过上述方程组,我们可以推导出x和y的解。
然后,将x和y的解带入约束条件中,即可求取拉格朗日乘子λ的值,从而得到目标函数的极值。
这种方法的优势在于可以将包含约束的复杂问题转化为一系列无约束问题的求解,使得问题的求解过程简化,并且能够应用于多种类型的约束条件。
同时,拉格朗日乘子方法还具有一定的几何解释,能够帮助我们理解问题的几何属性。
然而,拉格朗日乘子方法也存在一些局限性。
首先,它只能求解约束条件可微的问题,对于不可微条件的问题无法求解。
其次,当问题的解不唯一时,拉格朗日乘子方法只能提供其中一组解,无法得到所有的解。
拉氏乘子法
拉格朗日乘子法(Lagrange multiplier method)也称为拉格朗日乘数法或拉格
朗日乘子法,是一种优化问题的常用解法,通常用于处理约束条件的问题。
其基本思想是将原优化问题转化为一个带有约束条件的无约束极值问题,通过引入拉格朗日乘子求解约束条件。
设优化问题为$\min_{x} f(x)$,其中$x\in\mathbb{R}^n$,同时满足约束条件
$g_i(x)\leq 0$和$h_j(x)=0$,其中$g_i(x)$和$h_j(x)$是给定的函数。
构造拉格朗日函数:
$$L(x,\lambda,\mu)=f(x)+\sum_{i}\lambda_ig_i(x)+\sum_{j}\mu_jh_j(x)$$
其中,$\lambda_i\geq 0$和$\mu_j$是拉格朗日乘子。
对
$L(x,\lambda,\mu)$求偏导数:
$$\begin{cases} \frac{\partial L}{\partial x}=0 \ \frac{\partial L}{\partial
\lambda_i}=0 \ \frac{\partial L}{\partial \mu_j}=0 \end{cases}$$
解上述方程组即可求得最优解$x^$和拉格朗日乘子$\lambda^$和$\mu^$。
其中,$\lambda_i^$表示第$i$个约束条件的松弛变量(slack variable),用于表
达当约束条件不满足时的惩罚项。
拉格朗日乘子法的优点是能够直接处理约束条件问题,并且可以推广至不等式约束、等式约束和混合约束等多种情形。
缺点是当约束条件数量较大时,方程组可能变得非常复杂且难以求解。
拉格朗日乘子法在最优化控制中的应用拉格朗日乘子法是一种在最优化控制中应用广泛的数学方法。
它是由法国数学家约瑟夫·路易斯·拉格朗日于18世纪提出的一种优化技术。
拉格朗日乘子法在很多实际问题中都具有重要的应用价值,能够帮助我们找到最优的方案以满足一定的约束条件。
一、拉格朗日乘子法的原理拉格朗日乘子法主要是通过引入拉格朗日乘子来处理约束条件。
假设我们要优化一个函数f(x)的取值,但是存在一些限制条件g(x)=0。
利用拉格朗日乘子法,我们可以将约束条件融入目标函数中,构造拉格朗日函数L(x,λ)=f(x)+λg(x),其中λ是拉格朗日乘子。
二、无约束问题的求解首先,我们来看一个简单的无约束最优化问题。
假设我们要求解的问题是最小化一个函数f(x)。
根据拉格朗日乘子法的原理,我们可以构造拉格朗日函数L(x,λ)=f(x)+λg(x),其中g(x)=0。
然后,我们通过求解极值点的条件∇L(x,λ)=0来得到最优解。
这个条件可以通过求解f(x)的导数和g(x)的导数相等的方程得到。
三、带等式约束的优化问题接下来,我们考虑带等式约束的优化问题。
假设我们要最小化一个函数f(x),且带有等式约束g(x)=0。
利用拉格朗日乘子法,我们可以构造拉格朗日函数L(x,λ)=f(x)+λg(x)。
这个等式约束可以转化为无约束问题的形式,即求解minL(x,λ)。
通过求解极值点的条件∇L(x,λ)=0,我们可以得到最优解。
四、带不等式约束的优化问题在现实应用中,很多问题都存在着不等式约束。
比如,我们要将一条线段从A点移动到B点,并且要求线段不与一些障碍物相交。
这是一个带不等式约束的问题。
在这种情况下,拉格朗日乘子法同样可以帮助我们求解最优解。
我们可以将不等式约束转化为等式约束,然后构造拉格朗日函数L(x,λ)=f(x)+λg(x),其中g(x)>0。
通过求解极值点的条件∇L(x,λ)=0,并且满足不等式约束g(x)>0,我们可以得到带不等式约束的最优解。